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Abstract:
In this article, we discuss the numerical implementation of the Multilevel
Monte-Carlo (MLMC) scheme for option pricing within the Heston asset
model. The Heston model is a stochastic volatility model that captures
the dynamics of the underlying asset price and its volatility. The MLMC
method is a variance reduction technique that exploits the difference be-
tween two consecutive levels of discretization to estimate the expected value
of a quantity of interest. We begin by providing an overview of the MLMC
method, followed by an introduction to the weak methods used to ap-
proximate the Heston model. Weak methods are numerical schemes that
preserve the distributional properties of the solution, rather than its path-
wise behavior. Subsequently, we present the results of some numerical
experiments conducted to evaluate the performance of the approach. Two
different cases are surveyed.
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1 Introduction

The Heston model is a well-known stochastic volatility model that describes the

dynamics of an asset price St and its volatility vt given by the following stochastic

differential equations (SDEs):

dSt = rStdt+
√
vtStdW

1
t , S0 > 0, 0 < t < T,

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t , v0 > 0, 0 < t < T,

(1)

where:

• 0 < r < 1 is the risk-free interest rate,
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• κ > 0 is the mean reversion speed,

• θ > 0 is the long-term volatility,

• σ > 0 is the volatility of volatility,

• W 1
t andW 2

t are two correlated Brownian motions with correlation ρ ∈ [−1, 1],

and dW 1
t and dW 2

t are the corresponding increments of the Brownian motions. We

denote the payoff of the option by f : [0,∞) → R. Throughout this paper, the

initial values S0, v0 are assumed to be deterministic.

While the Heston model lacks a closed-form solution, it is established that a

strong solution exists and is unique, as per the Yamada-Watanabe theorem. We

can rewrite the Heston model into one with two independent Brownian motions

W 2
t and Bt, by introducing an auxiliary variable Zt = ρdW 2

t +
√
1− ρ2dBt. We

get

dSt = rStdt+
√
vtStdZt,

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t .

(2)

A common numerical practice is to utilize the log-Heston model rather than the

Heston model. The transformation Xt = ln(St) yields

dXt = (r − 1

2
vt)dt+

√
vtdZt, X0 ∈ R,

dvt = κ(θ − vt)dt+ σ
√
vtdWt, v > 0,

(3)

where for notational convenience we have removed the superscript 2. Accordingly,

the payoff function also incorporates the exponential term as g : R → R, g(x) =

f(exp(x)).

The Heston model finds extensive application in option pricing. The general

form of the option price can be expressed as follows:

E(f(S)),

where the expectation is calculated under the risk-neutral measure. Usually, one

may resort to approximating it using Monte-Carlo simulation [10], coupled with a

numerical method, preferably a weak one, to estimate S. Traditional time-discrete

schemes, such as those outlined in Kloeden and Platen [11], frequently yield er-

ratic outcomes when employed in the Heston model. This is primarily due to the

model’s diffusion term not satisfying the Lipschitz condition. Although several dis-

cretization schemes and simulation methods for the stochastic differential equation

(3) have been proposed and numerically evaluated, studies analyzing the weak con-

vergence rate are scarce. In [2], the authors proposed a numerical scheme, which

uses the drift-implicit Milstein scheme for the volatility and a Euler discretisation
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for the log-Heston price. They show that under the assumption ν = 2κθ
σ2 > 2 on

Feller index, and for sufficiently smooth payoffs, the method is weakly convergent

of order α ∈ (0, 1). On the other hand, in [13], the author used the idea that the

CIR variance process vt can be simulated exactly. Specifically, the distribution of

vt conditioned on vu, u < t is Chi-squared and leveraging the known transition den-

sity of the variance process, some authors have explored an alternative approach

for simulating the Heston model. In this approach, they either approximate the

variance process using easily simulatable random variables or simulate it nearly ex-

actly. Using the formula due to [4], the logarithmic asset process (3), conditioned

on the variance process is simulated as

Xt+h =Xt +
ρ

σ
(vt+h − vt − kθh) +

(
ρk

σ
− 1

2

)∫ t+h

t

vs ds

+
√
1− ρ2

√∫ t+h

t

vs dsN, (4)

where N is a standard normal random variable, independent of the variance process

and h is the step size. Then, the time integral is estimated by the stochastic

trapezoidal rule

∫ t+h

t

vs ds ≈ vt + vt+h

2
h.

In [13], the weak convergence order 2 for polynomial payoffs is calculated for this

method. The advantage is this method has no restriction on parameter regimes.

In a parallel development, Giles [8] introduced the multilevel Monte-Carlo (MLMC)

method as a variance reduction technique to reduce the computational cost of the

Monte-Carlo method. Hence, a significant challenge arises in integrating the MLMC

method with an efficient numerical scheme tailored for the Heston model.

Recently, [14], combined the multilevel Monte-Carlo method with the semi exact

numerical scheme for the Heston model (4), that either simulates the variance

process exactly or nearly exactly. Additionally, the stochastic trapezoidal rule

employed to approximate the time-integrated variance process within the stochastic

differential equation governing the logarithmic asset process. Although, applying

the MLMC for Heston type models is rare in the literature, for more examples

consult [1], [8], [9] and [6].

While weak convergence holds traditional significance in financial mathematics

due to its focus on expectations of functionals of the solutions, strong convergence

assumes a pivotal role in Multilevel Monte-Carlo methods. Therefore, we need

to also examine pathwise convergence, along with techniques that maintain the

positivity of the solutions. Subsequently, [9] and [3] devised methods to bypass

this stringent requirement for strong convergence and the idea of weak MLMC is
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born. They achieved this by introducing antithetic paths and a coupling mechanism

between the levels, respectively.

In this article, we consider two different approaches to apply the weak MLMC

method, by combining MLMC with the weak numerical scheme for the Heston

model. In section 2, the weak MLMC scheme is reviewed and section 3 contains

the numerical experiments.

2 Multilevel Monte-Carlo method

The Multilevel Monte-Carlo (MLMC) method, introduced by M. Giles [8], provides

an efficient approach for managing the computational complexity arising from vari-

ance and bias across multiple levels. This scheme employs successive corrections

to estimate E[f(XT )], facilitating independent estimation of the mean value for

each correction. As a result, significant reduction in computational complexity is

achieved compared to the Monte-Carlo (MC) method.

Consider the numerical approximation Y l
N , where N = 2l, of XT for each level

l = 0, . . . , L, with a step size l = (T − t0)/2
l. Let P denote a functional of XT ,

P = f(XT ), and Pl denote the same functional of Y l
N , Pl = f(Y l

N ), for each

l = 0, . . . , L. Expanding [PL] into a telescopic sum, we obtain

E[PL] = E[P0] +

L∑
l=1

E[Pl − Pl−1].

Instead of directly computing the expectation, we approximate it using θl, with

Ml paths. For instance, θ0 = 1
M0

∑M0

i0=1 P0(ω0,i0), and θl =
1
Ml

∑Ml

il=1(Pl−Pl−1)(ωl,il),

where ωl,il corresponds to the il-th path of Y l
N . The optimal Ml is determined by

Ml = 2ϵ−2
√
Vll

(
L∑

i=0

√
Vi/i

)
,

where Vl is the variance of Pl−Pl−1 and ϵ represents the chosen Root Mean Square

error (RMSE) [8]. This optimization minimizes the computational effort
∑L

l=0Ml/l
under the condition that the variance of the MLMC estimator is less than ε2/2.

The advantage of the MLMC approach lies in its flexibility to adjust the number

of paths required for estimating the expectation based on the variance of Pl −
Pl−1. As the step size decreases, so does the variance. Thus, we aim to allocate

a significant number of paths only when each path is inexpensive, i.e., when we

perform few time steps per path. Conversely, we aim to limit the number of paths

when they are costly, i.e., when many time steps are required.

Giles’ general theorem [8] states the following.

Theorem 2.1. Let P denote a functional of the solution of a SDE, and let Pl denote

the corresponding approximation using step size hl. If there exists independent esti-
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mators θl based on Ml Monte-Carlo paths and positive constants α > 0.5, β, c1, c2,

and c3 such that

(i) |E[Pl − P ]| ≤α
l ,

(ii) [θl] =

 [P0], l = 0

[Pl]− [Pl−1], l > 0,

(iii) (θl) ≤ c2M
−1
l

β
l ,

(iv) Cl, the computational complexity on each level, is bounded by Cl ≤ c3Ml
−1
l ,

then there exists a positive constant c4 such that for any ϵ < e−1, there are values

L and Ml, for which the multilevel estimator

θ =

L∑
l=0

θl

has a Mean Squared Error (MSE) with bound

MSE := E[(θ − E(P ))2] ≤ ϵ2

with a computational complexity C with bound

C ≤


c4ϵ

−2, β > 1

c4ϵ
−2(log(ϵ−1))2, β = 1,

c4ϵ
−2−(1−β)/α, 0 < β < 1.

Out of the four requirements, the third one is the most challenging to fulfill. The

first requirement implies weak convergence of order α for the underlying method

used to approximate Xt based on the step size hl. Constructing estimators with

properties (2) and (4) is relatively straightforward, as the former ensures θl is

unbiased, and the latter concerns bounding the computational cost of each level.

The classical approach to fulfilling requirement (3) involves using strong order of

consistency, wherein 2pstrong = β for Lipschitz continuous functions.

Weak MLMC method

In [3], Belomestny and Nagapetyan introduced the Weak MLMC method, demon-

strating that MLMC based on the weak Euler scheme maintains C = (ϵ−2(log ϵ)2)

with proper level coupling. Specifically, for an arbitrary level l, let ξfl,i and ξcl,i,

i = 1, . . . , 2l, be, possibly approximate, Wiener increments with variance ∆l, uti-

lized in the approximation of P̂ f
l and P̂ c

l , respectively. Then, we impose the condi-

tion

R = ξcl−1,i − ξfl,2i−1 − ξfl,2i, ξcl−1,i
D
= ξfl−1,i (5)
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with R sufficiently small. Here, we will only consider R = 0.

Equation (5) couples the random variables on a single level together and to

the lower levels. One selects an initial distribution for the random variables ξfL,i,

which, by equation (5), generates the distributions of the random variables on the

lower levels. For instance, the choice ξfL,i ∼ N(0,
√
∆L)

m yields ξfl,i ∼ N(0,
√
∆l)

m,

representing the classical MLMC. Meanwhile, for the two-point distribution approx-

imation with (ξfL,i,j = ±
√
∆L) =

1
2 , j = 1, . . . ,m, we obtain

ξfl,i ∼
(
Bin

(
2L−l, 0.5

)
− 2L−l−1

)
· 2
√

∆L. (6)

The efficient implementation of generating binomial random numbers is discussed

in [3, Section 4.1].

3 Numerical Results

In this section, using the idea of coupling levels, we test combinations of the MLMC

method with two weak numerical schemes and discuss the numerical results.

Case 1

The scheme we examine first is chosen from [2], comprises a drift-implicit Milstein

scheme for the volatility and an Euler scheme for the log-price. The discritization

of [0, T ] is 0 = t0 < t1 < · · · < tN = T .

xn+1 =xn +

(
r − 1

2
vn

)
(tn+1 − tn) +

√
vn
(
ρ
(
Wtn+1 −Wtn

)
+
√

1− ρ2
(
Btn+1 −Btn

))
,

vn+1 =vn + κ (θ − vn+1) (tn+1 − tn) + σ
√
vn
(
Wtn+1 −Wtn

)
+

σ2

4

((
Wtn+1 −Wtn

)2 − (tn+1 − tn)
)
,

with x0 = X0 and v0 = V0. This scheme can be rewritten as

vn+1 =
1

1 + κ (tn+1 − tn)

((√
vn +

θ

2

(
Wtn+1 −Wtn

))2

+

(
κλ− θ2

4

)
(tn+1 − tn)

)
,

(7)

and thus vn > 0, n = 1, . . . iff 4κθ
σ2 ≥ 1. Using the normal distributed increments,

this method has weak order of convergence near 1 for the European put payoff [2].

We combined this method with MLMC using both normal and binomial increments,

but we did not observe any significance of computational efficacy. The numerical

order of variance reduction β is around 0.5 and so based on theorem 2.1, we cannot

expect much complexity reduction over Monte-Carlo method, as seen in practice.

Case 2

The second method applied is consisted of Euler scheme for the price and Lamperti

backward Euler method [12] for the variance process for equation (2). In this
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equation, if v0 > 0 and 2κθ > σ2 is imposed, then vt is strictly positive. First, by

using the Lamperti transform Xt = F (νt), where F (z) =
∫ z

0
1√
y , dy = 2

√
z, the

positivity of the numerical approximation of the transformed stochastic differential

equation (SDE) is guaranteed. Applying the Itô formula, we have

dXt = κ

((
θ − σ2

4κ

)
2

X(t)
− X(t)

2

)
dt+ σdWt,

which is an SDE with additive noise. Then, we use backward Euler approximation

Xn+1 = Xn + κ

((
θ − σ2

4κ

)
2

Xn+1
− Xn+1

2

)
h+ σ∆Wt.

Here, we combine the MLMC algorithm together with this numerical method using

the binomial increments (coupling idea). The parameters are chosen close to [14]

to ensure the Feller condition satisfies for lower variance assets. Also, picking root

mean square errors RMSE = [5e− 3, 1e− 3, 5e− 4, 1e− 4], the simulations for the

European call option payoff f(S) = (S −K)+ (standard for Lipschitz payoff), are

shown below.

1 2 3 4

k 5 2.6 1.6 6.2

θ 0.09 0.04 0.04 0.02

σ 0.35 0.25 0.3 0.2

ρ -0.3 -0.9 -0.5 -0.7

In all cases, T = 1, v0 = θ, r = 0.05, and S0 = K = 1

The variance reduction order β and weak order of convergence α are calculated

in figures. The results for all set of parameters agree on β = 1 and α = 1. More

precisely, we expect β = 1 (strong order =1/2) and α = 1 from the Euler method

and β = 1 and α = 1 for the backward Euler method [7]. We, therefore, anticipate

the same for the combined method, as is proven by the numerical results. The

significance of using weak MLMC here lies in not relying on a strong method.

Despite this, we achieve β = 1, resulting in a reduced computational cost compared

to the classical Monte-Carlo method. The expected results are confirmed across all

sets of parameters.

The figure 5 demonstrates the computational cost of the method. As expected

from theorem 2.1 for β = 1, we see the order of cost is slightly less than 2.
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Figure 1: Data column 1, CPU time= 86.0488 seconds.
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Figure 2: Data column 2, CPU time= 52.5207 seconds.
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Figure 3: Data column 3, CPU time= 46.2955 seconds.
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Figure 4: Data column 4, CPU time= 45.7574 seconds.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

RMSE 10-3

0

2

4

6

8

10

12

M
S

E
 C

os
t

Computational Cost

data

Figure 5: Computational Complexity.

In comparison to this method, the recent MLMC Heston scheme proposed by [14]

with β = 2 for path-independent polynomial payoffs employed MLMC with a strong

discretization method for the log-price and normally distributed increments. Ad-

ditionally, they simulated the variance process exactly, making it trivial to achieve

a higher order of variance reduction. It is also worth mentioning that our initial

simulations of the weak antithetic MLMC method [5] yielded acceptable results,

suggesting its potential for future investigations. Another additional field of re-

search could be, how to improve this method to adjust for the more volatile assets.
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