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Abstract:
Abstract:
This paper presents a nonlinear autoregressive model by Ornstein Uhlenbeck
processes innovation driven with white noise. The presented notations and
preliminaries about these processes, have important applications in finance. The
parameter estimation for these processes is constructed from the time-continuous
likelihood function that leads to an explicit maximum likelihood estimator. A
semiparametric method is proposed to estimate the nonlinear autoregressive
function using the conditional least square method for parametric estimation,
and a nonparametric kernel approach by using the nonparametric factor that is
derived by a local L2-fitting criterion for the regression adjustment estimation.
Then the Monte Carlo numerical simulation studies are carried out to show the
efficiency and accuracy of the present work. The mean square error (MSE) is
a measure of the average squared deviation of the estimated function values
from the actual ones. The values of MSE indicate that the innovation in noise
structure is performed well in comparison with the existing noise in the nonlinear
autoregressive models.
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1 Introduction

Stochastic differential equations (SDEs) are widely used in financial economics to

analyze the time dependency of high-frequency data such as the ones measured in

minutes or seconds. The most important type of SDEs is the Ornstein Uhlenbeck

(OU) processes that have important applications in various fields. In mathematical

finance, they are well known as the main building block of the Barndroff-Nielsen

and Shephard stochastic volatility model [1]. The OU process is a diffusion process

that was introduced as a model of the velocity of a particle undergoing Brownian

motion. In recent years, the OU process has appeared in finance as a model of the

volatility of the underlying asset price process. Estimation of the parameters of OU

processes has been considered by many researchers [2,10]. The maximum likelihood
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estimator is an efficient method. In many practical cases where a diffusion process

has been observed at discrete time points, an explicit likelihood function is rarely

available. Forecasting and capturing the trend of time series have been the object

of numerous researches over the past decades [9]. The most widely used model for

this case of models is the autoregressive (AR) model. Semiparametric time series

models with the structure of nonlinear functions are proposed in [3,8]. The common

way of analyzing an AR model is based on the normality assumption of innovations

that provides a Gaussian process for observations, whereas, in many empirical situ-

ations, the data violate this assumption, and therefore the traditional normal based

theory leads to poor forecasts [6]. Recently many researchers have focused on de-

veloped methods in which the normality assumption does not hold. These methods

allow replacing the normal innovation by a nonnormal innovation to build and

analyze an AR model. Zhuoxi et al. considered a semiparametric method for esti-

mating the nonlinear autoregressive model with independent errors [11]. Farnoosh

and Mortazavi extend the Zhuoxi model to a nonlinear autoregressive model with

dependent errors and investigate the asymptotic behaviors of the semiparametric

estimators [4]. Hajrajabi and Fallah assume the skew-normal innovations instead of

normal and estimate the parameters using the maximum likelihood approach and

Expectation-Maximization type optimization [5]. Following these works, we sustain

the semiparametric estimation for the nonlinear autoregressive model. The differ-

ence is that we allow the innovation to be a sequence of (i.i.d) random variables that

are achieved from an OU process driven by the white noise. Also, the closed form

for the likelihood function of the OU process likelihood function is obtained. The

rest of this paper is organized as follows. In section 2 the preliminaries and nota-

tions about the OU processes are investigated. The maximum likelihood estimator

for parameter estimation is presented in this section. The proposed semiparametric

nonlinear autoregressive model with the OU process is discussed in section 3. Some

numerical simulations are carried out in section 4. Finally, section 5 covers some

concluding remarks.

2 Preliminaries and notations

A stochastic process ξ = {ξ(t)} is an OU process if it satisfies the linear stochastic

differential equation {
dξ(t) = −λξ(t)dt+ σdw(t)

ξ(0) = ξ0
(1)

where λ, σ are positive parameters and ξ0 is a random variable is independent of

a standard Brownian motion w = {w(t)}. The equation(1) has unique strong

solution,

ξ(t) = exp(−λt)
(
ξ0 + σ

∫ t

0

exp(λs)dw(s)
)

(2)
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The mean, variance and covariance of ξ(t) with some algebraic manipulation can

be obtained,

E(ξt) = exp(−λt)E(ξ0)

var(ξt) =
σ2

2λ + (var(ξ0)− σ2

2λ )exp(−2λt)

cov(ξ(s), ξ(t+ s)) =
(
var(ξ0) +

σ2

2λ (exp(2λs)− 1)
)
exp(−λ(2s+ t))

(3)

respectively. If ξ0 ∼ N(0, σ
2

2λ ) becomes a stationary Gaussian process with covari-

ance function c(t) = σ2

2λexp(−λt). We modify Eq(1) to{
dξ(t) = −λξ(t)dt+ dZ(λt)

ξ(0) = ξ0
(4)

where ξ0 ∼ N(0, σ
2

2 ) and Z = Z(t) is an independent Gaussian process with Z(t) ∼
N(0, tσ2). Now we want to study the maximum likelihood estimation of the vector

parameter Θ = (σ2, λ) in Eq(4). For this purpose, let ξ0, ξ1, ..., ξn be the observed

values of ξ(t0), ξ(t1), ..., ξ(tn) of the model(4). The likelihood function using the

Markov and Gaussian properties is explicitly given by

L(θ) = fξ(t0)(ξ0)
∏n

k=1 fξ(tk)|ξ(tk−1)(ξk)

= 1
σ
√
π
exp(

−ξ20
σ2 ) exp

(
− (ξk − exp(−λ∆k)ξk−1)

2

σ2
√
π(1− exp(−2λ∆k)

) (5)

The log-likelihood function is given by:

K(θ) = − (n+1)
2 log(πσ2)− ξ20

σ2 − 1
2

∑n
k=1 log(1− exp(−2λ∆k))

−
∑n

k=1

(ξk − exp(−λ∆k)ξk−1)
2

σ2(1− exp(−2λ∆k))

(6)

By maximizing this function, maximum likelihood estimator can be achieved [10].

3 The proposed Semiparametric model

Consider the nonlinear autoregressive model,

yt = f(yt−1) + ξt, t = 1, ..., n (7)

where f(.) is an unknown autoregressive function and ξt is an OU process that

satisfies in Eq(4). Note that y(t) and ξ(t) are independent for any t. We used a

semiparametric method for estimation of the unknown autoregressive function f(.)

based on the work of Zhouxi et al. [11] and Farnoosh and mortazavi [4]. Suppose

that f(.) in Eq(9) has a parametric framework, namely parametric model as,

f(x) ∈ {h(x, β), β ∈ B} (8)
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where h(x, β) is a known function of x and β such that β ∈ Rm is a parametric

space. In the model (9) the parameter vector β should be well estimated using the

conditional nonlinear least square errors method as follows:

β̂ = argminβ∈B

n∑
t=1

(
yt − E(yt|yt−1)

)2
(9)

It is clear that

E(yt|yt−1) = f(yt−1) + E(ξt|yt−1)

= f(yt−1) + e(−λt)E(ξ0)

= h(yt−1, β)

Since ξ0 ∼ N(0, σ
2

2 ) then E(ξ0) = 0. Zhuoxi obtain the strong consistency of β̂n
under a variety of conditions [11]. Using the similar idea as in Hjort and Jones we

will adjust the initial approximation of f(.) by the semiparametric form h(x, β̂)Γ(x)

, where Γ(x) is the adjustment factor [7]. The remaining problem is to determine

Γ(x). The local L2-fitting criterion is defined as

Qn(x,Γ) =

n∑
t=1

K(
yt−1 − x

bn
){f(yt−1)− h(yt−1, β̂).Γ(x)}2, (10)

where K(.) is a kernel and bn is the band width depending on n. This kernel

estimator is a special case of the local polynomial estimator proposed by Zhuoxi

et al. So the estimator Γ̂(x) of Γ(x) is obtained by minimizing the criterion in

Eq(12) with respect to Γ(x) . Therefore a nonparametric estimator is calculated

with smooth kernel method of Γ(x) as

Γ̂(x) =

∑n
t=1 f(yt−1)K(yt−1−x

bn
)h(yt−1, β̂)∑n

t=1K(yt−1−x
bn

)h2(yt−1, β̂)
(11)

The above equation contains the unknown function f(x), therefore by using ξt =

yt − f(yt−1) since the error of the method are small values with expectation zero,

then yt ∼ f(yt−1) and we have,

Γ̃(x) =

∑y
t=1 tK(yt−1−x

bn
)h(yt−1, β̂)∑n

t=1K(yt−1−x
bn

)h2(yt−1, β̂)
(12)

Finally the autoregressive estimator is obtained by

f̃(x) = h(x, β̂).Γ̃(x) (13)

4 Numerical Simulation

In this section a Monte Carlo simulation study is designed to show the efficiency

and accuracy of present work. We consider a nonlinear AR(1) model of the form
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yt = f(yt−1) + ξt where dξt = −0.1ξ(t)dt+ 0.2dw(t). Let us consider the partition

0 = t0 < t1 < · · · < tn = T for interval [0, T ] and ∆t = T
n , then the Euler

Maruyama approximation for OU process is as follows:

ξ(ti+1) = ξ(ti)− λξ(ti)∆t+ σ∆w

where ∆w ∼ N(0,∆t). At first the noise of system is simulated using the Monte

Carlo simulation approach and then the autoregressive model is simulated with the

nonlinear part in three case studies.

Case 1:
f11(x) = 5 sin(x)

f12(x) = 5 sin(x) + 0.1x
by assuming h1(x, β) = β1 sin(x)

Case 2:
f21(x) = 3 exp(−x)
f22(x) = 3 exp(−x) + 0.1x

by assuming h2(x, β) = β2 exp(−x)

Case 3:
f31(x) = 2 log(x)

f32(x) = 2 log(x) + 0.1x
by assuming h3(x, β) = β3 log(x)

Using the kernel function K(x) = 1√
2π
e

−x2

2 and bn = 0.3 . The mean values

of the estimators of the parameters for n=100 observation in 1000 samples of the

proposed algorithm are presented in table (1). The mean square error (MSE) is

defined as

MSE =
1

n

n∑
i=1

(f(xi)− h(xi, β̂))
2

and earned for these case studies.

Table 1: The mean of estimator and MSE for the nonlinear autoregressive function

f(x) h(x, β) β̂ MSE

5 sin(x) β sin(x) 5.000000 4.22× 10−6

5 sin(x) + 0.1x β sin(x) 4.999478 0.340420

3 exp(−x) β exp(−x) 3.001103 5.28× 10−6

3 exp(−x) + 0.1x β exp(−x) 3.001230 0.348497

2 log(x) β log(x) 2.000972 1.51× 10−10

2 log(x) + 0.1x β log(x) 1.999712 6.85× 10−6

The figures (1-7) shows the exact functions and simulated functions for three

case studies. We can see that the proposed model performs well.

5 Conclusion

In this paper a first order nonlinear autoregressive model with Ornstein Uhlenbeck

processes innovation driven by the white noise is considered. This assumption
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Figure 1: The exact function and simulated function for case 1, Right: for f11(x) ,
Left: for f12(x).

Figure 2: The exact function and simulated function for case 1, Right: for f21(x) ,
Left: for f22(x).

Figure 3: The exact function and simulated function for case 1, Right: for f31(x) ,
Left: for f32(x).

allows a flexible treatment of the observations.The simulated OU process by Matlab

shows the trend of the noise toward the mean. The semiparametric method by using

the conditional nonlinear least squares and the local L2-fitting criterion is used to

estimate the nonlinear parts of the model. The numerical simulations show the

accuracy of the present work. For the future works, researchers can use the flexible

class of none Gaussian OU processes driven by levy noise with desirable properties
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for using in the time series models and semi-parametric methods in this paper.
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