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Abstract:
Abstract:
Insurance companies and pension funds which deal with human lifetime are inter-
ested in mortality forecasting to minimize the longevity risk. In this paper, we
studied the mortality forecasting model based on the age-specific death rates by
the usage of the state-space framework and Kalman filtering technique. To capture
the volatility of time, the time varying trend has been added to the Lee-Carter
(LC) model, which is the benchmark methodology in modeling and forecasting
mortality since it was introduced in 1992. So, this model is a random walk with
time varying drift (TV). We illustrated the performance of the proposed model
using Iranian mortality data over the period 19502015. Numerical results show
that, both models have good fitness and are tangent. So the TV model acts as
well as the LC model, but the TV model has the advantages of fewer calculations
and the time-varying drift which can be beneficial in time varying data sets.
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1 Introduction

Life expectancy has increased significantly in recent decades all over the world.

This increase, which is because of medical findings and improvement in standards of

living, has economic consequences for life-related insurance companies and pension

funds. To evaluate the patterns of mortality and forecast the future mortality,

statistical methods are needed.

There are many studies which consider trends of mortality and try to forecast the

future mortality with different viewpoints and methods. These studies were started

in 17th century and have been continued in numerous methods. These methods

were based simply on the collecting the number of deaths and births from available
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sources and they were lack of graphical presentations. Graunt (1662), Halley (1693)

and De Moivre (1725) were among these studies.

More recently, Gompertz (1825) and Makeham (1860) let the force of mortality

increase exponentially with age, adding a small constant, for better reflection of

the age pattern of mortality at younger ages. Force of mortality represents the

instantaneous rate of mortality at a certain age measured on an annualized basis.

Later, others like Heligman Pollard (1980) try to fit curve to entire age range based

on the ratio of the probability of dying at any age to that of the probability of not

dying at that age. But none of these methods considered time effect in mortality

rate. Most recent models fit curves to mortality rates in both the age and time

dimension.

Lee and Carter [1] were among the first researchers who used stochastic trend

methodology to count the time effect in mortality date. Lee and Carter (LC)

explored the time series behavior of mortality movements between age groups by

using a single latent factor which is responsible for describing the general level of

log mortality. Log central death rates are modeled as the sum of a time invariant,

age-specific constant, and the product of an age-specific time invariant component

and the time-varying latent factor. The age-specific component represents the

sensitivity of an individual age group to the general level of mortality changes [1].

Girosi and King [2] proposed a reformulation of the Lee and Carter model. They

introduced a version of LC model, with a single latent factor, following a random

walk with drift. Jong and Tickle [3] introduced a more flexible approach based on

standard time series approaches to estimation and forecasting. The model intro-

duced was the LC (smooth) model which is a smoothed version of the original LC

model. They estimate the parameters by the means of the least square method

and maximum likelihood estimation using Kalman filtering either. H’ari et al. [4],

added the time factor to the drift of LC model in order to capture the volatility

of time. The applied framework is the state-space framework that is a well-known

method in time series. In this approach, the Kalman filtering technique is used to

estimate the required parameters.

In this paper, we implement the LC model as well as the model with the time

varying drift, called the TV model to Iranian mortality data to evaluate the function

and accuracy of the TV model and the advantage of it according to the LC model.

The available data range from 1950 to 2015 and include a peak due to Iran-Iraq

war in 80s.

The paper is followed with the methodology section which describes the Lee-

Carter model and Time-Varying model formulations. In section 3, we run and

evaluate both methods using Iranian mortality data and see the results. At last a

conclusion section will conclude the article, proposing future researches.
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2 Methodology

Let Dxt be the number of people with age x that died in year t and Ext be the

exposure-to-risk at age x in year t. Then mxt is the logarithm of central death rate

for age x in year t [5,6]. defined as:

mxt = ln
(Dxt

Ext

)
(1)

where x ∈ {1, . . . , na}, and t ∈ {1, . . . , T}. Define

mt =


m1,t

...

mna,t


Then the model according to Lee and Carter [1] can be formulated as:

mt = α+ βγt + δt (2)

Wheremt is the central death rate in year t. α and β are time invariant, age-specific

constants. γt is the time-varying index of level of mortality which is one-dimensional

underlying latent process and δt is a vector of (measurement) error terms. Taking

expectation, yields the estimation of α as:

αx = mx (3)

And the parameters β and γ in (1) can be estimated via maximum likelihood. The

optimum can be found easily via the singular value decomposition (SVD) of the

matrix of centered age profiles, UΣV t = m. Then according to [3] β̂ = U while

γ̂ = ΣV t. For better estimation of parameters, we need to run the second stage

estimation of γ. As it is seen, LC estimation needs many calculations to result

in parameter estimation. To reduce the calculations, and improve the estimation

accuracy, we generalize the LC model to a time varying (TV) model. For this aim,

the start point is the LC-reformulated model [2], which is defined as:

mt = θ +mt−1 + ζt, (4)

where ζt is the error term and θ = βc. In the TV model θ = βc is considered as

θt = a+Bxt, (5)

where

xt =t−1 +ηt. (6)

In the state-space framework, suppose that

Yt :=t= mt −mt−1, t = 2, 3, . . . , T.
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Therefore, the observation equation is defined as

Yt = a+Bxt + ζt, (7)

and the state equation is defined as

xt =t−1 +ηt, (8)

where xt is considered as a one-dimensional latent factor, and ζt is assumed to be

zero. It means all the uncertainty of the model is defined in the ηt term, which

ηt ∼WN(0, Q). For estimating the unknown parameters, we need to maximize the

likelihood function is given by

L(θ|Y1, . . . , YT−1) =(2π)−na×(T−1)/2
T−1∏
t=1

det(BBt)−1/2

exp

(
−1

2

T−1∑
t=1

(Yt − ΓYt−1)
t(BBt)−1(Yt − ΓYt−1)

)
(9)

After computing B and Γ by the means of the two-stage iterative process introduced

in [5], the parameter vector a is calculated by summing over t = 2, 3, . . . , T . Then

we have

a =
1

T − 1

T∑
i=2

(Yi − Yi−1) =
(mT −m1)− Γ(mT−1 −m0)

T − 1
(10)

Therefore, the parameters of the TV model are estimated [8] . Moreover, the

predictions of the death rates are based upon:

E(mT+τ |FT ) = mT + âτ + B̂

T+τ∑
t=T+1

E(xt|FT ) (11)

E(xT+τ |FT ) = Γ̂(x̂T ) (12)

3 Implementation and numerical results

As mentioned, life related insurance products face two kinds of risk. First institu-

tions offering products based on lifetime of an individual, face risk because life time

is uncertain. This kind of risk, known as micro- or pooling-risk can be reduced by

increasing portfolio size.

But there exists another source of risk that cannot be reduced by increasing the

number of people included. The macro- or longevity risk is the risk of increasing in

life expectancy during time. Insurance companies and pension funds are of main

institutions that are affected by this risk, and they always seek methods of mortality

modeling which forecast mortality as accurate as possible.
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If pension funds in Iran continue to use the static and adopted life table ”TD 88-

90”, set for another country and is for many years ago, they will run budget deficit,

as they usually do. In addition, the insurance companies suffer from statistic life

tables. Statistic life tables do not reflect the mortality decrease, which will lower

the premium. In a complete competitive market, the less the premium, the more

the number of costumers. If one company cannot accurately forecast the mortality,

and therefore do not lower the premium, it will lose its customers. A company with

fewer and fewer customers will go bankrupt.

The Lee-Carter [1] approach is the benchmark methodology in mortality fore-

casting since it was introduced. In many empirical applications the Lee-Carter

approach results in a model that describes the log central death rates by means of

linear trends. But it has sophisticate calculations, and multiple steps to result in

estimation and predictions. Therefore, to implement the LC function, we use an

online Lee Carter Mortality forecasting.

As described, based on the H’ari [4], we study a mortality forecasting model

describing the time series behavior of age-specific death rates. Our model is an

extended model of the Lee-Carter, which is reformulated by Girosi and King [2].

In this reformulation the log central death rates are directly modeled as random

walks with drift. These drifts determine the long run forecasts. We extend this

approach by allowing for a time varying trend for drifts, depending upon a few

underlying latent factors, in order to capture the co-movements between the various

age groups. By reformulating the model in a state-space framework, the Kalman

filtering technique can be used to estimate the parameters by means of maximum

likelihood estimate (MLE).

The reformulation of Girosi King [2] considers a drift for the random walk. These

drift are constant over time. However, due to the volatility in (past) mortality

data, the estimation of these trends, and, thus, the forecasts based on them, might

be rather sensitive to the sample period employed. This change in drift is not

considered in LC model. Our TV model allows for time-varying trends, depending

on a few underlying factors, to make the estimates of the future trends less sensitive

to the sampling period.

Another advantageous of our model is that we estimate the age specific parame-

ters, the latent factor and its process in one single step, while the Lee-Carter model

and its extensions estimate the parameters in multiple steps. In addition, the stan-

dard error estimation in our TV model can be done in the same single step, while

the standard error of the parameters in LC model is estimated in several steps

which are complex in some cases, according to what Lee and Carter themselves

say in [1]. This multi-steps approach makes the calculations more complicated and

increases estimation error.

We applied a simplified model of H’ari’s [4] model and illustrated our specifica-

tion using Iranian mortality data over the period 19502015. The data are extracted

lcfit.demog.berkeley.edu
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from the United Nations dynamic life tables, and we use death rates that are ob-

tained by the division of the number of death into the exposure- to-risk.

The data are prepared in EXCEL software to obtain death rates from death

numbers existing in the UN site. Then the parameters of the model are estimated

and predictions are done by the means of MATLAB codes, which are written for

this purpose. At last curves and tables are inserted for result comparison.

When comparing the LC and TV results, both models have good fitness and

are tangent, with the accuracy of one in ten thousand. So the TV model acts as

well as the LC model. But the TV has the advantage of fewer calculations and

the time-varying drift. In this section, the Iranian age-specific mortality data is

used to illustrate the performance of the proposed model in comparison to the LC

model. The data is the males life table for the years 1950 to 2015 with the age

groups 1, 1-4, , 80-85, 85+ and is from World Population Prospects. Table 1 and

figure1 show the forecasting results of both LC and TV methods for the period

2035-2040. It can be seen that the accuracy of the results is almost the same in all

age groups. The curves of models are almost tangent that are not distinguishable

in the curve, but the TV model has an advantage comparing to the benchmark

methodology because the time varying trend which is added in TV model can be

beneficial to decrease the sensitivity of the estimations of the future trends to the

sampling period.

Figure 1: Death rate projections for the period 2035-2040 by the LC model and
time varying model

World Population Prospects: The 2012 Revision. United Nations, Popula-
tion Division, Department of Economic and Social Affairs. Data is available at
http://esa.un.org/unpd/wpp/index.htm, downloaded on 07.26.2015)



Paper 2: Estimating the term structure of mortality 19

age TV model LC model

<1 0.00525 0.00501

1-5 0.00014 0.00013

5-10 0.00008 0.00007

10-15 0.00010 0.00009

15-20 0.00037 0.00037

20-25 0.00114 0.00119

25-30 0.00079 0.00081

30-35 0.00087 0.00088

35-40 0.00069 0.00070

40-45 0.00094 0.00094

45-50 0.00156 0.00156

50-55 0.00284 0.00284

55-60 0.00367 0.00365

60-65 0.00639 0.00634

65-70 0.01112 0.01108

70-75 0.03105 0.03149

75-80 0.06192 0.06288

80-85 0.10501 0.10690

85+ 0.19331 0.19772

Table 1: Death rate forecasting results for the period of 2035-2040.

Besides we examined the sampling period sensitivity to the prediction results.

Death rate trend of Iran shows that mortality rate for men had increased strongly

during the period 1980-1985 which was coincident with the first 5 years of the Iran-

Iraq war. We want to see how choosing the sample period will affect the mortality

prediction, especially if the period includes a peak, like the case of war, or epidemic

diseases. We seek a method to be less influenced by these peaks. Table 2 shows the

mortality rate prediction for the years 2015-2020 based on the time varying (TV)

model and Lee-Carter (LC) model, both in three cases. First the sample period is

1980 to 2015 which includes the first years of war (including), with the increased

rate of mortality. Then in the next step the rates are calculated by the time series

of 1985 up to 2015 which excludes the first years of the war (excluding). At last

the prediction based on the whole period (1950-2015) is presented (all). By our

data set, according to figure 2 and figure 3, we cannot see a significant decrease in

sensitivity of the result to the sample period.

Another advantage of the TV model is that the complexity of the computations

is less than the LC model. The LC model estimates and predicts the parameters
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Figure 2: TV and LC comparison, including the death peak of war

Figure 3: TV and LC comparison, excluding the death peak of war

in multiple complex steps. But the TC model using Calman Filtering technique,

estimates in a simple step, using MLE function.

4 Conclusion

Static life tables fail to predict true distribution of future mortality and lead to

invalid death rate predictions; thus the need for a dynamic life table is evident. We
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TV model LC model

age including excluding all including excluding all

<1 0.0123 0.0122 0.0127 0.0122 0.0122 0.01259

1-5 0.0004 0.0004 0.0005 0.00046 0.00044 0.00046

5-10 0.0002 0.0002 0.0002 0.00022 0.00022 0.00022

10-15 0.0002 0.0002 0.0002 0.0002 0.00021 0.00023

15-20 0.0005 0.0004 0.0006 0.00042 0.00043 0.00064

20-25 0.001 0.0009 0.0014 0.0009 0.00091 0.00141

25-30 0.0008 0.0008 0.0011 0.00073 0.00074 0.00112

30-35 0.0009 0.0009 0.0013 0.00087 0.00089 0.00126

35-40 0.0009 0.0009 0.0011 0.00089 0.00093 0.00114

40-45 0.0014 0.0014 0.0016 0.00136 0.00145 0.00159

45-50 0.0023 0.0024 0.0026 0.00231 0.0025 0.00259

50-55 0.004 0.0043 0.0045 0.00403 0.00435 0.00449

55-60 0.0055 0.0059 0.006 0.00552 0.006 0.00604

60-65 0.0096 0.0097 0.0101 0.00976 0.00987 0.0101

60-65 0.0096 0.0097 0.0101 0.00976 0.00987 0.0101

65-70 0.016 0.0163 0.0169 0.01634 0.01656 0.01687

70-75 0.0369 0.0389 0.0395 0.03847 0.04 0.03961

75-80 0.0708 0.0748 0.0748 0.07449 0.07722 0.07431

80-85 0.1182 0.1251 0.1238 0.1258 0.12959 0.12274

85+ 0.2106 0.2216 0.2197 0.22638 0.22996 0.21807

Table 2: The central death rate forecast for the period 2015-2020 based on different
sample period (including war 1980-2015; excluding war 1985-2015; all 1950-2015)
and different methods (Time Varying Drift, and Lee-Carter)

run a dynamic model for predicting death rate, using the state-space framework

and Kalman filtering technique, called a Time Varying model. Our model acts as

accurate as the Lee-Carter model, and even more accurate. The other advantage of

our proposed model, is the lower calculations. The third advantage is that the TV

model, can reduces the volatility of time, means the peaks of deaths, which occur

because of war or epidemic diseases (like covid-19 these days.) The existing model

is suggested to be extended by more than one latent factors, and error terms with

autoregressive moving average (ARMA) behavior instead of white noise. Thus, the

model might show better performance.



22 Journal of Mathematics and Modeling in Finance

Bibliography
[1] B.D. Lee, and R.L. Carter, Modeling and forecasting U.S. mortality, Journal of the Amer-

ican Statistical Association, 87 (1992), pp. 659- 671

[2] F. Girosi, and G. King, Understanding the Lee-Carter Mortality Forecasting Method, Work-
ing Paper, (2007), Harvard University.

[3] P.D. Jong, and L., Tickle, Extending the Lee-Carter methodology of mortality projection,
PdD thesis, (2004), Department of Actuarial Studies, Macquarie University.

[4] N. H’ari, A.D. Waegenaere, B. Melenberg and T.E. Nijman, Estimating the term struc-
ture of mortality, Insurance: Mathematics and Economics, 42 (2008), pp. 492504

[5] P.E. Caines, Linear stochastic systems, John Wiley Sons, Inc., 1988.

[6] N.L. Bowers, Actuarial mathematics, (1997), Society of Actuaries (SOA).

[7] D.C. Dickson, M.R. Hardy and H.R. Waters, Actuarial mathematics for life contingent
risks, (2009), New York: Cambridge University Press.

[8] P.J. Brockwell and R.A. Davis, Introduction to time series and forecasting, (2002),
Springer.

How to Cite: Marzieh Vahdani1, Ali Safdari-Vaighani2, Estimating the term structure of
mortality: an application to actuarial studies, Journal of Mathematics and Modeling in
Finance (JMMF), Vol. 1, No. 2, Pages:13–22, (2021).

The Journal of Mathematics and Modeling in Finance (JMMF) is licensed under a

Creative Commons Attribution NonCommercial 4.0 International License.


