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Abstract:
Abstract:
Identifying the structures of dependence between financial assets is one of the
interesting topics to researchers. However, there are challenges to this purpose.
One of them is the modelling of heavy tail distributions. Distributions of
financial assets generally have heavier tails than other distributions, such as
exponential distributions. Also, the dependence of financial assets in crashes is
stronger than in booms and consequently the skewed parameter in the left tail is
more. To address these challenges, there is a function called Copula. So, copula
functions are suggested for modelling dependency structure between multivariate
data without any assumptions on marginal distributions, which they solve the
problems of dependency measures such as linear correlation coefficient. Also,
tail dependency measures have analytical formulas with copula functions. In
general, the copula function connects the joint distribution functions to the
marginal distribution of every variables. With regard, we have introduced a
factor copula model that is useful for models where variables are based on latent
factor structures. Finally, we have estimated the parameters of factor copula by
Simulated method of Moment, Newton-Raphson method and Robbins-Monroe
algorithm and have compared the results of these methods to each other.
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1 Introduction

The financial crisis of 2007-2008 was a threat for large financial institutions. In

the early 2000s, the United States faced a severe financial credit crisis. They were

faced with strange formulas for repaying their debts to the bank, which seemed

those debates change over time. As interest rates on loans rose, many borrowers

could no repay their debts, and some others were forced to relinquish their assets,

including housing. As a result, this reduced the houses prices in the United States.

This issue with other economic problems had negative effects on the US economy
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rating and the world stock markets. When borrowers were not able to pay their

debts, including high interest rates, the entire economic system ran into trouble.

European stock prices also fell gradually. In fact, stocks that were even independent

of each other fell together suddenly. This indicates that the dependence of random

variables in tails is stronger than other regions.

As the history of financial crisis shows, one of the underlying causes of such events

is the failure to model and understand the dependence structure of multi variate

distributions of returns. A powerful tool for this purpose is Copula. Copulas are

multivariate functions that capture the dependence structure of joint distributions

[12]. Copulas allow us to abstract away the individual distributional properties and

focus only on the dependence of multiple random variables.

One of the most important classes of multi-dimensional models used in economics

and finance, are the factor models. Factor models assume that the target variables

that we wish to study, depend on some latent variables which we do not directly

observe. In modelling market prices, the latent factors can be interpreted as the

common factors that drive the prices. One advantage of factor models is that they

help us discover these common factors. One of the earliest and most influential

factor models in finance has been the CAPM model [11].

The above two mentioned tools (copulas and factor models) can be combined

in a single model called the factor copula model [2]. Factor copulas have the

advantages of both models. On one hand they can discover the latent factors and

on the other hand they focus only on the dependence structure. This comes with a

price, and the price is that the estimation of such models becomes difficult. Indeed

most of the factor copulas does not posses closed form densities which can be used

for estimation. This has resulted in various methods in the literature in order

to estimate the coefficients of a factor model. Because of the lack of closed form

densities, most of the methods have resorted to simulations. Such methods should

inevitably use some kind of stochastic approximation.

In this article, we consider three methods for estimation of factor copula models.

All of these models use the idea of method of moments in combination with simu-

lation and hence the name simulated method of moments. The first method comes

from [1], and uses a minimization process in order to minimize the distance between

the observed and the simulated moments. The second method, uses the straight-

forward idea of solving a nonlinear system consisting of simulated moments and

applies the well-known Newton-Raphson method [3]. The third and final method

uses the Robins-Monroe approximation method which is one the earliest and most

used methods for stochastic approximation [8].

We have implemented the above three methods and applied them on the his-

torical price data of 470 stocks included in S&P500 index. We have compared the

performance of the estimation methods. All codes have been conducted by Python.
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2 The copula of a latent factor model

Consider a vector of N variables, Y, with joint distribution FY , marginal distribu-

tions Fi, and copula C:

[Y1, · · · , YN ]′ ≡ Y ≈ FY = C(F1, · · · , FN ) (1)

The copula is a function that describes the dependence between the variables

Y1, · · · , YN as our observations. We will use existing models to estimate the marginal

distributions Fi, and focus on constructing useful new models for the dependence

between these variables, C.

According to [1], we consider factor structure, based on a set of N +K latent

variables:

Let:

Xi =

K∑
k=1

βikZk + εi, i = 1, 2, · · · , N (2)

so

[X1, . . . , XN ]T ≡ X = BZ+ ε

where

εi ∼ iid Fε(γε),

Zk ∼ inid FZk
(γk), Zk ⊥ εi ∀i, k.

Then

X ∼ FX = C(G1(θ), G2(θ), . . . , GN (θ); θ),

where θ ≡ [vec(B)T , γε
T , γ1

T , . . . , γK
T ]T . The copula of the latent variables X,

denoted C(), is used as the model for the copula of the observable variables Y. An

important point about the above construction is that the marginal distributions

of Xi may be different from those of the original variables Yi, so Fi ̸= Gi in

general; on the other hand, due to the good features of copula function, instead

of using marginal distribution and the presence of latent factors that complicate

their distributions, we used vector structure, X. The copula implied by equation

2 is generally not known in closed form. If {Fε, Fz1 , · · · , FzK} are all Gaussian

distributions, in which case the variable X is multivariate Gaussian, implying a

Gaussian copula. For other choices of {Fε, Fz1 , · · · , FzK} the joint distribution of

X, and the copula of X, is generally not known in closed form [1]. However, it is

simple to simulate from {Fε, Fz1 , · · · , FzK} for many classes of distributions, and

it can be extracted properties of the copula from simulated data , such as Rank

correlation, Kendalls tau, and Quantile dependence. These simulated dependence

measures can be used in the SMM estimation method of [2] Oh and Patton (2013),

which is briefly described in 3.1.

Although most factor copulas do not have a closed-form density, we can use re-

sults from extreme value theory to obtain analytically results on the tail dependence
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implied by a given factor copula model. According to the simple linear structure

generating the factor copula, these results are relatively easy to obtain. Recall the

definition of tail dependence for two variables Xi, Xj with marginal distributions

Gi, Gj [2]:

τLij = lim
q↘0

P[Gj(Xj) ≤ q|Gi(Xi) ≤ q] = lim
q↘0

Cij(q, q)

q
(3)

τUij = lim
q↗1

P[Fj(Xj) > q|Fi(Xi) > q] = lim
q↗1

1− 2q +Cij(q, q)

1− q
.

These are lower and upper tail dependence measures, respectively and the prob-

ability of both variables lying below their q quantile, for q limiting to zero, scaled

by the probability of one of these variables lying below their q quantile.

In this article, we used the Tau-Kendall rank dependency measurements to es-

timate the parameter θ. According to [2], rank dependence measures for the pair

(Xi, Xj) are defined as:

τ ij ≡ 4E[Cij(Fi(Xi), Fj(Xj))]− 1, (4)

where Cij is the copula of (Xi, Xj). The sample counterparts are defined as:

τ̂ ij =
4

T

T∑
t=1

Ĉij(F̂i(X̂it), F̂j(X̂jt))− 1, (5)

where

F̂i(x) ≡
1

T + 1

T∑
t=1

1{X̂it ≤ x}, Ĉij(u, v) (6)

≡ 1

T + 1

T∑
t=1

1{F̂i(X̂it) ≤ u, F̂j(X̂jt) ≤ v}. (7)

counterparts based on simulations are denoted by τ̃ij(θ).

In propositions 1 and 2 [1], we can see lower and upper tail dependence measures

using factor models for single factor and multi-factor copula models. Beside, accord-

ing to proposition 3 [1], if we know the distribution of latent variables and errors,

we can obtain constant values of the formulas for the tail dependencies stated in

propositions 1 and 2 using factor models. These propositions show that when the

coefficients on the common factor have the same sign, and the common factor and

idiosyncratic variables have the same tail index, the factor copula generates upper

and lower tail dependence. If either Z or ε is asymmetrically distributed, then

the upper and lower tail dependence coefficients can differ, which provides this

model with the ability to capture differences in the probabilities of joint crashes

and joint booms. When either of the coefficients on the common factor are zero, or

if they have differing signs, then the upper and lower tail dependence coefficients
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are both zero. These propositions consider the case that the common factor and

idiosyncratic variables have the same tail index.

According to [1], we are likely to estimate parameter θ in below model:

Xi =

K∑
k=1

βikZk + εi, i = 1, 2, · · · , N

[X1, . . . , XN ]′ ≡ X = BZ+ ε,

εi ∼ N(µ = 0, σ2 = 1), (8)

Zk ∼ Skew t(ν = ∞, λ), Zk ⊥ εi ∀i, k.

X ∼ FX = C(G1(θ), G2(θ), . . . , GN (θ); θ),

θ ≡ [vec(B)′, λ]′,

In this model, we considered the Normal distribution for errors and the latent

variables had the Skew-t distribution with the degree of freedom infinity.

According to the proposition 4 [1], we estimated the number of latent factors

in our model. To further explain, we should sort the eigenvalues of the matrix of

R̂y
T and then consider the number of those whose values are greater than one, and

if T tends to infinity, K̂T will tend K in probability . This is obvious that the

distributions and copula are continuous, and the iid assumption can be relaxed by

invoking assumption 2 of Oh and Patton (2013) [2] and then we estimated stan-

dardized residuals from the original data. With assumptions (1)(2) of proposition

4 we find that K̂T provides, asymptotically, a lower bound on the true number

of factors; it will miss factors that are gk(R) ≤ 1 for k ∈ [1,K]. If N diverges

with T then this cannot happen and assumption (3) will hold automatically (see

Chamberlain and Rothschild 1983; Bai and Ng 2002) [10], while in this proposition

setting of finite N this assumption may not hold. In such cases using a threshold

of one provides a lower bound on the true number of factors.

3 Estimation of factor copula

As mentioned, joint density factor copula models do not have a closed-form and the

methods that we already know, such as Maximum Likelihood estimation for estimat-

ing of parameters of copula are not efficient. According to [2], we use the Simulated

Method of Moments estimation or SMM. This method is suitable for models that

have a large number of unknown dependent parameters or their density functions

which are not closed-form. Also, it can be estimated the marginal distributions

using the EDF. Considering the following GARCH model (with p = q = 15) aug-

mented with lagged market return information, that are used to filter each of the

individual return series:

Yt = α0 + α1Yt−1 + · · ·+ αqYt−q + εt, t = 1, 2, · · · , T (9)
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σ2
t = α0 + α1ε

2
t−1 + · · ·+ αqε

2
t−q + δ1σ

2
t−1 + · · ·+ δpσ

2
t−p,

α0 ≥ 0, αi, δi ≥ 0, i = {1, 2, · · · }

In this model, εt represents error which is equal to σtηt, and also ηt is residual

variable. Indeed, residuals appear in errors. We estimated the distribution of the

standardized residuals as the EDF using GARCH model and observations Y . From

now on, we will estimate the factor copula parameters, θ̂0 ∈ Θ, with vector of

residuals, η̂t. Let m̃S(θ) be a N × N matrix of dependence measures computed

using S simulations from FX(θ), and {Xs}Ss=1 and let m̂T be the corresponding

vector of dependence measures computed using the standardized residuals {ηt}Tt=1.

We will now explain the three estimation methods used in this paper to obtain

the values of the factor copula parameters.

3.1 Simulated Method of Moments

Define the difference between these as

gT,S(θ) ≡ m̂T − m̃S(θ), (10)

This SMM estimator is based on searching across θ ∈ Θ to make 10 as small as

possible. The estimator is defined as QT,S(θ) where

QT,S(θ) ≡ g′
T,S(θ)ŴTgT,S(θ), (11)

so

θ̂T,S ≡ argmin
θ∈Θ

QT,S(θ). (12)

Weight matrix ŴT is a positive definite matrix, which may depend on the data.

First, we use equation 5 for estimating parameter θ. We use the closing price of

each stock to obtain daily returns and sort them by date. We used time series

models and estimate unknown parameters using the same model. The reason why

we used daily returns instead of stock prices is that time series analysis of returns

is more appropriate than price time series and we expect the returns (not prices)

change linearly. So, we obtained the residual variables using the GARCH model.

We also estimated their marginal distributions empirically and finally obtained the

Tau-Kendall rank dependency measures in the sample mood, it means R̂r
T . We

set m̂T as the vector of the calculated dependency measurements of the standard

residues {η̂t}Tt=1. According to proposition 4 [1], let m̂T = R̂r
T , Which is a N ×N

matrix. Then the number of latent factors returns the kth-largest eigenvalue of the

matrix R̂r
T which is greater than 1. Moreover, we used data from S&P500. Our

data, Yi, is related to the price of 500 US stocks from 2013 to 2018, which is 1258

workable days. This data includes stock name, stock date, open and close prices,

highest and lowest price and volume. We sorted the stocks by date in a table whose

columns bear the names of stocks and the rows of that date and stock yield in each

sheet.
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Figure 1: Number of latent factors with 470 returns

We have removed sheets whose yields have not been defined (price information is

incomplete), and finally, the number of our stocks became equal to N = 470. The

reason why we use returns instead of prices is that we expect returns to change

linearly. Also, the dependence between returns is not very interesting for us, and

what is important for us is the dependence between the residuals. The eigenvalue

greater than 1 with N = 470 is equal to:

K̂T = max{k : gk(R̂
r
T ) > 1} = 67

109.595546 19.723693 10.608553 7.50174234 5.9589867 5.3865252

4.78211970 4.4297649 3.4951303 2.81086816 2.6780819 2.5997679

2.49934868 2.2946449 2.1583033 2.01111380 2.0072519 1.9677944

1.94252628 1.8877604 1.7358756 1.71122559 1.6496980 1.6233613

1.58726184 1.5445178 1.5050240 1.48155870 1.4568980 1.4422919

1.40280982 1.3870849 1.3687812 1.33594704 1.3214989 1.2980555

1.27601869 1.2611421 1.2521566 1.24031450 1.2291115 1.2244026

1.20202774 1.1876368 1.1780731 1.16482782 1.1592405 1.1562463

1.14476479 1.1336676 1.1163572 1.11225577 1.1042156 1.1009008

1.08945546 1.0793844 1.0679219 1.05886555 1.0532051 1.0491200

1.04006913 1.0279877 1.0198420 1.01858352 1.0134598 1.0065245

1.00231535

We drew the Scree plot of eigenvalues. Since the first and the second eigenvalues

are much larger than the third eigenvalue, we cut off them from the figure to have

an obvious figure.

In this article, we took 10 stocks from the S&P500 index, and the number of

latent factors being equal to one. Then, we can see its results and scree plot:

K̂T = max{k : gk(R̂
r
T ) > 1} = 1
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3.2215 0.9858 0.8845 0.8331 0.7903

0.7454 0.6731 0.6534 0.6091 0.6035

Figure 2: The number of latent factors with 10 returns

According to the SMM estimator, we also obtain m̃S(θ). As we said, matrix

m̃S(θ) is the measure of dependence calculated from the 1000 simulations of FX(θ)

and {Xs}Ss=1. We calculate the Tau-Kendall dependency measure with the simu-

lated latent variables, and let them, m̃S(θ). Furthermore, This vector is a function

with the parameter θ which includes the skewness λ and the latent factor coefficients

matrix Z, which means βi, i = {1, 2, · · · , N}. The results are given in chapter 4.

3.2 Newton-Raphson Method

Suppose we had a family of distributions, p(x|θ), and we wish to estimate the r-

dimensional parameter vector θ by matching a m-dimensional vector of moments,

µ(θ) = E[m̃S(x)|θ], to a fixed vector µ0 = m̂T(θ).

If E[m̃S(x)|θ] can be expressed analytically in closed form, we can obtain the

moments estimate θ̂ using the Newton-Raphson method, as follows [3]. Start with

a guessed value, θ1. Then for t = 1, 2, · · · , update the guess to

θt+1 = θt + [E[m̃S(x)|θt]′]−1(m̂T(θ)−E[m̃S(x)|θt]) (13)

where µ′(θt) = E[m̃S(x)|θt]′ is the matrix of derivatives of µ(θt) = E[m̃S(x)|θt]
with respect to θ. Here we are concerned with problems for which E[m̃S(x)|θt]
cannot be computed in closed form; instead, we can estimate it, for any given value

of θ, by simulation of N draws of X from the distribution p(x|θ).
Suppose now the problem is overdetermined, with more moments specified than

parameters in the model, and we would like the θ that gives the best least-squares fit,

minimizing ||m̂T(θ)−E[m̃S(x)|θt]||2. The normal equations areE[m̃S(x)|θt]′(m̂T(θ)−
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E[m̃S(x)|θt]) = 0, which we can again solve by Newton-Raphson, using iterative

least squares. Starting out at a guess θ1, for t = 1, 2, · · · , the updated guess is

θt+1 = θt + [least squares regression of (µ0 − µ(θt)]) on the matrixµ′(θt)]. (14)

After solving equation 14, θt+1 will equal with θt+(µT (θt)µ(θt))
−1µ′(t)T (µ0−µ(θt)).

One can apply the Monte Carlo method as before, using the estimates µ̂(θ) and

µ̂′(θ) from the previous sections and converging to an approximate least squares fit

by simulating a large numberN of draws once the estimate θt is close to convergence

[3].

As we know, obtainingE[m̃S(x)|θt] with closed-form which is random function, is

impossible. Therefore, we cannot compute E[m̃S(x)|θt]′. We used Secant method

and as a result of Broyden’s method that because of matrix form. The secant

method is a root-finding algorithm that uses a succession of roots of secant lines

to better approximate a root of a function f. The secant method can be thought

of as a finite-difference approximation of Newton’s method. The secant method is

defined by the recurrence relation:

θt+1 = θt + (
µ(θt)− µ(θt−1)

θt − θt−1
)−1(µ0 − µ(θt)) (15)

As can be seen from the recurrence relation, the Secant method requires two initial

values, θ0 and θ1, which should ideally be chosen to lie close to the root [4,5]. Broy-

den’s method is a generalization of the secant method to more than one dimension.

In numerical analysis, Broyden’s method is a quasi-Newton method for finding roots

in r variables. Newton’s method for solving µ(θ) = 0 uses the Jacobian matrix, J ,

at every iteration. However, computing this Jacobian is a difficult and expensive

operation. The idea behind Broyden’s method is to compute the whole Jacobian

only at the first iteration and to do rank-one updates at other iterations [6, 7].

We supposed µ(θt) → µt and µ
′(θt) → Jt which is m× r matrix (m = r). So

Jt = Jt−1 +
(µt − µt−1)− Jt−1(θt − θt−1)

||θt − θt−1||2
(θt − θt−1)

T , (16)

and

θt+1 = θt + J−1
t (µ0 − µt). (17)

If m > r, we have equation 16 and

θt+1 = θt + (JT
t Jt)

−1JT
t (µ0 − µt). (18)

Finally we used our data for calculating of parameters, θ, and MSE in chapter 4.

3.3 Robbins-Monroe algorithm

The RobbinsMonro algorithm, introduced in 1951 by Herbert Robbins and Sutton

Monro, presented a methodology for solving a root problem, where the function is

represented as an expected value.
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Assume that we have a function M(θ), and a constant α, such that the equation

M(θ) = α has a unique root at θ0. It is assumed that while we cannot directly

observe the function M(θ), we can instead obtain measurements of the random

variable N(θ) where E[N(θ)] = M(θ). The structure of the algorithm is to then

generate iterates of the form:

θn+1 = θn − an(N(θn)− α)

Here, a1, a2, . . . is a sequence of positive step sizes. Robbins and Monro proved

[8] that θn converges in L2 (also in probability) to θ, and Blum [9] later proved the

convergence is actually with probability one, provided that:

• N(θ) is uniformly bounded,

• M(θ) is nondecreasing,

• M ′(θ0) exists and is positive, and

• The sequence an satisfies the following requirements:

∞∑
n=1

an = ∞,

∞∑
n=1

a2n <∞.

In this algorithm using SMM method, we let:

(i) Moment of m̃S(θ) as a function with random parameter θ.

(ii) A particular sequence of steps which satisfy these conditions, and was sug-

gested by RobbinsMonro, have the form: an = a
n , for a > 0. Other series are

possible but in order to average out the noise in N(θ), the above condition

must be met.

(iii) Suppose we obtain m̂T empirically, which is equal to α. Our purpose is that

m̃S(θ) equal to α as much as possible.

(iv) For updating θ in each step, we have:

θn+1 = θn − an(m̃S(θ)− m̂T), (19)

(v) Also we simulated with 1000 samples to 1000 times.

(vi) To estimate the parameters of λ, β, we used two elements of moments [0,1]

and [1,2]. Then, we update the parameters every times by 19.

We obtain the optimal value of θ and MSE, and the results are given in chapter 4.
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4 Numerical result

In this chapter, we fit the model with the three methods described in Chapter 3 with

S&P500 index data. For simplicity, we consider N=10 to have one latent factor and

a state that latent factor coefficients are common, it means: β1 = · · · = β10 = β.

The reason why we used the model with one latent factor is that the first factor

is significantly different from the other factors, so the one-factor model is a good

model to estimate.?? For simplicity, we assumed the weight matrix ŴT in Equation

32 is Identity matrix, ŴT = I. The results for simulated method of moment are

shown in the below table:

Table 1: The result of parameters with the Simulation Method of Moment

Parameter Initial value Optimal value

β -0.6 −0.5999985

λ -2 −1.9991886

MSE = 8.0508306e− 09

On the other hand, we estimated the value of Q and that was 9.68755201. Although

this method failed to reduce the value of objective function, it could be a optimal

method to estimate the parameters of copula. We also fit the data on the Newton-

Raphson method and we obtained results in blow table, when m = 3, r = 2:

Table 2: The result of parameters with the Newton-Raphson Method

Parameter Initial value Optimal value

β -0.6 0.6158638421

λ -2 −0.5999471132

MSE = 0.000924684
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For the Robbins-Monro algorithm, we have brought the results in the blow table:

Table 3: The result of parameters with the Robbins-Monro algorithm

Parameter Initial value Optimal value

β -0.6 −0.55929763

λ -2 −2.13245125

MSE = 0.05362494

5 Conclusion

By comparing the results, we found that although the simulated method of moment

was performed with more time, the MSE value decreased and the optimal parame-

ters values became closer to the initial parameters values. Therefore, this method

is more suitable than the other two methods.1

Also, despite the fact that Newton-Raphson method is faster to process, it cannot

be a good method to estimate copula parameters because of calculating the values

of parameters.2

It should be noted that the Robbins-Monro algorithm is a good estimator, too.

In this method, the values of optimal parameters is approximately close to initial

parameters. Therefore, it can be an appropriate method to estimate the factor

copula parameters.3
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