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Abstract:
Abstract:
The economic downturn in recent years has had a significant negative impact
on corporates performance. In the last two years, as in the last years of 2010s,
many companies have been influenced by the economic conditions and some have
gone bankrupt. This has led to an increase in companies’ financial risk. One of
the significant branches of financial risk is the company’s credit risk. Lenders
and investors attach great importance to determining a company’s credit risk
when granting a credit facility. Credit risk means the possibility of default on
repayment of facilities received by a company. There are various models for
assessing credit risk using statistical models or machine learning.
In this paper, we will investigate the machine learning task of the binary
classification of firms into bankrupt and healthy based on the spectral graph
theory. We first construct an adjacency graph from a list of firms with their
corresponding feature vectors. Next, we first embed this graph into a one-
dimensional Euclidean space and then into a two-dimensional Euclidean space to
obtain two lower-dimensional representations of the original data points. Finally,
we apply the support vector machine and the multi-layer perceptron neural
network techniques to proceed binary node classification. The results of the
proposed method on the given dataset (selected firms of Tehran stock exchange
market) show a comparative advantage over PCA method of dimension reduction.
Finally, we conclude the paper with some discussions on further research directions.
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1 Introduction

A challenging problem in data mining is to understand, interpret and analyze a

dataset which lies in a high-dimensional space where each instance is represented

by many features. The key to this phenomenon is the fact that only a few features

are crucial to analyze the given machine learning task or indeed our data points

actually lie on a lower-dimensional manifold. We recall that a credit risk is an as-
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sessment of the likelihood that a borrower, whether a firm or an individual, might

not be able to pay back the money loaned. However, it’s not only people that have

credit risk, investments such as bonds, also bear it.

The credit risk tells investors how risky it is to invest in any particular asset. The

higher the risk, the higher the chances of losing money on the investment, and

vice-versa. When you get a loan, your credit risk is calculated, but when you are

thinking of investing, you need to calculate the credit risk of the investment itself.

Here our main goal is to study financial risk assessment of firms in stock markets

and to classify firms into the bankrupt and healthy ones based on a dimension re-

duction of the high-dimensional space of feature vectors associated with each firm.

Now to reduce the dimension of the dataset, one can either select a subset of fea-

tures as the set of important features using feature selection techniques like wrapper

and filter methods or we can transform our dataset into a lower-dimensional space

while preserving meaningful structure of the original dataset. There are several

interesting mathematical models for the given row data. The appropriate choices

of the model is one of the key points in any machine learning task. One of the

important discrete structures that forms the basis of formulating many real-life

problems into abstract language of discrete mathematics is a graph.

A finite and simple graph is a suitable discrete model to represent binary rela-

tionship among a set of data points. Such a graph data will usually have a high

dimension. Features associated to each firm obtained based on its financial ratios

can be used to evaluate the financial situation of that firm. Hence, one can use

these features to classify companies as bankrupt or healthy . The assessment of

financial risk here will be focused on spectral methods based on graph embedding

into the real line or the plane.

Investors usually can use a number of financial risk ratios to assess a firms’ prospects.

There are several different models of credit risk evaluation using statistical or ma-

chine learning models. Perhaps the first model of evaluating the financial risk is the

Fitzpatrick model [14] which is used as a classical model. Thus, we can associate a

feature vector with any firm i (i = 1, 2, . . . , n), as follows

xi = (ri,1, ri,2, . . . , ri,m).

For example, a firm in Tehran stock exchange market may have the following

five financial ratios such as net profit margin, return on asset, inventory turnover,

receivable collection period, and debt ratio. Then we have

xi = (0.4522, 0.7565, 0.2895, 0.2171, 0.5989).

From now on, for the simplicity of the notation, we will denote the set of numbers

{1, 2, . . . , n} by [n]. We next very briefly review the basic transform-based tech-

niques, including principle component analysis (PCA for short) and four classic

nonlinear data reduction techniques: isomap, locally linear embedding (LLE for
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short), Laplacian eigenmap or Laplacian embedding and local tangent space align-

ment (LTSA for short). In all of these methods an eigendecomposition technique

is used to get a lower-dimensional embedding of the original dataset that is guar-

anteed to achieve a global optimality.

We recall that PCA [10] is a linear technique that preserves the largest variance

in the dataset while decorrelating the reduced dataset. To be more precise, an

eigenvalue problem related to the covariance matrix C of the dataset is obtained

as Cu = λu . Indeed, the eigenvectors, u, correspond to the significant eigenvalues,

λ , form a basis for a linear transformation that optimally maximizes variance in

the original dataset. Then, the lower dimensional representation of the dataset is

expressed by the matrix equation Y = Xu and the eigenvalues can be used to

determine the dimension d of the lower-dimensional representation of the original

data points.

Next, we recall that the Isomap technique [5] preserves pairwise geodesic distances

between data points. It begins by constructing a graph so-called the adjacency

graph of the dataset G based on the neighborhoods information. It is important

to note that those neighborhoods can be either the k-nearest neighbors or points

which lie within ϵ-neighbors. Next, the geodesic distances [6] between all pairs

of points are estimated by calculating their shortest path distances over the (ad-

jacency) graph. More precisely, if we assume that DG = {dG(i, j)}i,j∈[n] is the

matrix of geodesic distances, where dG(i, j) is the distance between points i and j.

Then Isomap constructs an embedding into a d-dimensional Euclidean space such

that the pairwise Euclidean distances between points in this space approximate the

geodesic distances in the input space. Let DY = {dY (i, j)}i,j∈[n] be the Euclidean

distance matrix and dY (i, j) =∥ Yi − Yj ∥2. Now the ultimate goal is to minimize

the cost function ∥ τ(DG)−τ(DY ) ∥2 , where the function performs double center-

ing on the matrix to support efficient optimization. The optimal solution is found

by solving the eigendecomposition of (DG). Then, the Y coordinates are computed

based on the d largest eigenvalues and their corresponding eigenvectors.

The LLE method [3] preserves the reconstruction ωi,j that are used to describe a

data point Xi as as a linear combination of its neighborhoods Xj , j ∈ N(i) , where

N(i) stands for the set of neighbors of the point with index i. The optimal weights

for each i are obtained by solving the following minimizing problem

min
ω

{
∥ Xi −

∑
j∈N(i)

ωi,jXj ∥22
∣∣∣ ∑

j∈N(i)

ωi,j = 1
}
.

The LLE method assumes that the manifold is locally linear and hence the recon-

struction weights are invariant in the low-dimensional space. The embedding Y of

LLE is the solution of the minimizing the cost function
∑

i ∥ Yi −
∑

j wi,jYj ∥ , in

which the matrix W = (wi,j)i,j∈[n] is called the reconstruction weight matrix with

entries wi,j = 0 if j /∈ N(i) and wi,j = ωi,j otherwise. The key point is that Y can

be obtained from the minimization of the eigenvalue-eigenvector problem for the
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matrix M = (I−W)t(I−W) .

The LTSA method [7] applies the method of PCA on the neighbors of each data

point which results in a local tangent space that represent the local geometry of

the space. The space is denoted by local coordinates θij , j = 1, 2, . . . , k that are

k-nearest neighborhoods of the point with index i (i = 1, 2, . . . , n). Then, the local

tangent spaces are aligned to make a global coordinate system of the underlying man-

ifold. The local geometry based on local coordinates must be preserved by the global

coordinate. Thus, for building the global coordinates Yi, i = 1, 2, . . . , n in low-

dimensional feature space, LTSA seeks to find the local affine transformations Li ,

to minimize the reconstruction errors,
∑

k ∥ E ∥2=
∑

k ∥ Yi(I− 1
kee

t)−LiΘi ∥2 , in
which I is the identity matrix, e is a column vector of ones and Θi = [θi1, θ

i
2, . . . , θ

i
k]

.

We finally recall the method of Laplacian eigenmaps or Laplacian embedding which

is the main approach of this paper. This method provides a lower-dimensional rep-

resentation of the original data points based on the idea of minimizing the weighted

distances between a data point and other data points within an ϵ-neighborhood of

that data point (or k-nearest neighborhoods) [15]. Indeed, this interesting spectral

approach can be regarded as graph-theoretical version of Least square method in

engineering disciplines. The main idea is to assign a weight wi,j between each pairs

of connected vertices {i, j} ∈ EG which shows that how these two vertices are cor-

related. Then, we build a weighted version of adjacency matrix which we denote it

by WG = (wi,j)i,j∈[n], corresponding to the adjacency graph of the set of original

data points simply by letting

wi,j = e−
∥Xi−Xj∥

2
2

t ,

where t = 2σ2 and σ is the standard deviation of the Gaussian kernel ; that is a

parameter controlling the correlation between pairs of vertices.

We also define a (weighted) degree matrix DG = (di,j) by assigning only a non-

zero value to ith diagonal (i ∈ [n]) by putting di,i =
∑n

j=1 wi,j . Finally, the

(combinatorial) Laplacian of the corresponding dataset is defined as LG = DG−WG

.

For data on graphs, by the embedding of a graph G with associated vertex-signal

u = (u1, u2, . . . , un) ∈ Rn into the real line R , we mean a task of finding a real-

valued function f : V (G) 7→ R such that each vertex v ∈ V (G) maps into a (unique)

real number f(v) (see Fig 1). Indeed, this function can be a Laplacian eigenvector

corresponding to the second smallest Laplacian eigenvalue of the graph G.

One can similarly embed a graph data (a graph with its vertex-signal) into a

plane, that is an Euclidean space R2 of dimension two. In this case, we need to

consider the pair of the eigenvectors corresponding to the second and the third

smallest Laplacian eigenvalues of G. Thus, the ith coordinate of the second and

the third Laplacian eigenvectors of G can be considered as the first and the second

coordinates of the embedded ith vector.
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Figure 1: The Vertex-Embedding in Dimension One

In this respect, we will use the spectral embedding besides the principle component

analysis to obtain a binary classification of firms into two main classes of bankrupt

and healthy. To do this, we first build a similarity graph based on the k-nearest

neighborhood algorithm from the set of n firms and their feature vectors. Then,

this similarity graph G is embedded into the plane based on the idea of the eigen-

vectors corresponding to the second and the third smallest Laplacian eigenvalues

of the graph G. This method is called the Linear extension embedding of the graph

G.

The paper will be organized, as follows. In the next section, we review selected im-

portant papers related to financial risk assessments based on the node-classification

of graphs associated with financial datasets. Next, in Section 3, we quickly review

the basics of the spectral graph embedding in general as an applied tool for node-

classification problems in machine learning. Then, in Section 4, we specifically

concentrate on the proposed method of this paper for embedding the adjacency

graph of a collection of firms into the real line and the plane. In Section 5, we

obtain the results of the implementation of the proposed model for both cases of

one and two-dimensional embeddings. We also show a comparartive advantage of

the spectral graph embedding over principle component analysis as the classical di-

mension reduction method. Finally, we conclude the paper with some discussions

about future research works.
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2 Literature Review

In this section, we quickly review the most important references in the area of spec-

tral methods for binary classification of firms into bankrupt and healthy.

He and Niyogi in 2003 [10] invented a linear method of dimension reduction which

is called the linear preserving projection where a graph is built containing neigh-

boring vertices information. Then, based on the Laplacian matrix of this graph,

its mapping matrix to lower-dimensional spaces is calculated. Deng Cayi et al. in

2008 [11] for recognizing images of human faces used a smoothing discrete Lapla-

cian model for reducing the dimension of images. They first construct a graph

related to the whole set of images in which each image represented by a vertex of

that graph. Then, using the LPP method, they calculated its affinity matrix. Next,

based on an approximation of Neumann’s discrete Laplacian they tried to smooth

the underlying graph and then by solving the corresponding eigenvalue problem

they found the optimal eigenvector that can be used to embed the graph of images

into the real line.

Kouki and Elkhaldi in 2011 [12] have shown the preference of MDA and RA model

in compare with neural networks using the data of Tunisian firms. They used a

three layer perceptron for implementing the research model and came to the con-

clusion that these neural networks for short-time periods have better performances

while having worst performance for long-term periods of MDA and LR models.

In 2016 Brédart and Cultrera [13], designated a binary logical model based on fi-

nancial ratios for predicting the bankruptcy of firms. They used financial ratios as

independent variables in this logical model to optimally determine the bankruptcy

and healthiness of firms. They showed that the financial ratios portability and liq-

uidity with a good accuracy determine the bankruptcy of firms.

Most of the intelligent methods that are used in the area of non-parametric models

are neural networks, fuzzy set theory, decision tree, case-based reasoning, support

vector machine and so on. The research study of Blanco et al. in 2013 [15] showed

that the multi-layer perceptron can be performed better than statistical learning

models such as LDA, LR and QAD for reducing the expenses of wrong classifi-

cation of firms into bankrupt and healthy. Rafiei et al. in 2011 [16] showed the

multi-layer perceptron model in preference to multivariate discriminant analysis

model for predicting the bankruptcy of Iranian firms.

3 Spectral Graph Embedding

In this section, we are going through the details of the main approach of this paper

based on the idea of Laplacian eigenmaps method.

Now, we assume that n firms in a stock exchange market are considered where we

associate an m-dimensional feature vector to each of them. Therefore, we have a

rectangular matrix X ∈ Rm×n which has the property that its rows represent the
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feature vectors and its columns indicates the firms.

There exist many methods to embed a graph into a low-dimensional space like line,

plane and even Euclidean 3-dimensional space, but here we will concentrate on a

method which is called the spectral graph embedding. Next, we explain this method

in details.

We let G = (V,E) be a finite, simple and undirected graph with n vertices in which

each vertex vi represent the firm indexed by i. We also assume that our graph is a

vertex-weighted graph in which the weight of a vertex i corresponds to the feature

vector xi = (xi,1, xi,2, . . . , xi,m) .

There are several standard ways to build such a graph on our original data points

like ϵ-neighborhood, k-nearest neighborhood and Delanoy graphs to name a few.

Here, we will concentrate on the method of k-nearest neighborhood of a graph G

which is based on the well-known KNN algorithm [8] .

In this method of construction, we first obtain a list of pairwise Euclidean distances

among vertices; that is, the distance between their corresponding feature vectors.

Next, there are two ways to build such a k-nearest neighborhood graph for a given

k. In the first approach, we connect the ith vertex to the jth vertex whenever

this vertex is among the first k nearest vertices to the jth one or the jth vertex

is among the first k nearest vertices to the ith vertex. The graph obtained this

way is called the (standard) k nearest neighborhood graph of the original data set.

In the second method, the ith vertex is connected to the jth vertex whenever this

vertex is among first k nearsest vertices to the jth one and the jth vertex is among

the first k nearest vertices to the ith vertex. This latter graph is called the mutual

k-nearest neighborhood graph of the original data set.

In this paper, we will use the first method and we take k to be the number 5.

There are several original ideas to compute the affinity matrix which we are going

to describe it in the next subsection.

3.1 Computing Affinity Matrices

Here is a list of some interesting and important affinity matrices that are used in

graph mining literatures.

(i) Linear Discriminant Analysis: In this method it is supposed that we have

m data points which belong to t classes C1, C2, . . . , Ct. Hence, if we assume

that the class Ct has mt data points, m1+m2+ . . .+mt = m, then the affinity

matrix is defined, as follows

WLDA
i,j =

{
1
mt
, if xi,xj ∈ Ct,

0, otherwise.

(ii) Linear Projection Preserving: If we define Nk(xi) as the set of k nearest

neighborhoods of the ith vertex, having the feature vector xi, then one can
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define the corresponding affinity matrix by

WLPP
i,j =

{
e−

∥Xi−Xj∥
2
2

2σ2 , if xi ∈ Nk(xj),xj ∈ Nk(xi),

0, otherwise.

Note that in the above formulation, the parameter σ is called the kernel width.

4 Graph Spectral Embedding in dimension one
and two

The main goal of graph embedding is to represent each vertex with high-dimensional

feature vector (or weight) in lower-dimensional spaces like line, plane or even three-

dimensional Euclidean space so that the similarity between vertices will preserve.

Indeed, the similarity between pairs of vertices will be measured based on their

feature vectors.

Now, we will assume that the vector y = (y1, y2, . . . , ym) is a vector that maps the

graph into the real line. The optimal vector for y, is obtained by the minimization

of the following quadratic form

∑
{i,j}∈E(G)

Wi,j

(
yi − yj

)2
,

which can be considered as the graph least square problem.

Now, it is an easy problem in spectral graph theory to show that

∑
{i,j}∈E(G)

Wi,j

(
yi − yj

)2
= ytLGy. (1)

Here, the matrix LG = DG −WG is the combinatorial Laplacian matrix of the

graph G. We recall that the matrix WG is called the weighted adjacency matrix of

the graph G. The diagonal matrix DG is called the weighted degree matrix of G.

For more details see the paper [4].

Considering the above discussions, our optimization problem can finally be for-

mulated as follows.

y⋆ = arg min
yDGy=1

(yLGy) = argmin
y=1

yLGy

yDGy
. (2)

It is noteworthy to mention that the constraint yDGy = 1 has been added for

the sake of scalability and to avoid the degenerate cases.

The difficulty of solving the optimization problem 2 is relay on the fact that for a

very large number of firms (large values of n) the problem may be impratical.

One simple way to resolve this problem, based on the definition of LG = DG−WG,

is rather solving the following dual optimization problem
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y⋆ = arg min
yDGy=1

(yWGy) = argmax
y=1

yWGy

yDGy
. (3)

Now, we use the fact that the maximization problem of the Rayleigh Quotient

R(G,y) = yWGy
yDGy in 3 is equivalent to finding the eigenvector corresponding to the

maximum eigenvalue of the generalized eigenvalue problem WGy = λDGy based

on the well-known Courant-Fisher well-known theorem.

Unfortunately, we still have the problem of the curse of dimnensionality for the

cases that n is a very large number. To overcome this difficulty, we note that the

number of features in this kind of problems is usually very small in compare with

n. Hence, the method of linearly preserving projection (LPP for short) can be em-

ployed to finally solve the problem. To do so, we define the linear transformation

f : Rn 7→ Rm by yi = f(xi) = utxi. where the vector u ∈ Rm should be deter-

mined.

The pointwise relations yi = utxi can be put together to find a new change of vari-

able (or dimension reduction) y = Xtu form the space of n-dimensional vectors to

the space of m-dimensional vectors. Thus, finally the problem of finding an optimal

embeddign vector y ∈ Rn reduces to the problem of finding another optimal vector

u ∈ Rm , as the solution of the following maximization problem

u⋆ = arg max
∥y∥2=1

yWGy

yDGy
= arg max

∥u∥2=1

utXWGX
tu

utXDGXtu
. (4)

Clearly, the above problem again is equivalent to compute the eigenvector cor-

responding to the maximum eigenvalue of the following the generalized eigenvalue

problem

XWGX
tu = µXDGX

tu. (5)

4.1 Discretized Laplacian Smoothing

One of the main issues regarding machine learning tasks in computer science is the

problem of depedencies of the output of the learning model on changes in initial

values . For example in image processing when we have an edge detection task, the

lack of smoothing the small changes will result in disability to detect the edges of

your images.

In our model of the evaluation of the financial risks of firms based on their feature

vectors, the lack of recognizing small changes in features may result in detecting

changes in the main characteristics of firms and finally will impose not enough

precision in classification into bankrupt firms and healthy firms. Thus, we are

going to add smoothing analysis to our case study to make our model more robust

to small changes of important features of each firm in our senario.

Here, we assume that a smooth function f is defined on the features of a given firm

and the Laplacian operator L acts on f as follows
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Lf =

n∑
i=1

∂2f

∂x2
. (6)

Therefore, using the definition of the second derivative of a function, one can use

the formula (6) to find some good approximation of the linear differential operator

L .

Indeed, we have several interesting options to choose a discretized version of the

above Laplacian operator. Our choice here will be the Neumann discretized Lapla-

cian with normalized factor 4 which is widely used in mechanical engineering and

machine learning tasks, as follows

∆ =
1

4



1 −1 0 · · · 0 0 0

1 −2 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −2 1

0 0 0 · · · 0 −1 1


. (7)

Thus, considering the smoothing by discretized Laplacian in formula (7), we can

smooth the optimization problem (4) by

u⋆ = arg max
∥u∥2=1

utXWGX
tu

(1− β)utXDGXtu+ βut∆t∆u
. (8)

Here the parameter β is a controlling parameter of the model which attains its

value on the open interval (0, 1).

It is obvious now that our main smoothed formulation (8) is equivalent to the

generalized eigenvalue-eigenvector problem

XWGX
tu = θG

(
(1− β)XDGX

t + β∆t∆
)
u. (9)

4.2 Embedding a graph into the plane

In this section, we briefly explain how to embed a graph into the two-dimensional

Euclidean space; that is, the plane R2 .

By embedding a graph G = (V,E) into the plane R2, we mean an injective mapping

form the vertex set V into the plane such that each vertex v ∈ V maps injectively

to a (unique) point (x(v),y(v)) .

Similar to what we did in the embedding of G into the one-dimensional real line, it

is enough to find a solution to the following minimization problem

argmin
∑

{u,v}∈E(G)

∣∣∣∣∣∣(x(u)
y(v)

)
−

(
x(u)

y(v)

)∣∣∣∣∣∣2
2
. (10)
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Indeed, one can simply show that this problem can be decomposed into two

one-dimensional cases. To be more precise, the problem (10) is equivalent to

argmin
∑

{u,v}∈E(G)

((
x(u)− x(v)

)2
+
(
y(u)− y(v)

)2)
= argminxtLGx+ argminytLGy,

subjected to the following constraints

∥ x ∥22= 1, ∥ y ∥22= 1. (11)

and

1t.x = 0, 1t.y = 0. (12)

But still we have the problem of degeneracy ; that is,

x = y = v2,

where v2 stands for the eigenvector corresponding to the second smallest Laplacian

eigenvalue. To avoid this, we only need to impose the condition that both solutions

x and y must be perpendicular to each other.

5 The Implementation and Evaluation of the Model

As we discussed earlier, one of the important issues in investment or lending a loan

from lenders viewpoint is to consider the risk (or predicting) that a firm is bankrupt

or healthy in the time of receiving the credits or loans. Thus, we can define the

problem as follows. Let us assume that we have n firms with their associating

feature vectors (extracted from their financial ratios) and we are going to predict

the classification of them into two categories of bankrupt and healthy firms. Hence,

we will use two methods of evaluating these firms.

In the first method, the feature vector of each firm which is anm-dimensional vector

is embedded into the real line (or into the plane) using the principle component

analysis. Then, by using support vector machine (SVM for short) and Multi-layer

perceptron (MLP for short) methods we will classify all the firms into bankrupt and

healthy.

In the second approach, by associating a graph (k-nearest neighborhood graph) to

the collection of firms, we first build the adjacency matrix corresponding to that

graph (for k = 5) and then we construct its affinity matrix based on the LPP

method. We note that in this step, one can consider several kernels in which we

choose the LPP formula in the previous section.

The next step is to employ the graph embedding technique besides discretized

laplacian smoothing technique to reduce the dimension of each feature vector of
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each firm. We can use any smoothing-value β ∈ (0, 1) . Here, we decide to use the

value β = 0.6. We finally use the same techniques of SVM and MLP from the

first method to classify the firms into two groups of bankrupt and healthy.

To implement our algorithm on a suitable data set, we use the latest financial

statements of selected firms in Tehran stock exchange market related to different

industries. Our important assumption is that if the chosen firm has been bankrupt

in the past years, the financial statments of that firm has also been added to our

data set. Based on the article 141 of Business law, a firm is assumed to be bankrupt

if the accumulated losses of the firm is equal to 50% of the registered capital of that

firm.

Considering the fact that based on the above definition of bankruptcy, the number

of bankrupt samples are nearly 10% of the whole data, we also include those firms

that their retained earning are about 30% of their registered capitals. Thus, at

the begining we had a collection 585 firms and finally considering 30% of retained

earning as mentioned above, we obtained a set of 677 samples. After the implemen-

tation of our algorithms, we were able to classify the samples into 171 bankrupt

samples and 506 healthy samples. The final point is that for investigating the finan-

cial statements of these firms, here we considered 8 financial ratios which are net

profit margin, return on assets, return on equity, current ratio, inventory turnover

ratio, receivables collection period, debt ratio and total asset turnover ratio.

5.1 Embedding into the real line

In this subsection, we discuss about our results regarding the embedding of our

graph into the real line.

After data preparation (data preprocessing) and implementation of our model on

the data set based on both methods of PCA and graph embedding using the well-

known libraries Sklearn and Scipy, the original data will be embedded into the

real line. The figure 2 shows the implementation for the PCA algorithm in one-

dimensional case.

The next figure 3 shows the implementation of spectral graph embedding algo-

rithm in dimension one.

After dimension reduction based on the two above methods, we have used 80%

of the whole data to train SVM model and the rest of data was used to test the

model. We have also calculated the accuracy of the model for classification of firms

into bankrupt and healthy.

It is important to note that in the embedding of our graph into one dimension

using the MLP method, since the dimension of input data is equal to one we can

not achieve the suitable accuracy. Hence, for having a correct evaluation of the

effectiveness of both methods of the PCA and the graph embedding in the binary

classification of firms, we have employed the SVM approach. Furthermore, for

relying on confidential results we have randomly chosen training and test subsets

of data form the original dataset.
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Figure 2: The Implementation of One-dimensional PCA Algorithm.

To be more precise, in each step of our 100 times testing, we have chosen two

new subsets of data as the training and the test datasets. The result of these

experiments has shown in figure 4.

As you can clearly see from the figure 4, the results of the graph embedding

method is better (85% of cases) than the PCA method.

5.2 Embedding into the plane

In this subsection, we discuss about our results regarding the embedding of our

graph into the plane.

We first note that the implementation of plane embedding is easy, considering the

previous case of the line embedding. The results of our implementations have shown

in figure 5 and figure 6.

After dimension reduction based on both methods of the PCA and the spectral
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Figure 3: The Implementation of One-dimensional Graph Embedding Algorithm.



76 Journal of Mathematics and Modeling in Finance

0 20 40 60 80 100
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Acc
ura

cy

PCA Accuracy
LPP Accuracy

Figure 4: Comparing the accuracy of PCA and Spectral Graph Embedding in
Dimension One.
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Figure 5: The Implementation of Two-dimensional PCA Algorithm.
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Figure 6: The Implementation of Two-dimensional Graph Embedding Algorithm.
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embedding into the two-dimensional case, once again we have used 80% of the

whole data to train SVM model and the rest of data was used to test the model.

Moreover, We have calculated the accuracy of the model for classification of firms

into bankrupt and healthy. We also have randomly chosen the training and the

test subsets of data form the original dataset similar to that of the line embedding

scenario.

Again, similar to the line embedding case, in each step of our 100 times testing, we

have chosen two new subsets of data as the training and the test datasets. The

result of these experiments has shown in figure 7.

0 20 40 60 80 100
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Acc
ura

cy

PCA Accuracy
LPP Accuracy

Figure 7: Comparing the accuracy of PCA and Spectral Graph Embedding in
Dimension Two.

6 Concluding Remarks and Future Works

In this paper, we introduce the method of spectral graph embedding into the line

and the plane as a dimension reduction approach to transform an original higher-

dimensional financial data with interdependencies to a lower-dimensional data in

one or two diemsions to classify a collection of firms in Tehran stock exchange

market into bankrupt and healthy. Then, we use the well-known method of data

dimension reduction; that is, the PCA approach as an alternative method for com-

paring our results of the spectral graph embedding algorithm with the PCA method

and to evaluate the risk assessment of those firms.

To investigate and describe the financial statements of our firms, we chose 8 impor-

tant features for each firm, so we had a collection of feature vectors of dimension 8.

The output of reduced datasets in the first and the second cases was then given to

the SVM and the Multi-layer perceptron models, respectively. In both cases, the

results of implementations showed a good improvement in the case of the graph

spectral embedding in compare with the other two learning models. Considering

the fact that the spectral methods do not need any prior assumptions on the shape



78 Journal of Mathematics and Modeling in Finance

of the original dataset, we can apply this method to other scenarios of similar types.

The two parameters σ and β which indicates the kernel width and smoothing coef-

ficient, respectively, are very crucial in the accuracy of the proposed model. There-

fore, one potential suggestion for the future work is to investigate the importance

of these two parameters in the accuracy, performance and the effectiveness of the

proposed model. Furthermore, the optimality of these parameters can be a chal-

lenging problem for further research works. We also like to mention the fact that

having more refined and high-volume data may have a significant impact on the

accuracy of the presented model. Finally, considering the small number of firms in

Tehran stock exchange market in compare with other international stock exchange

markets around the world, the result of applying the presented model on more data

along with more refined and suitable data may imply much better accuracy and

performance of the system.
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