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Abstract:
Abstract:
In this paper, we discuss the calibration of geometric Brownian motion model
equipped with Markov-switching factor. Since the motivation for this research
comes from a recent stream of literature in stock economics, we propose an
efficient estimation method to sample series of stock prices based on the
expectation-maximization algorithm. We also implement an empirical application
to evaluate the performance of the suggested model. For this purpose, based on
the proposed Markov-switching model, we classify market data under various
economic regimes by estimating the smoothed probabilities of hidden Markov
chain states. Numerical results through the classification of the data set show
that the proposed Markov-switching model fits the actual stock prices and reflects
the main stylized facts of market dynamics.
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1 Introduction

There are several researches in the literature, which their purpose to present a

more realistic reflection of financial markets. The stochastic models can be broadly

divided into: local volatility, stochastic volatility, volatility as an unknown pro-

cess and Markov-switching models. The stochastic volatility model as an unknown

process was first presented by [2]. However, as pointed out in [3], these models com-

plicate the solution of financial market derivatives, because they involve additional

nonlinear factors in ordinary differential equations.
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From [8] and [6], local volatility models have been proposed by deterministic

function of asset price and time horizon. Fast calibration of these volatility models

types was extensively studied by [10]. As we know, the model requires a smooth

and continuous implied volatility, while numerical methods considered for the lo-

cal volatility models can yield unstable results. According to studies conducted

by [7] and [16], the performance of the local volatility model is not satisfactory

because these models are highly restrictive. The stochastic models were generally

investigated by [1]. It should be noted that the stochastic models are too popular

for pricing financial derivatives and these models are also able to produce implied

volatility smile well (see [12], [26] and [11]). However, stochastic models are not

able to take into account different economic states without the regime-switching

factor. Under such circumstances, these models may not reflect well the significant

events that occur in the dynamics of financial time series.

Many financial time series sporadically show significant interruptions in their

behavior that are associated with events such as war, climate change, recession,

inflation, and so on (see [29] and [4]). In these situations, economists tend to use

variables that change the behavior of time series dynamics. The model that can an-

alyze these changes is called the Markov-switching model. This model can consider

the intermittent and repetitive changes of economic regimes endogenously, while

in the other models, these changes are usually as specific and exogenous. In most

researches, there may be little information about the times that the parameters

change. Therefore, we need to make results for milestones so that the change of pa-

rameters is significant. In this regard, some researchers first considered models that

only one regime change occurs in the data, then models with more than one regime

were designed. The probability of switching depends on the path of the asset. This

dependence introduced as Markov-switching models (see [19]). Markov-switching

(regime-switching) models are among the models that take the sudden changes into

account and have been widely used to evaluate asset prices. Such models have

recently been considered not only in econometrics but also in other areas such

as population dynamics, river flow analysis, and speech recognition (see [21], [14]

and [17]). Further, a comparison of various types of Markov-switching models for

exchange rate can be found in [28]. Newly, [15] and [23] have experimentally shown

that adding the Markov-switching factor to the volatility dynamics leads to more

non-Gaussianity stock returns.

In order to compare the prices obtained by the model and the actual market

data, calibration by model parameters estimation is evermore implicated (see [25],

[13] and [24]). This challenging process under the Markov-switching model is the

focus of this paper. Given the latent switching mechanism, in which the model

parameters change based on sudden changes over time, it is necessary to estimate

these parameters by deriving model parameters and the state values of the hidden

Markov chain process simultaneously. In this paper, we calibrate the geometric

Brownian motion (GBM) model equipped with the hidden Markov chain. To do
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this, we use the method proposed by [20], in which the parameters of the hidden

Markov model were estimated using the expectation-maximization (EM) algorithm.

The proposed model actually demonstrates the Markov-switching GBM (MSGBM)

dynamics, such that the stock price can be classified based on its calibration.

2 The MSGBM model framework

Suppose that (Ω,F ,P) is a probability space and [0, T ] is a time interval with

a maturity time of T > 0. Also, let Y := {Y (t)}t∈[0,T ] be a hidden Markov

chain with N state on probability space (Ω,F ,P) that the set of chain states is

E = {e1, . . . , eN}. Without loss of the generality, suppose that the hidden Markov

chain states are considered as singular vectors; That is, for every j = 1, . . . , N , jth

component of ej is one and the rest is zero. Let Π = (πjk)j,k=1,...,N be a hidden

Markov chain rate matrix, where πjk is the intensity of the chain transition from

state ej (regime j) into state ek (regime k). Such that for every j, k = 1, . . . , N we

have

πjk =


πjk ≥ 0 j ̸= k,

−
∑N

j=1,j ̸=k πjk j = k.

Consider the hidden Markov chain transition matrix Y as P = (pjk), which includes

the probabilities pjk = P(Y (t) = ek|Y (t− 1) = ej), such that pjk means switching

regime j (state ej) at time t − 1 to regime k (state ek) at time t. For instance, if

the hidden Markov chain has two states (N = 2), then

P =

(
p11 p12

p21 p22

)
=

(
p11 1− p11

p21 1− p21

)
.

Here, the considered Markov chain in the Markov-switching model has two-state,

i.e., N = 2. Generalizing the model to more states is similar to the two-state model.

Let µ = (µ1, µ2) ∈ R2 and σ = (σ1, σ2) ∈ R2 be dependent on Y (t). We define
µ(t) := µ(Y (t)) = ⟨µ, Y (t)⟩ =

∑2
j=1 µj⟨Y (t), ej⟩,

σ(t) := σ(Y (t)) = ⟨σ, Y (t)⟩ =
∑2

j=1 σj⟨Y (t), ej⟩, σj > 0, j = 1, 2,

(1)

where ⟨·, ·⟩ represents the inner product in R2. On the other hand, as expressed

in [9], Y (t) has the following expression

dY (t) = ΠY (t)dt+ dV (t), (2)

where R2-value process {V (t)}t∈[0,T ] is an FY -martingale process, such that FY :=

FY {(t)}t∈[0,T ] indicates the filtration generated by the hidden Markov chain Y . We
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define f(t, y) = e−Πty. Then from Eq. (2) and by applying Ito’s lemma to f(t, y),

we obtain

df(s, y) = fsds+ fydY (s) +
1

2
fyydY (s)dY (s)

= −Πe−ΠsY (s)ds+ e−Πs(ΠY (s)ds+ dV (s))

= e−ΠsdV (s).

Integrating with respect to s from 0 to t and multiplying the sides by eΠt we have

Y (t) = eΠtY (0) +

∫ t

0

eΠ(t−s)dV (s).

Therefore

E[Y (t)] =eΠtE[Y (0)]

=eΠt (e1 × P(Y (0) = e1) + e2 × P(Y (0) = e2)) .

We put m := (e1 × P(Y (0) = e1) + e2 × P(Y (0) = e2)). In this case, using Eq. (1),

we have

E[r(Y (t))] = ⟨µ,E[Y (t)]⟩ = ⟨µ,meΠt⟩,

E[σ(Y (t))] = ⟨σ,E[Y (t)]⟩ = ⟨σ,meΠt⟩.
(3)

Suppose that S(t) is the stock price at the moment t ∈ [0, T ]. In this case, the RS-

GBM model under the accurate probability measure P can be expressed as follows

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dB(t), S(0) = s,

wherein (µ(t))t∈[0,T ] and (σ(t))t∈[0,T ] are the average rates of return and market

volatility, respectively, which depend on the hidden Markov chain Y (t). Also, B(t)

is a Brownian motion under the probability measure P.
Recently [27], showed that the RSGBM model under the neutral risk probability

measure Q could be expressed as follows

dS(t) = r(t)S(t)dt+ σ(t)S(t)dW (t), S(0) = s, (4)

where (r(t))t∈[0,T ] is the interest rate that depends on the hidden Markov chain

Y (t). W (t) is also the standard Brownian motion under the probability measure

Q. In general, S(t) can be expressed as follows

S(t) =


S1(t) if Y (t) in state e1 (regime 1),

S2(t) if Y (t) in state e2 (regime 2),

(5)

where,

dSi(t) = riSi(t)dt+ σiSi(t)dW (t), i = 1 ∨ 2.

Here and everywhere, it is always assumed that the Markov chain process Y and the

Brownian motion W are independent of each other. Therefore, Y is considered as

an external factor of market information. Assume that FW
t is a filtration generated

by Brownian motion W . We define Ft := FW
t ∨ FY

t as a global filtration.
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3 Implementation of the EM algorithm

The expectation-maximization algorithm or EM algorithm is an efficient iterative

method for calculating the maximum likelihood estimation in the presence of miss-

ing or hidden information. In contrast, in the maximum likelihood estimation

method, the parameters are estimated in the presence of visible data. [5] first in-

troduced the EM algorithm. Each step of the EM algorithm consists of two steps:

expectation (E) and maximization (M). In step E, the confidential data are es-

timated based on a conditional expectation based on the observed data and the

available model parameters. In stepM , the likelihood function is maximized under

the assumption that the lost data is known.

Assume that Z is a random vector derived from a parametric family to derive

the EM algorithm. We want to find Λ so that P(Z|Λ) is maximized. The logarithm

likelihood function is defined as follows

L(Λ) = log(P(Z|Λ)), (6)

where the likelihood function is considered as a function of the Λ parameter for

X data. Since the logarithm function is a strictly ascending function, the value Λ,

which maximizes P(Z|Λ), will also maximize L(Λ).

As mentioned, the EM algorithm is an iterative method for maximizing L(Λ), in

which Λ(m) is an estimate of Λ after mth iteration. Since the goal is to maximize

L(Λ), we want to calculate the updated estimate of Λ, such that,

L(Λ) > L(Λ(m)).

It means that we can maximize the difference between the terms L(Λ) and L(Λ(m))

and we can write

L(Λ)− L(Λ(m)) = log(P(Z|Λ))− log(P(Z|Λ(m))). (7)

So far we have not considered any missing or hidden variables, the EM algorithm

provides a framework for including such information in problems where there is

such information. Suppose that Y is a hidden random vector composed of random

variables y. Now we write the total probability P(Z|Λ) based on the hidden variable

y. In this case, we have

P(Z|Λ) =
∑
y

P(Z|y,Λ)P(y|Λ). (8)

Therefore, Eq. (7) can be rewritten as follows

L(Λ)− L(Λ(m)) = log

(∑
y

P(Z|y,Λ)P(y|Λ)

)
− log(P(Z|Λ(m))). (9)
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Given the Jensen inequality for each convex function such as f and for nonnegative

Λj , that is applied in the condition
∑n

j=1 Λj = 1, we have

f

(
n∑

j=1

Λjxj

)
≤

n∑
j=1

Λjf(xj).

In this case, using Jensen inequality for Eq. (9), we obtain

L(Λ)− L(Λ(m)) = log

(∑
y

P(Z|y,Λ)P(y|Λ)

)
− log(P(Z|Λ(m)))

= log

(∑
y

P(Z|y,Λ)P(y|Λ)P(y|Z,Λ
(m))

P(y|Z,Λ(m))

)
− log(P(Z|Λ(m)))

= log

(∑
y

P(y|Z,Λ(m))

(
P(Z|y,Λ)P(y|Λ)
P(y|Z,Λ(m))

))
− log(P(Z|Λ(m)))

≥
∑
y

(
P(y|Z,Λ(m)) log

(
P(Z|y,Λ)P(y|Λ)
P(y|Z,Λ(m))

))
− log(P(Z|Λ(m)))

=
∑
y

(
P(y|Z,Λ(m)) log

(
P(Z|y,Λ)P(y|Λ)

P(y|Z,Λ(m))P(Z|Λ(m))

))
≜ ∆(Λ|Λ(m)). (10)

As a result

L(Λ) ≥ L(Λ(m)) + ∆(Λ|Λ(m)). (11)

From l
(
Λ|Λ(m)

)
≜ L(Λ(m))+∆(Λ|Λ(m)), the inequality of expression (11) is written

as follows

L(Λ) ≥ l(Λ|Λ(m)). (12)

Therefore l(Λ|Λ(m)) is an upper bound for the maximum likelihood function L(Λ).

Now we show that the function l(Λ|Λ(m)) and L(Λ) are equals for each

Λ = Λ(m).

l(Λ(m)|Λ(m)) = L(Λ(m)) + ∆(Λ|Λ(m))

= L(Λ(m)) +
∑
y

P(y|Z,Λ(m)) log

(
P(Z|y,Λ(m))P(y|Λ(m))

P(y|Z,Λ(m))P(Z|Λ(m))

)

= L(Λ(m)) +
∑
y

P(y|Z,Λ(m)) log

(
P(Z, y|Λ(m))

P(Z, y|Λ(m))

)
= L(Λ(m)). (13)

As can be seen, the function l(Λ|Λ(m)) is an upper bound for the likelihood function

L(Λ), which is equal to Λ = Λ(m), and the value of l(Λ|Λ(m+1)) is maximized for

Λ = Λ(m+1). Since l(Λ) ≥ l(Λ|Λ(m)), an increase of l(Λ|Λ(m)) is guaranteed and

the value of the likelihood function L(Λ) increases with each step.
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Now we just need to calculate the value Λ(m+1). Therefore we have

Λ(m+1) = argmax
Λ

{l(Λ|Λ(m)}

= argmax
Λ

{
L(Λ(m)) +

∑
y

P(y|Z,Λ(m)) log

(
P(Z|y,Λ)P(y|Λ)

P(y|Z,Λ(m))P(Z|Λ(m))

)}
. (14)

Excluding sentences that are fixed relative to Λ, we have

Λ(m+1) = argmax
Λ

{∑
y

P(y|Z,Λ(m)) log (P(Z|y,Λ)P(y|Λ))

}

= argmax
Λ

{∑
y

P(y|Z,Λ(m)) log

(
P(Z, y,Λ)P(y,Λ)

P(y,Λ)P(Λ)

)}

= argmax
Λ

{∑
y

P(y|Z,Λ(m)) log (P(Z, y|Λ))

}

= argmax
Λ

{
EY |Z,Λ(m) [log (P(Z, y|Λ))]

}
. (15)

As we can see, in Eq. (15), the phases of expectation and maximization have

appeared. Thus the EM algorithm includes the following iterations

(i) Step E: Determine the conditional expectation EY |Z,Λ(m) [logP(Y, y|Λ)].

(ii) Step M: Maximize the expression EY |Z,Λ(m) [logP(Y, y|Λ)] relative to Λ.

4 Estimation of the MSGBM model parameters

In this section, we use the EM algorithm based on the actual market data to esti-

mate the Markov-switching times of the MSGBMmodel, the transition probabilities

of the Markov chain, and the parameters that depend on the hidden Markov chain,

i.e., (r(t), σ(t)). Using the same strategy, the Markov-switching model parameter

with more states can be estimated.

Before estimating the Markov-switching model parameters in Eq. (4), we con-

sider its discrete form by using the Euler method as follows

S(tj) = S(tj−1) + r(t)S(tj−1) + σ(tj)S(tj−1)
√
δϵj , (16)

where {0 = t0 < t1 < . . . < tn = T} is a partition of interval [0, T ] with step

length δ := tj − tj−1 . Also ϵ1, . . . , ϵn is a random instance of the standard normal

distribution. Since the ϵj has a standard normal distribution, then S(tj) has a

normal distribution with mean S(tj−1)+r(tj)S(tj−1) and variance σ2(tj)S
2(tj−1)δ,

conditional upon the S(tj−1) and Y (tj). Therefore, assuming that the number of

Markov chain states is two, the density function of S(tj) conditional upon the
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S(tj−1) and Y (tj) is expressed as follows

f (S(tj)|S(tj−1), Y (tj) = ek,Λ) =

(
1√

2πσ2
kS

2(tj−1)δ

)

× exp

{
− (S(tj)− S(tj−1)− rkS(tj−1))

2

2σ2
kS

2(tj−1)δ

}
, k = 1, 2,

(17)

where Λ := {r1, r2, σ1, σ2, P} is a set of parameters that we want to estimate.

Consider the likelihood function based on the parameter Λ as follows

L(Λ|S,Y) =

n∏
j=1

f (S(tj)|S(tj−1), Y (tj) = ek,Λ) , (18)

where S = (S(t1), . . . , S(tn)) and Y = (Y (t1), . . . , Y (tn)). In this case, the loga-

rithm likelihood function is obtained as follows

L(Λ|S,Y) = ln

(
n∏

j=1

f (S(tj)|S(tj−1), Y (tj) = ek,Λ)

)

=

n∑
j=1

ln f (S(tj)|S(tj−1), Y (tj) = ek,Λ)

= −1

2

n∑
j=1

ln(2πσ2
kS

2(tj−1)δ)−
n∑

j=1

[
(S(tj)− S(tj−1)− rkS(tj−1))

2

2σ2
kS

2(tj−1)δ

]

= −1

2

n∑
j=1

[
ln(2πσ2

kS
2(tj−1)δ) +

(S(tj)− S(tj−1)− rkS(tj−1))
2

σ2
kS

2(tj−1)δ

]
. (19)

As mentioned before, the EM algorithm maximizes the probability function (4) for

models with missing observations or unobserved variables. Its purpose is to maxi-

mize the probability function in the presence of unobserved data. This algorithm

is an iterative method consisting of the following two steps in (m+ 1)th iteration.

(i) Step E: Determine the following conditional expectation

EY|S,Λ(m)

[
lnP

(
S,Y | Λ(m+1)

)]
:=

2∑
k=1

n∑
j=1

lnP
(
S,Y | Λ(m+1)

)
P
(
Y (tj) = ek | S,Λ(m)

)
.

(20)

(ii) Step M: Maximize the problem (20) relative to Λ. In this case, the logarithm

likelihood function of Eq. (19) is maximized relative to the model parameters,

and Λ(m+1) is obtained in (m+ 1)th iterations.

Next, using Theorems 4.1 and 4.2, we specify steps E and M of the EM algorithm,

respectively, to estimate the parameters of the MSGBM model.
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Theorem 4.1. Conditional expectation EY|S,Λ(m) [lnP(S,Y|Λ(m+1))], in step E of

the EM algorithm is as follows

EY|S,Λ(m)

[
lnP

(
S,Y | Λ(m+1)

)]
=

2∑
k=1

n∑
j=1

P
(
Y (tj) = ek|S,Λ(m)

)
(21)

× ln f
(
S(tj)|S(tj−1), Y (tj) = ek,Λ

(m+1)
)
.

Proof. See [22].

The value E [Y (tj) = ek|S(tj),Λ] is known as the ”filtering inference”and is a lin-

ear combination of the observation vector S(tj) and the probability P (Y (tj) = ek|S(tj),Λ)
is calculated. Since Y (t) is hidden and not directly visible, the expected values of the

Markov chain process can be observed by the observation vector E [Y (tj) = ek|S(tj),Λ]]
to be calculated. These expected results are known as ”smoothed inference” and

calculate the conditional probability P (Y (tj) = ek|S,Λ). In order to calculate the

smoothed probability, the filtering step must be completed.

The expression P (Y (tj) = ek|S(tj),Λ) in the Theorem 4.1, consists of two stages

of filtering and smoothing. Let the parameter vector be obtained by step M in step

(m − 1), in this case, as examined by [20], the two-step filtering and smoothing

algorithm to obtain P
(
Y (tj) = ek|S(tj),Λ(m)

)
is expressed as follows

(i) Filtering: For j = 1, . . . , n, as long as P
(
Y (tn) = ek|S(tn),Λ(m)

)
is obtained,

we calculate the following probability

P
(
Y (ti) = ek|S(tj),Λ(m)

)
=

P
(
Y (tj) = ek|S(tj−1),Λ

(m)
)
f
(
S(tj)|Y (tj) = ek, S(tj−1),Λ

(m)
)

∑2
i=1 [P (Z(tj) = ei|S(tj−1),Λ(m)) f (S(tj)|Y (tj) = ei, S(tj−1),Λ(m))]

,

where

P
(
Y (tj+1) = ek|S(tj),Λ(m)

)
=

2∑
i=1

P
(m)
ki P

(
Y (tj) = ei|S(tj),Λ(m)

)
.

(ii) Smoothing: For j = n− 1, . . . , 1, we calculate the following probability

P
(
Y (tj) = ek|S,Λ(m)

)
=

2∑
i=1

P
(
Y (tj+1) = ei|S,Λ(m)

)
P
(
Y (tj) = ek|S(tj),Λ(m)

)
P

(m)
ik

P (Y (tj+1) = ei|S(tj),Λ(m))

 ,

where, the probability of transition is as follows

P
(m+1)
ik =

∑n
j=1

[
P
(
Y (tj+1) = ei | S(tj+1),Λ

(m)
)(

P
(m)
ik

P(Y (tj)=ek|S,Λ(m))
P(Y (tj+1)=ei|S(tj),Λ

(m))

)]
∑n

j=1 P (Y (tj) = ek | S,Λ(m))
.
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In addition, as a starting point of the algorithm we have

h
(m)
j = P

(
Y (t1) = ej |S(t0),Λ(m)

)
,

and we will have the following iterations

hj(m+ 1) = P
(
Y (t1) = ej |S,Λ(m)

)
,

where h
(0)
j for each j = 1, 2 must be given as input to the algorithm (see [18]).

Theorem 4.2. The maximum value of the relationship

EY|S,Λ(m)

[
lnP

(
S,Y|Λ(m+1)

)]
In step M of the EM algorithm, under the MSGBM model, the following points

are obtained

r̂k =

∑n
j=1 P

(
Y (tj) = ek|S,Λ(m)

)(
S(tj)−S(tj−1)

S(tj−1)

)
∑n

j=1 P (Y (tj) = ek|S,Λ(m))
, (22)

σ̂k =

√√√√√∑n
j=1

[
(P (Y (tj) = ek|S,Λ(m)))

(
(S(tj)−S(tj−1)−r̂kS(tj−1))

2

S2(tj−1)δ

)]
∑n

j=1 P (Y (tj) = ek|S,Λ(m))
. (23)

Proof. According to Theorem 4.1, we have

EY|S,Λ(m)

[
lnP

(
S,Y | Λ(m+1)

)]
=

2∑
k=1

n∑
j=1

P
(
Y (tj) = ek|S,Λ(m)

)
× ln f

(
S(tj)|S(tj−1), Y (tj) = ek,Λ

(m+1)
)
.

Substituting Eq. (19) in the expression above gives

EY|S,Λ(m)

[
lnP

(
S,Y | Λ(m+1)

)]
=

2∑
k=1

n∑
j=1

[
P
(
Y (tj) = ek|S,Λ(m)

)

×

(
−1

2

[
ln
(
2πσ2

kS
2(tj−1)δ

)
+
(S(tj)− S(tj−1)− rkS(tj−1))

2

σ2
kS

2(tj−1)δ

])]
. (24)

To obtain the maximum points of Eq. (24), we differentiate from rk and σk (k =

1, 2) and then set it to zero. Differentiating Eq. (24) with respect to rk and set it

equal to zero, we obtain

1

2σ2
kδ

n∑
j=1

[
P
(
Y (tj) = ek|S,Λ(m)

)(2S(tj−1) (S(tj)− S(tj−1)− rkS(tj−1))

S2(tj−1)

)]
= 0

⇒
n∑

j=1

P
(
Y (tj) = ek|S,Λ(m)

)(S(tj)− S(tj−1)− rkS(tj−1)

S(tj−1)

)
= 0

⇒
n∑

j=1

P
(
Y (tj) = ek|S,Λ(m)

)(S(tj)− S(tj−1)

S(tj−1)

)
= rk

n∑
j=1

P
(
Y (tj) = ek|S,Λ(m)

)
.
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Therefore, estimation of the parameter rk for k = 1, 2 is obtained as follows

r̂k =

∑n
j=1

[(
P
(
Y (tj) = ek|S,Λ(m)

))(
S(tj)−S(tj−1)

S(tj−1)

)]
∑n

j=1 P (Y (tj) = ek|S,Λ(m))
,

which indicates the interest rate parameter is in the kth regime.

Now we differentiate from Eq. (24) with respect to σk and then set it to zero,

in which case we have

n∑
j=1

[
P
(
Y (tj) = ek|S,Λ(m)

)(
−1

2

[
2

σk
− 2 (S(tj)− S(tj−1)− r̂kS(tj−1))

2

σ3
kS

2(tj−1)δ

])]
= 0

⇒ 1

σ3
k

n∑
j=1

[
P
(
Y (tj) = ek|S,Λ(m)

)(
σ2
k − (S(tj)− S(tj−1)− r̂jS(tj−1))

2

S2(tj−1)δ

)]
= 0

⇒
n∑

j=1

[(
P
(
Y (tj) = ek|S,Λ(m)

))( (S(tj)− S(tj−1)− r̂kS(tj−1))
2

S2(tj−1)δ

)]

= σ2
k

n∑
j=1

P
(
Y (tj) = ek|S,Λ(m)

)
.

Therefore, estimation of the parameter σk for k = 1, 2 is obtained as follows

σ̂k =

√√√√√∑n
j=1

[
(P (Y (tj) = ek|S,Λ(m)))

(
(S(tj)−S(tj−1)−r̂kS(tj−1))

2

S2(tj−1)δ

)]
∑n

j=1 P (Y (tj) = ek|S,Λ(m))
,

which indicates the market volatility is in the kth regime.

After estimating the Markov-switching model parameters, the data should be

classified according to the smoothed probabilities in regimes 1 and 2. More precisely,

if the probability P (Y (tj) = e2|S) is greater than P (Y (tj) = e1|S), then the model

dynamic is currently in regime 2, otherwise it is in regime 1. In other words, since

P (Y (tj) = e2|S) + P (Y (tj) = e1|S) = 1, if the smoothed probability for state e2
at time tj is greater than 0.5, that is, if P (Y (tj) = e2|S) > 0.5, then the model

dynamic at time tj is in regime 2, otherwise at time tj it is currently in regime 1.

Table 1: Estimation of the MSGBM model parameters by using the EM algorithm.

Market Regime 1 Regime 2 Transition probability

r̂ σ̂ r̂ σ̂ P11 P12 P21 P22

Microsoft 0.00201 0.05292 0.00082 0.17487 0.94606 0.05394 0.05654 0.94346

Intel 0.00140 0.06050 -0.00025 0.21297 0.89718 0.10282 0.10431 0.89569

To estimate the parameters of the RSGBM model, we use the daily stock price

data of Microsoft and Intel companies from 01/01/2017 to 01/01/2020 (Figures 1

and 2). We set the maximum number of iterations of the EM algorithm to 20. The

likelihood estimation results are reported in the last iteration of the EM algorithm
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Figure 1: Microsoft stock price from 01/01/2017 to 01/01/2020.
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Figure 2: Intel stock price from 01/01/2017 to 01/01/2020.

in Table 1 for the Microsoft and Intel markets. We can also see the trend of

this algorithm in estimating the parameters of the RSGBM model and transition

probability of the Markov chain states (transition probability of hidden Markov

chain) with various iterations for Microsoft and Intel markets in Figures 3 and 4,

respectively. As it is known, the values of the parameters converge to a certain

level after several iterations, which indicate the estimated value of the parameter.

Figures 5 and 6 show Microsoft and Intel stock price data classification based on

smoothed probability in state e1 (regime 1) and state e2 (regime 2), respectively.

Significant results are obtained from each regime and give each one a real economic

concept. As shown in Table 1, regime 1 corresponds to a low-volatility regime, and
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regime 2 represents a high-stress state constantly changing between periods. The

reflection of this feature for the fundamental market data of Microsoft and Intel

from 01/01/2018 to 01/01/2019 are shown in Figures 5 and 6.
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Figure 3: Estimation of the MSGBM model parameters for Microsoft data by the
EM algorithm with various iterations.

Conclusion

In this paper, a stochastic model based on the two-state hidden Markov chain is

studied. The proposed model represents a Markov-switching model whose parame-

ters depend on the hidden Markov chain and change over time. We estimated the

model parameters based on the actual data using the EM algorithm, where the

conditional expectation of E-step, is obtained by the two-step filtering-smoothing

algorithm. According to the obtained numerical results, in the first and second

regimes, the interest rates are high and low, respectively, and also in these two

regimes, the market volatility is low and high, respectively. These cases, which

represent a healthy stock economy in the first regime and a sick stock economy in

the second regime, were evaluated by classifying real data. Numerical results show

that the proposed MSGBM model can well reflect these market realities.
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