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Abstract:
Abstract:
This study aims to optimize the portfolio using the genetic operator and
network centralization approach. The statistical population of the study
is the top 50 companies of Tehran Stock Exchange, in the first quarter
of 2021, and to calculate the size of centrality, we used the difference in
the overall performance of each company in comparison to all the top
companies, based on a standard hybridization indicator. Then based on
the companies performance in the capital market, the geometric mean
of risk, and return of efficient companies are determined, and given the
real-life limitations of the budget, the requirements and expectations of
the investors in comparison to the markets performance, and the risk-
free investment, the decision-making problem for the composition of the
investment is formulated, in the form of a multi-purpose paradigm. We
optimized the investments composition by using the modified optimiza-
tion algorithm and the genetic algorithm with dual operators. Finally,
we evaluate the effect of individual and systemic operators on determin-
ing the investment strategy by using the compound linear regression
with data analysis approach to, and the represented results indicate the
positive effect of these two operators.
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Introduction

Nowadays, various mathematical programs are used to determine the op-
timal combination of investment or the optimal portfolio. In analyzing
the stock market, both statistical and mathematical methods are studied.
One of the mathematical methods of analyzing the stock market is using
different indicators of the initial multi-objective mathematical scheme of
mean-variance portfolio optimization (MVPO), which can be divided into
four categories: 1) convergence-based indicators, 2) diversity-based indi-
cators 3) hybridization-based indicators and 4) risk-adjusted indicators.

Convergence-based indicators show the approximate proximity of theo-
retical Pareto optimality level. In this regard, we can mention indicators
such as the mean of Euclidean distance, variance of return error, mean of
return error, average error percentage, Epsilon (Liagoras 2018;) and the
like.

The second category is the diversity based indicators, which indicate
the distribution of the obtained investment combinations along the level
or range of the Pareto hybridization principle. In this regard, we can
mention indicators such as quantitative distance and scattering measure
(Sotiwong and So Daniel 2016) and such.

The third category is hybridization-based indicators, which represent
the combination or hybridization of the two categories of convergence and
diversity-based indicators. In this regard, we can mention indicators such
as Hypervolume indicator and the like. We describe the most important
of these indicators in the following:

A) Hypervolume indicator:

The first of the hybridization indicator we talk about is the Hyper-
volume indicator. This indicator measures the volume of a multi-
dimensional region dominated by a set of non-dominant solutions
and it is provided by a multi-objective algorithm (Zeitzler and Tille
1999). Higher values of this indicator represent better approxima-
tion of the set of answers or the investment combination.

B) D1R

The second case of diversity-based indicators is ”D1R”. This hy-
bridization based indicator provides information about the average
distance between the closest solution and the forward convergence
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of the optimal solution based on the Pareto principle (Levin et al.
2017).

Risk-adjusted indicators

Risk-adjusted indicators are the fourth category of indicators that mea-
sure the performance of the portfolio optimization algorithm. They repre-
sent a combination or a hybridization of return and risk; these indicators
simultaneously show the positive effects of gain and the negative effects
of loss or risk. In this regard, we can mention the Sharpe index and such.
We describe the most important of these indicators in the following:

A) Sharpe ratio:

The first of the risk adjustment indicator we talk about is the
Sharpe ratio index. This risk-adjusting indicator is used to measure
the adjusted return of a risk-based investment combination Sharpe
(1966). In other words, using the Sharpe Ratio Performance Indi-
cator or measure (e.g., in purchasing securities), one can calculate
how the return can hedge the investors expected risk. The higher
Sharpe ratio means better performance of the chosen investment
combination, in the financial decision-making for the determined
decision.

B) Omega ratio:

The second risk-adjusted indicator is the omega ratio indicator.
This risk-adjustment-based indicator records all the information of
changing to higher return in distribution of the return and is also
sensitive to the return level. While Sharpe risk-based performance
indicator requires assuming an average structure for variance and
the input data that is usually distributed (Ban et al. 2018).

In addition to mathematical methods, there is a group of statistical
methods based on autoregressive moving average (ARMA), autoregres-
sive integrated moving average (ARIMA), generalized autoregressive con-
ditional heteroskedasticity (GARCH) (Frances and Chichesles 1999), and
smooth transition autoregressive (STAR) (Sarantis 2001), all of which
use delay-dependent variable structure. Other types of statistical meth-
ods that have been used in recent years include linear detachable analy-
sis (LDA) quadratic discriminant analysis (QDA), linear regression (LR),
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and support vector machines (SVM). Each of these methods usually con-
sist of multi-input variables. In addition most of the mentioned methods
are limited by linearity and the linear independence of explanatory vari-
ables in the field of financial predicting. On the contrary, artificial intel-
ligence models such as artificial neural networks (ANNs), Fuzzy systems,
and various genetic algorithms are used based on multi-variable data and
without any specific assumption. Many of these methods have also been
used in the stock market to predict financial variables.

Usually, stock market scheduling systems are used to make a system
that supports independent or compatible decision-making, regarding the
trading rules. For example, in this field, we can mention researches per-
formed by Barak, Danayi and Techi (2015), Serovolonov, Guyarro and
Mishinyuk (2015), Chen and Chen (2016), Chiang, Anke, Wu and Wang
(2016), Chormozidis And Chetzoglu (2016). Multivariate analysis using
artificial neural networks (ANN), based on nonlinear, data, and gener-
alizable methods, has become a popular and dominant tool in finance
and economics. Stock markets are affected by various factors, most of
which are used as possible input variables during the development of the
stock market prediction system. Therefore, if you expect an efficient and
accurate prediction in using ANN, you need to choose the effective and
representative inputs from various predicting measures. These sort of
choices are the main function of dimension reduction technology.

Dimension reduction can be performed in two different ways: either by
selecting relevant variables from the original data set (which is usually
referred to as feature selection) or by generating a small group of new vari-
ables, each of which is a specific combination of older input variables. Re-
searchers in statistics, computer science, and applied mathematics have
worked many years in this field, and have identified and used various
linear and nonlinear reduction methods. Sorzano, Vargas, and Pascal-
Montano (2014), also classify many dimension reduction methods in the
related mathematical insight.

Optimal portfolio and network centrality

Nowadays there is a wide debate concerning the network. In particular
in sociology, the circumstance of measuring the centrality of a particular
factor that exists within a network of relations is discussed. The impor-
tance of such criteria stems from the implicit assumption of added power
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or the situation associated with individuals is highly focused. Despite its
intuitive meaning, the concept of centrality is somewhat ambiguous and
its measuring depends on the specific fundamental process that is used.
For instance, in a social network, the time factor that interacts with other
factors is considered the central factor. While contrary to the mentioned
case, in a bargaining process, the centrality of the i-th factor is derived
from its relation to other non-central factors.

Bonasic (1972), in his paper explaining centrality, proposes a centrality
criterion that has become a standard for determining centralization in the
network literature. Further he discusses this concept in a financial market
and determines its relationship with the weights used to determine an
optimal portfolio.

Measuring centrality

Generally, a network is an ordered pair from the set of G = N,Ω in which
N = {1, 2, ..., n} is defined as a set of nodes and Ω is a set of relationships
between each ordered pair of this set. Now if we assume there is a relation
from node i to node j, then (i, j) ∈ Ω̃. An appropriate method of sorting
the information in Ω̃ is to use the mean values of the adjacent points’
matrix, where Ω = [Ωij]. Ω is an n ∗ n matrix in which Ωij ̸= 0 indicates
the existence of a relation between i and j nodes.

If Ω ̸= ΩT , it is called an oriented network, therefore if (i, j) ∈ Ω̃,
it automatically indicates that (j, i) ∈ Ω̃. Note that for undesirable
networks, there is no causal relation between the links, and these relations
are visually represented as the (j− i) line. On the other hand, if Ω ̸= ΩT

be an oriented network and Ωij indicates a causal relation from node j to
node i, which may not necessarily exist inversely. In this case, relations
between the nodes are shown as arrows i.e. (j → i). In addition, if
Ωij ∈ {0, 1} then G is called non-weighted. However, when Ωij ∈ R he
relations between nodes in the network convey information related to the
intensity of the interaction between the nodes that lead to a weighted
network. For a detailed discussion in this context, we refer the reader to
the articles of Newman (2010) and Jackson (2010). As stated in Bonasics
research (1972), in expressing real centrality, we assume the centrality of
node i be νi. It is adequate to the sum of the central weights of the
adjacent points as follows:
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νi ≡ λ−1
∑
j

Ωijνj (1)

By substituting relation (1) in the matrix form, the eigen centrality of
an evaluated source, ν, is defined based on a specific input Ω concerning
the specific value λ, while the largest real value in this field is the preferred
one and is defined as follows:

λν = Ων (2)

Definition 0.5. Suppose a non-oriented network and the weighted net-
work G = {N,Ω}, with N as a set of nodes and Ω as a matrix of adjacent
points. Then centrality of the eigenvector i along with the i-th compo-
nent of eigenvector Ω corresponds to the largest eigenvalueλ1. While the
set λ−1

1 is the proportional factor.

It should be noted that (1) indicates that each node can be considered
centrality of the network, provided it is in association to other nodes
(in positive range) or a few central points. This value is also calculated
for weighted and non-weighted networks. However, for the mentioned
oriented structure, such central measurement has some deficiencies that
are not recommended for its implementation.

main result of selecting the optimal portfolio
A review of this researchs literature shows that the theory of portfolio

optimization was first introduced by Markowitz (1952), subsequently, this
theory has been used as a basis for the outline of the proposed model. We
assume that in a portfolio we have risky assets with an expected return
vector µ and a covariance matrix Σ. Then portfolio optimization will be
defined as the problem of determining the desired weights’ vector w, that
minimizes this portfolios variance as the sum of portfolio risk, provided
the sum of the assigned weights to each asset of the portfolio is equal to
one in other words wT1 = 1. This strategy is commonly known as the sum
variance minimization strategy (risk sum) or in brief m-var. Therefore,
the said strategy is defined in the form of a minimization program:

minσ2
p = wTΣw (3)

s.t.

wT1 = 1
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And the optimal solution to the defined mathematical model in (6) is
expressed as the quantity in (7) and is calculated as follows:

w∗
mv =

1

1TΣ−11
Σ−11 (4)

We assume that the matrix of return correlation is Ω, the standard
deviation return of stock i is σi, and ∆ = diag(σi). Finally, the relation
between the correlation and the covariance matrix is obtained from Σ =
∆Ω∆. Therefore (7) with respect to Ω can be defined as followers:

ŵ∗
mv = φmvΩ

−1ϵ (5)

while ŵ∗
mv = w∗

mv ∗ σi , φmv =
1

1TΣ−11
, and ϵi =

1
σi
.

Considering the problem defined in (6), which includes a risk-free asset
with the return rf . Therefore, the defined portfolio is a combination of
n + 1 assets, n represents risky assets and 1 is the risk-free asset. In
this case, the excess return of asset i(ri − rf ) is represented as rei and
the excess return vector reaches to µe. The problem of minimizing the
variance of the portfolio for a certain level of excess return Re is expressed
as follows:

minσ2
p = wTΣw (6)

s.t.

wTµe = Re

The investment strategy defined in (10) is known as the mean-variance
strategy or M-var. Of course, we should note that wT1 = 1 is not a
limit in (10), since part of the investor’s wealth can be assigned to the
risky asset, then wf = 1 − wT1. However, when we consider the set
of investment portfolio, wf = 0. Anyways, the optimal solution for the
M-var strategy will be obtained as follows:

w∗ =
Re

µeTΣ−1µe
Σ−1µe (7)

Following the same logic as before, (11) can be transformed to the
correlation matrix format as follows:

ŵ∗ = φΩ−1µ̂e (8)

while ŵ∗
i = w∗

i ∗ σi, φ = Re

µeTΣ−1µe , and µ̂
e
i = µe

i/σi.
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calculated centrality as the systemic performance of asset i. Corollary 25
creates a negative relation between the assigned money to a particular
asset and its particular centrality.

Corollary 0.7. Assume λ1 > 1, ϵM , and µ̂e
M are positive quantities, then

the exclusive large centrality of the eigenvector of stock i with low weights
would be the desired portfolio in either of m-var or M-var strategies.

Corollary 25 states that under plausible conditions, those stocks that
account for a large amount of investors investment in an optimal portfolio
will be placed towards the outer part of the network. This corresponds to
the results of the study of Poozi et al. (2013). However, in the said study,
individual performance, as well as interaction with systematic (central)
performance is completely eliminated. Peralta and Zareei (2014), pro-
vided evidence that this is the relation of time and market dependency.
Therefore, there exist time periods in which most of the core (central) sys-
tems are also the best individual assets that lead to dispute in choosing
the investment type.

Different models in portfolio optimization

In this section, we describe the various models used in portfolio optimiza-
tion based on the researches conducted in this field.

Single-objective optimization model
The main mean-variance model (MV), which aims to minimize invest-

ment risk (variance or dispersion of return) for the desired return level, is
considered a single-objective model. In this model, the parameters used
in decision-making are the number of available assets (investment fields),
N, expected return of i-th asset (investment field), µi, the covariance of
i-th and j-th asset (investment field),σij, and the desired level of expected
return, R∗.

In addition to the decision-making parameters that are obtained based
on performance data and obtained from the above definitions, wi is also a
decision variable in this optimization scheme, which is defined as the per-
centage or relative share of investment in the i-th type asset (investment
field). Accordingly, considering the stated parameters and variables, the
optimization model is defined as follows:
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min(c) =
N∑
i=1

N∑
j=1

wiwjσij (11)

s.t.

N∑
i=1

wiµj = R∗

N∑
i=1

wi = 1

0 ≤ wi ≤ 1, i = 1, ..., N

In this scheme, the objective function is defined based on risk minimiza-
tion (of sum of covariances). In this scheme, the first restriction is based
on obtaining the return at the desired return level, the second restriction
refers to the investment combination, which is equal to 1 or 100 percent
overall, and the third restriction states the relative share of investment
in each asset or investment field in this portfolio as a relative quantity
between 0 and 1 or percent-wise between 0 and 100 percent.

The principal single-objective mean-variance investment model can
also be rewritten based on maximizing the expected return in the sum of
investment for a given risk level. In either case, the obtained portfolio by
solving (27), is called an efficient set by considering the minimum risk for
a certain return level or the maximum of return or the investors expected
return and for a certain level of risk.
However, to find an efficient portfolio, the risk tolerance level of the

investor, or the investors desired return, should be determined. In fact,
such conditions may not be a plausible in reality. Therefore, to find an
efficient portfolio among different combinations of investments in rational
space, instead of considering a single goal, researchers should consider all
goals at once. Therefore, to solve the problem of considering the decision
making criteria, risk and expected return in financial decision-making
at once and even in some cases considering other goals rather than risk
and return, researchers have converted the single-objective model into a
multi-objective model (Clichy et al. 2019).

Multi-objective optimization model
Reviewing the research literature shows that based on Zeitzlers (1999)
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approach, the mathematical approach of multi-objective mean-variance
portfolio optimization (MVPO) is defined as follows:

min f(x) = {f1(x), f2(x), ..., fp(x)} (12)

s.t.

e(x) = {e1(x), e2(x), ..., em(x)} ≤ 0

x = (x1, x2, ..., xn) ∈ X

In this approach, f1(x) to fp(x) are different objective functions that
can be defined based on risk or other objective criteria (of course min-
imization criteria). e1(x) to em(x) are different constraints that must
be considered in choosing a portfolio or investment combination and can
be defined based on investment budget, investment expectations, com-
bination restrictions, and such. Eventually, the decision variables are
x = (x1, x2, ..., xn), which are based on the amount of investment in the
asset or the evaluated stock as an investment option and are defined rela-
tively. The defined constraints are in fact the justified space or the answer
and in other words the possible combinations of investment or different
investment portfolios in decision-making.

A) Feasible set:

A feasible set xf , is defined as a vector of decision variables (here
an investment combination or portfolio) in which all the limitations
of the investment model are considered and in other words, the ob-
tained answer for the amount of investment in each asset to choose
the desired portfolio applies to all restrictions, and at the same time,
none of these values are negative as feasible levels of investment in
each asset or company shares.

B) Pareto Dominance:

In the multi-objective scheme in (29), based on Debbs opinion
(2001), Pareto’s dominance principle is considered in finding the
optimal solution for selecting the desired investment combination,
and a set of answers (of an investment combination) is called the
reference combination, provided it contains a smaller amount of
objective function than the other combination.
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C) Pareto Optimality:

In the multi-objective scheme in (29), according to Zitzlers opinion
(1999), Paretos optimality principle is considered in selecting the
final investment combination or the desired portfolio, and a set
of answers (of an investment combination) is called the optimal
combination, provided it contains a smaller amount of the objective
function than all other combinations.

Methods for solving multi-objective models
In multi-objective models, optimization of all objective functions may

not be possible at once. Therefore, it is necessary to determine the pri-
orities based on management or decision-making preferences, by using
methods such as the weighted sum of functions or applying approaches
based on the dominance of some goals over others; and to solve the prob-
lem based on these priorities.

A) Weighted sum approach:

In the weighted sum of objective functions method, a set of objec-
tives are combined into a single objective function by assigning a
related weight as the priority preference of one over another. Due
to its simple structure and ease of implementation, in addition to
the most use of the classic approach for solving multi-objective opti-
mization problems (Debb 2005), this approach is the most popular
solution for multi-objective problems in optimizing portfolio based
on the mean-variance paradigm. However, despite the simplicity of
this method, there exist major problems for optimizing the multi-
objective model, by using this method to achieve Paretos optimal
solutions, we have an optimal Pareto non-convex solution space.
Thus, the main disadvantage of the weighted sum approach is that
the said approach cant produce all Pareto’s optimal solutions that
coincide with the non-convex solution space levels (Zeitzler 1999).

Regardless of the limitations and complexities of complying with
contradictory goals in the objective function on the one hand and
considering the limitations related to real-life realities on the other
hand, in any case, the general framework of the weighted sum of the
objective functions in solving multi-objective portfolio optimization
problems with the mean-variance criterion is expressed as follows:
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min(C) =

p∑
i=1

λifi(x) (13)

s.t.

x ∈ Xf

While in this relation λi is the weight assigned to each of the previ-
ous objective functions based on the degree of importance or its pref-
erence over other defined objectives. The mentioned weight coeffi-
cients or preferences can be determined by methods based on expert
surveys and approaches like fuzzy logic. The mean-variance portfo-
lio optimization (MVPO) multi-objective mathematical paradigm
can be formulated based on the weighted sum approach of the ob-
jectives as follows in (31). In this paradigm, two main goals are
considered, minimizing the risk and maximizing the return to opti-
mize the portfolio, which are conflated as a sum function with the
management preferences (Chang et al. 2000).

min(C) = λ

[
N∑
i=1

N∑
j=1

wiwjσij

]
− (1− λ)

[ N∑
i=1

wiµi

]
(14)

s.t.

σN
i=1wi = 1

0 ≤ wi ≤ 1, i = 1, ..., N

As can be seen in (31), two opposing objectives (minimizing risk and
maximizing return) are combined by a parameter λ. The weight
parameter λ takes different values between 0 and 1. While the
objective function of the model seeks the maximum of the return
on one hand and the minimum of the risk on the other, λ obtains
an exchange between risk and return.

B) Pareto-based approaches:

Approaches based on the Pareto principle can control large search
spaces and exchange between multiple option trades at the same
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time in a single optimization implementation (Zeitzler 1999). In
this approach, unlike the objectives weighted sum approach, which
converts a multi-objective structure into a single objective struc-
ture, there is no united criterion for evaluating the quality of ex-
change between objectives. Defining qualitative evaluation criteria
in this method is relatively difficult.

In approaches based on the Pareto principle, usually, a solution
ranking strategy based on the concept of Pareto optimal principle is
used (Horn et al. 1994). Many multi-objective algorithms are based
on Pareto ranking, however many alterations such as 1) Dominance
depth algorithm (Deb et al. 2002) and 2) Dominance dimensions
algorithm in optimization, are used more than other algorithms
(Zeitler et al. 2001). Based on the proposed paradigm by Levin
et al. (2014), mean-variance portfolio optimization (MVPO) multi-
objective mathematical paradigm based on the Pareto principle can
be presented as follows:

min

[
N∑
i=1

N∑
j=1

wiwjσij

]
and max

[ N∑
i=1

wiµi

]
(15)

s.t.

N∑
i=1

wi = 1

0 ≤ wi ≤ 1, i = 1, ..., N

As can be seen in the objective function (32), two opposing objectives:
1) minimizing the risk and 2) maximizing the return, are evaluated inde-
pendently to achieve the optimal investment combination in a paradigm
based on the Pareto dominance principle.

Case studies based on performance data in different capital markets
show that modeling the optimal investment combination to ”determine
the preference of single-objective or multi-objective paradigms” has a
basic assumption. The said basic assumption is that investors are aware
of the desired risk or return level of single-objective models. Therefore,
multi-objective models seem more realistic than single-objective models.



Paper 9: Network centrality and portfolio optimization 145

Research methodology

This research is based on a theoretical inference method to find a new and
indigenous model suitable for Irans capital market conditions to calculate
network centrality and portfolio optimization using genetic algorithm,
therefore the research can be considered as a theoretical research in this
regard. On the other hand, designing the model and employing it to help
the investors and the capital market to make better investment decisions,
and therefore this research can be considered an applied research in terms
of purpose. The statistical population of this study as discussed later
(50 top listed companies in the first quarter of 2021) is compatible with
the statistical sample and using random methods in studying a section
of the statistical population as a random sample is not objectified and
mathematical optimization methods have been used to select the optimal
portfolio. Accordingly, during the inference, the aim was not to generalize
and disseminate the results, and the used tools were descriptive, in other
words, descriptive inference method has been used. In the following,
the general framework, measuring, and determining relations between
variables and in a way the proposed research model is discussed.

Calculating the centrality

In this section, using the ”portfolio optimization” approach, the central-
ity criterion for each company is calculated and based on the regular and
logical algorithm that is used, the obtained findings are described. To
determine the centrality, first, we normalize and integrate the data, then
based on the difference in the overall performance of each company in
comparison to all the top companies, including the performance of the
company that is under evaluation, and relying on the standardized inte-
grated criterion of performance, we calculate the centrality size of each
company and then rank it relatively. In other words, the difference in
the option’s return that is under survey compared to all other justified
options, in investment decision-making has been used.

In this regard, first: the difference of the hybridization based indica-
tors for each company, and including the company itself, is calculated and
is determined as a positive number (absolute value). Second: the sum
of performance differences is calculated by summing up the calculated
values per 50 companies. Third: the obtained sum for each company is
divided by the obtained sum for all companies (rounded by 4 decimals)
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and controlled (the obtained sum of numbers for all companies is equal
to 1). Fourth: Considering that the most optimal performing status is
for the minimum value calculated in the previous step, complement cal-
culated, which means the obtained numbers in calculating the previous
division are subtracted from the maximum value of the previous column
and stated as a positive number. Finally: Standardized, which means
the obtained complement is divided and controlled on the sum of com-
plements of 50 companies and is divided as the centrality measure of the
evaluated company. The obtained numbers are positive with 5 decimals
and their sum is 1 and they are somehow standardized.

It should be noted that the centrality measure per company as a rel-
ative quantity is between 0 to 1 and in sum or for all companies equals
1.

Determining the optimal strategy based on the mean-
variance paradigm

In this section, research findings are analyzed based on Markovitzs port-
folio theory (1952), mean-variance mathematical optimization paradigm,
and applying real limitations in the top companies are studied according
to performance data in time period. In this regard, first objective crite-
ria in modeling including risk and return are defined and measured, then
decision variables are defined, the objective function and limitations are
stated, and eventually, by mathematical optimization, the final model is
solved and optimal strategies of investing are determined.

Therefore, by using the research background, the return criterion is
selected as one of the most important indicators affecting investment
decision-making, and in calculating the average return, Barak and Modares
(2015) model has been used as follows, in which R is the average stock
return for the studied time periods;

R = n

√
(1 +

r1
100

)(1 +
r2
100

)...(1 +
rn
100

)

In other words, to calculate the average return the geometric mean
method has been used and here, r1, ..., rn are the stocks real return from
the first to the n-th time period. In this regard, the one-year performance
up to 19/3/2021 for the studied companies has been considered and in
these 12 months the monthly periods have been the criterion of action and
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to calculate the return, stock price changes compared to past have been
used. This means that the change percentage of the stock price (stock
price at the end of the month subtracted from the stock price at the
beginning of the month) is divided by the stock price at the beginning
of the month and multiplied by 100 is expressed as a percentage, and
finally, to be converted to the annual return it is multiplied by 12. The
second criterion that has attracted investors in decision-making along
with the return, has been the investment risk; according to Markowitz
(1952), Nikzad and Zaranezhad (2012), Chang et al. (2012), Burke et
al. (2014), Sadaf And Ghodrati (2015), Senol and Oztoran (2016), from
which different interpretations have been expressed. In this study, based
on Barak and Modaresis model (2015), the risk criterion is based on price
changes and is calculated by the following formula:

σ =

√√√√ 1

n− 1

1∑
i=0

(
ri − E(r)

)2

Modeling investment composition

At this stage of decision-making to determine the optimal investment
composition based on the initial feasible space, and in other words, the
decision made in evaluating the financial efficiency of selected companies
and introducing the efficient companies as feasible investment options,
modeling the composition of investment is defined as the final model
by using these steps: 1) defining the decision variable, 2) defining the
objective function, 3) identifying decision-making real constraints and 4)
summing up the said steps.

The first step, defining the decision variable:

Following similar researches, including Chen et al. (2019), in this study,
the decision variable is the relative investment between 0 to 1 of the total
investment in the i-th efficient company and for each of the 50 companies
that are ultimately selected as top stock companies and feasible invest-
ment option in determining the initial space (or decision-making) which
is defined as follows:
Xi relative investment in the desired efficient company: i : 1, 2, ..., 50.
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The second step, defining the objective functions:

Based on the two criteria, risk and return, the objective functions are
defined based on Markowitz (1952) mean-variance paradigm as follows:

max(R) = R1X1 +R2X2 + ...+RnXn

min(δ) = δ1X1 + δ2X2 + ...+ δnXn

Here, Ri is the average monthly return of the i-th efficient company, Xi

is the relative investment in the i-th efficient company, δi is the average
monthly risk of the i-th efficient company, R is the average monthly return
of the investment composition in the efficient companies and δ is the
average risk of investment composition in the efficient companies. The
investor wants to choose a combination of investments that has the most
return and the least risk at same time.

The third step, applying real limitations:

By applying real limitations when choosing the portfolio or optimal in-
vestment composition, maximizing returns and minimizing risk in select-
ing the investment composition, the final decision space in selecting the
optimal composition will be determined based on investment limitations.
Obviously, these limitations are based on the circumstances of the per-
son who decides and vary from person to person. Therefore, following
the Chen et al. (2019), a number of limitations are mentioned here as
examples:

A) Investment composition limitation: This limitation is affected by
the definition of variables as relative quantity and in fact, is the
relative investment in the investment portfolio or relative share of
each top company from one investment unit, which assuming rela-
tive investment in other companies be 0, the maximum share of the
i-th efficient company is equal to 1 and considering that the real
decision variables are non-negative the minimum is defined as an
unknown relative quantity as follows:

0 ≤ Xi ≤ 1, i : 1, 2, ..., 50

B) Investment budget limitation: This limit is based on the existing or
available amount of money as a ceiling or maximum of investment
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by a natural or legal person and varies from a person to the other.
Here, according to the general assumption in the budget constraints
of investment following Maghwani et al. (2018), we assume that
the investor wants to buy a share that is relatively divided between
different shares and practically with the individuality of the Rial
budget considering dividing the Rial budget by the average price
of a share we can calculate the number of final shares with the
optimal relative combination. This number is multiplied by the
optimal relative combination and the amount of the shares of each
company from this specific composition will be determined, and by
multiplying the amount by the daily price of the relevant share, the
Rials amount of buying shares from each company in the optimal
composition will be determined. Accordingly, the budget constraint
is generally defined per share as follows:

X1 +X2 + ...+X50 = 1

C) Minimum return relative to the market limitation: This limit is
based on the minimum risk-free return, for instance, the return on
investment in a one-year bank deposit, which is 15% per annum
and 1.25% per month according to the Central Bank, and based
on this limit, the investment portfolio or composition should be
determined in a way that the return on investment will not be less
than the risk-free return. In other words:

R1X1 +R2X2 + ...+R50X50 ≥ 1.0125

D) Minimum return relative to the market limitation: This limit is
based on the average performance in the capital market and is
based on the assumption that in general the investment composi-
tion should be determined in a way that the minimum return on
investment will not be less than the average return in the capital
market. In other words:

R1X1 +R2X2 + ...+R50X50 ≥ R

E) Maximum risk limit relative to the capital market: This limit is
based on the average performance in the capital market and is
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based on the assumption that in general the investment compo-
sition should be determined in a way that the maximum risk on
investment will not exceed the average risk in the capital market.
In other words:

δ1X1 + δ2X2 + ...+ δnXn ≥ δ

The fourth step, final model:

According to variables definition, objective functions and investment lim-
its, the final model of the optimal investment composition will be as
follows:
Xi: The relative investment amount in the desired efficient company,

i : 1, 2, ..., 50.

max(R) = R1X1 +R2X2 + ...+R50X50

min(δ) = δ1X1 + δ2X2 + ...+ δ50X50

s.t.

X1 +X2 + ...+X50 ≤ 1

R1X1 +R2X2 + ...+R50X50 ≥ 15.00

R1X1 +R2X2 + ...+R50X50 ≥ R

δ1X1 + δ2X2 + ...+ δ50X50 ≤ δ

0 ≤ X1 ≤ 1, i : 1, 2, ..., 50

Portfolio optimization

To select the desired option in investment decision-making, at this stage
of the analysis, relying on the genetic algorithm and the following ultra-
innovative algorithm, we optimize the portfolio in the form of determin-
ing the optimal investment composition of efficient companies, aiming to
achieve maximum average returns and the minimum risk and observance
of real limitations in decision-making.
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Step 1, Optimization algorithm:

In this regard, the correction mechanism that Stretcher et al. (2004),
Levin, Kuo and Kendall (2014), and Sculpadonekt et al. (2007) have
used in their studies, is invented to manage budget, floor, and ceiling
limits. It should be noted that budget limits are usually avoided unless

i = 0. Another modifying mechanism has been developed in Chang et
al.’s (2000) study to comply with investment budget, capability, floor and
ceiling limits. According to the algorithm used in this study, producing
solutions in this study should be based on consistency and quantity. Then,
the used algorithm is shown in table 35.

Step 2, Determining optimization parameters:

Relying on the ultra-innovative mathematical algorithm and using the
data mining process of the genetic algorithm, the optimization parame-
ters including the number of generations, the number of iterations, base
population, etc. are defined as follows. In this study, the binary ge-
netic algorithm is used. In other words, the genetic operation was not
directly performed on the variables, but its coded in the base-2. Also, the
production of the initial generation is performed randomly. The initial
population size used in this study is 100. The termination condition in
the algorithm is reaching a constant objective function or to reach the
maximum number of generations, which is 200 in this method.

The number of elite chromosomes that will enter the next generation is
3.5% of the population. To scale the value of the fitness function, a rank
scale has been used. To determine how to select chromosomes, the Se-
lection Tournament method has been used. The intersection rate, which
represents the percentage of the population affected by the intersection
operator, is considered 0.8 in the best case of portfolio selection.

Mutations in chromosomes are performed by the Arithmetic Function
method, the length of change in the gene depends on the limitations
of the problem. The mutation rate, which represents the percentage
of the population affected by the mutation operator, is considered 0.1.
Then, using the mentioned parameters and Table 4-18 as the justified
starting point and applying them in MATLAB, z1, z2, z3, z4, z5, z6, which
have the main role in the fitness function, are calculated. Assuming that
the relative investment amounts are the same in all financially efficient
companies, the starting point is obtained from dividing 1, i.e. budget
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Table 1: Stock Composition Optimization Algorithm

Portfolio optimization modified algorithm

Proposed repair mechanism

rocedure Repair (ω, ϑ)

δ ← 0

Inz = {i|ωi > 0}
ri = (ω mod ϑ) ∀i ∈ Inz

ILBV = {i|ωi − r < Ii}
if |ILBV | = 0 then

ωi ← ωi − ri

else

ωi ← ωi + (ϑi − ri) ∀i ∈ ILBV

ωi ← ωi − (ωi mod ϑi) ∀i ∈ Inz

end if

β =
∑

i∈Inz
ωi

if β > 1 then

ai ← Ii + ϑi − (Ii mod ϑi) ∀i ∈ Inz

ωi ← ai + ϑi +
ωi−ai∑

i∈Inz
(ωi−ai)

(1−
∑

i∈Inz
ai) ∀i ∈ Inz

else

ai ← ui − (ui mod ϑi) ∀i ∈ Inz

ωi ← ai − ai−ωi∑
i∈Inz

(ai−ωi)
(
∑

i∈Inz
ai − 1) ∀i ∈ Inz

end if

ri = (ωi mod ϑi) ∀i ∈ Inz

δ ←
∑

i∈Inz
ri

I = {i|δ > ϑi}
ϑmin ← min{ϑi|i ∈ I}
Choose an index k from {i|ϑi = ϑmin : i ∈ I}
ID ← 0

while δ ≥ ϑmin do

I ← I\ID
if ωk + ϑmin ≤ uk then

δ ← δ − ϑmin

ωk ← ωk + ϑmin

else

I ← I\{k}
ID ← ID ∪ {k}
end if

I ← {i|δ > ϑi}
ϑmin ← min{ϑi|i ∈ I}
Choose an index k from {i|ϑi = ϑmin : i ∈ I}
end while

end procedure
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limitation, by 50.

Step 3, Simulation:

Using MATLAB, the formulated model, and the modified algorithm, the
simulation process was performed with each of the three operators, and
after 250 generations of simulation for the selected operators, the simu-
lation operation was terminated. A summary of each simulation is pre-
sented in the following, and in the next section, the best answer based
on the calculations is represented.

Selecting the optimal portfolio using Tournament genetic oper-
ator

After following the steps and determining the assumptions and parame-
ters that were previously explained in the process of implementing the
genetic algorithm simulation in the third chapter, its possible to simulate
the algorithm using MATLAB, with a repeat rate of 250 generations and
an initial population of 150 by default. At this stage, using MATLAB,
the proposed ultra-innovative algorithm with the Tournament operator
has been used. Simulation to build an optimal portfolio was performed.
Figure (36) depicts the change rate of the fitness function in 250 genera-
tions.

Accordingly, figure (37) depicts the distance between each generation
of the proposed genetic algorithm compared to the previous generation
of answers in 250 generations:

In addition, figure (2) depicts the best, worst, and the average value
of the fitness function in each generation of using the genetic algorithm
by Tournament operator function:

Eventually, figure (3) depicts, the selected chromosome (of the optimal
portfolio) using the genetic algorithm after 250 generations:

Selecting the optimal portfolio using Roulette Wheel genetic
operator:

Following the steps, and determining the assumptions and parameters
that were explained in the implementation process of the genetic algo-
rithm simulation in the third chapter, simulation of the algorithm by
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Figure 1: The change trend of Tournament operator in each generation
of the simulation (researcher’s findings)

Figure 2: The distance between each generation of Tournament’s operator
(researcher’s findings)

MATLAB with a repetition rate of 250 generations and an initial popula-
tion of 150 can be done by default. At this stage, by using MATLAB, the
proposed ultra-innovative algorithm with the Roulette Wheel operator is
used. Simulations were performed to build an optimal portfolio. Figure
(4) depicts the rate of change in the fitness function in 250 generations.
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Figure 3: The best, and worst, and the average value of Tournament
operator (researcher’s findings)

Figure 4: The final chromosome in Tournament operator (researcher’s
findings)

Accordingly, figure (1) depicts, the distance between each generation
of the proposed genetic algorithm compared to the previous generation
of answers by the Roulette Wheel operator in 250 generations:

In addition, figure (7) depicts the best, worst and average value of
the fitness function in each generation of using the genetic algorithm by
Roulette Wheel operator function:


