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Abstract:
Abstract:
We consider European style options with risk-neutral parameters and time-
fractional Levy diffusion equation of the exponential option pricing model in this
paper. In a real market, volatility is a measure of the quantity of inflation in
asset prices and changes. This makes it essential to accurately measure portfolio
volatility, asset valuation, risk management, and monetary policy. We consider
volatility as a function of time. Estimating volatility in the time-fractional Levy
diffusion equation is an inverse problem. We use a numerical technique based
on Chebyshev wavelets to estimate volatility and the price of European call and
put options. To determine unknown values, the minimization of a least-squares
function is used. Because the obtained corresponding system of linear equations is
ill-posed, we use the Levenberg-Marquardt regularization technique. Finally, the
proposed numerical algorithm has been used in a numerical example. The results
demonstrate the accuracy and effectiveness of the methodology used.
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1 Introduction

Recently, financial mathematics has received a great deal of attention due to its

extensive association with economics and financial markets. One of the most sig-

nificant issues in finance is the pricing of financial instruments such as options and

stocks. Merton [1] proposed the Black-Scholes (BS) model for this problem based

on Brownian motion. However, empirical evidence has shown that recourse to

Brownian motion as a driving process is too restrictive. E. Eberlein et al [2] consid-

ered Levy processes as the driving force and indicated that Levy processes-based

models are more precise than models based on Brownian motion. In fact, Levy

processes-based models can describe the observed reality of financial markets more

accurately. In [3], the authors provided a modification of European style options
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under a risk-neutral probability condition for the stock-price assets based on Levy

processes. They considered the following dynamic of the stock price driven by the

α-stable Levy process Lα,−1
t with skew parameter β (see [3]) as below:

dγSt = St

(
(r − q)dtγ + σdLα,−1

t

)
+ λStdβ

γ
t , S0 is initial price, (1)

where 1 < α < 2 and dγSt is the Caputo fractional derivative with order 0 < γ < 1.

The parameters σ ≥ 0 and βγt are volatility and the number of shares of the stock

at time t, respectively. The term λStdβ
γ
t , (λ ≥ 0) refers to the price impact of

the investor’s trading (for the more details see [4]). In addition, r and q are the

risk-less rate and dividend yield parameters, respectively. Also, they considered

trading strategies as

dβγt = ηtdt
γ + ζtdL

α,−1
t , (2)

where (ηt)t≥0 and (ζt)t≥0 are processes determined endogenously and β0 is the

initial number of shares in the stock. From Eqs. (1) and (2) we have

dγSt = St

(
(r − q)dtγ + σdLα,−1

t

)
+ λSt(ηtdt

γ + ζtdL
α,−1
t ). (3)

The authors in [3] considered the wealth process (Vt)t≥0 corresponds to a self-

financing strategy (θt, β
γ
t )t≥0

Vt = θtS
0
t + βtSt, where dS0

t = rS0
t dt, S

0
0 = 1,

and proved that by using the change of variable x = xt := ln(St), the Eq. (3)

converts to the following fractional partial differential equation (FPDE)

∂γu(x, t)

∂tγ
+A

∂u(x, t)

∂x
+B

∂αu(x, t)

∂xα
= ru(x, t), x ∈ [xmin, xmax], (4)

with initial conditions u(x, 0) = h(x) and ut(x, 0) = f(x). Obviously, the solution

of this equation is the wealth process Vt = u(St, t). Furthermore, we have

A = r − q + λη +
σα

2
sec(

απ

2
),

and

B =
σα

2
sec(

απ

2
).

In Eq. (4), ∂γu(x,t)
∂tγ and ∂αu(x,t)

∂xα are Caputo time and Riemann-Liouville space

fractional derivatives, respectively, that are defined as follows

∂γu(x, t)

∂tγ
=

1

Γ(1− γ)

∫ t

0

∂u(x, τ)

∂τ
(t− τ)−γdτ, 0 < γ < 1,

∂αu(x, t)

∂xα
=

1

Γ(2− α)
d2

dx2

∫ x

−∞
(x− τ)1−αu(τ, t)dτ, 1 < α < 2.
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Aljethi and Kilicman [5] solved Eq. (4) by an implicit scheme and obtained nu-

merical values of the European-style option price and compared their results with

those obtained by the Euler-Maruyama scheme for Eq. (1). However, experimental

studies conducted by researchers have shown that the constant volatility in the

option pricing models is not consistent with market data. Therefore, it makes more

sense to consider volatility as a function of asset price and time, that is σ = σ(S, t),

and determine it. The inverse problem of determining volatility has been inves-

tigated by some researchers. In [6], the authors used the adjoint method to find

implied volatility. They considered the case of σ(S, t) = σ(S) on European call

options. Egger and Engl [7] applied Tikhonov regularization to determine a stable

and convergent solution to the inverse problem of option pricing. In [8], a linearized

problem was considered and the uniqueness theorem for the state-dependent case

σ = σ(S) was proved. However, the purely time-dependent volatilities were inves-

tigated by Hein and Hofmann in [9] and Jin et al in [10].

In this paper, we discuss the case of σ = σ(t) in Eq. (1). So, we have an inverse

problem. Also, it is obvious that in the fractional partial differential equation (4),

A and B are the functions of σ(t). To find the volatility and u in Eq. (4), we use

the additional condition (overlapping measured data)

u(x∗, t) = E(t), xmin < x∗ < xmax. (5)

Let us denote the solution of Eq. (4) under given conditions by u(x, t;σ). Therefore,

in order to determine the volatility, we find σ so that the following equality is

satisfied

u(x∗, t;σ) = E(t), xmin < x∗ < xmax. (6)

In general, we solve the optimization problem in the below form

J(σ) =

I∑
i=1

(u(x∗, ti;σ)− E(ti))
2. (7)

In this paper, we use Chebyshev wavelets to approximate the unknown volatility

σ(t). Then, the collocation points are used to obtain the price of European options.

The organization of the manuscript is as follows: In Section 2, we state the

Chebyshev wavelets by using the concept of the Chebyshev polynomials. Section

3 is devoted to our computational procedure. In Section 4, we implement the

mentioned numerical method and determine the volatility and the price of European

call and put options.

2 The Chebyshev wavelets and their properties

Consider the first kind of Chebyshev polynomials of degree m defined as

Tm(x) = cos(m arccos(x)), x ∈ [−1, 1].
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The Chebyshev polynomials are orthogonal with respect to the weight function

w(x) = 1√
1−x2

on the interval [−1, 1] and satisfy the following recursive formula

T0(x) = 1 , T1(x) = x , Tm+1(x) = 2xTm(x)− Tm−1(x) , m = 1, 2, · · · .

Chebyshev wavelets ψCn,m(x) = ψC(k, 2n−1,m, x) have four arguments; k ∈ N, n =

1, 2, ..., 2k−1 , m = 0, 1, ...,M−1 and x. These wavelets are defined on interval [0, 1]

based on Chebyshev polynomials as [11]

ψCn,m(x) =


2k/2T̂m(2kx− 2n+ 1), n−1

2k−1 ≤ x < n
2k−1 ,

0, otherwise,

(8)

where

T̂m(x) =


1√
π

m = 0,

√
2
πTm(x) m > 0.

Here, Tm(x),m = 0, 1, · · · ,M −1 are the Chebyshev polynomials of degree m. The

Chebyshev wavelets are orthogonal with respect to the weight function wn(x) =

w(2kx− 2n+ 1) instead of ŵ(x) = w(2x− 1).

Hence, any function f(x) ∈ L2[0, 1] can be expressed based on wavelets as

f(x) =

∞∑
n=1

∞∑
m=0

fn,mψ
C
n,m(x), (9)

where

fn,m = (f(x), ψCn,m(x)) =

∫ 1

0

f(x)ψCn,m(x)wn(x)dx.

In practical, a finite series of (9) is used

f(x) =

2k−1∑
n=1

M−1∑
m=0

fn,mψ
C
n,m(x).

Remark 2.1. To apply the Chebyshev wavelets on the [xmin, xmax], we use the

change of variable x = (xmax − xmin)η + xmin, 0 ≤ η ≤ 1. Therefore, the shifted

Chebyshev wavelets are defined on [xmin, xmax] as follows

ψn,m(x) = ψCn,m(
x− xmin

xmax − xmin
).

In this paper, we expand the function u(x, t) by the Chebyshev wavelets as

follows

u(x, t) ≃
2k−1∑
n=1

M−1∑
m=0

Cn,m(t)ψn,m(x),

where

Cn,m(t) = (u(x, t), ψn,m(x))
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3 The computational procedure

At first, notice that by [5], the price of the call and put European option corre-

sponding with Eq. (3) is as follows

u(St, t) = EQ[h(ST )|Ft], (10)

where u(x, t) is the solution of time-fractional partial differential equation

∂γu(x, t)

∂tγ
= A

∂u(x, t)

∂x
+B

∂αu(x, t)

∂xα
+ ru(x, t), x ∈ [xmin, xmax], (11)

with the initial conditions u(x, 0) = h(x) and ut(x, 0) = f(x). Here, A = A(σ(t))

and B = B(σ(t)) are the functions of the volatility σ. Also, the boundary condi-

tions u(xmin, t) = 0 and u(xmax, t) = exmax −Ke−r(T−t) is used for a call option

and for a put option, we have u(xmax, t) = 0 and u(xmin, t) = Ke−r(T−t) − exmin ,

where K is the strike price, xmin = − log(4K) and xmax = log(4K). Note that if

σ is known, then the (11) with given conditions is a called direct problem (DP).

Remark 3.1. In this paper, we assume that A(σ(t)) = a0 + a1σ(t) + a2σ
2(t) and

B(σ(t)) = b0+b1σ(t)+b2σ
2(t) where a0, a1, a2 and b0, b1, b2 are constants that will

be determined by the least-squares method.

Now, we use the Chebyshev wavelets to find the volatility σ and u in (11).

Consider an approximation of the volatility σ as follows

σ̄(t) =

2k1−1∑
n1=1

M1−1∑
m1=0

dn1,m1
ψn1,m1

(t). (12)

Also, Let the approximation solution of the DP (11) is as

ū(x, t) =

2k2−1∑
n2=1

M2−1∑
m2=0

cn2,m2
(t)ψn2,m2

(x). (13)

Now, considering the following discretization scheme

∆t =
T

L
, ∀L ∈ N and ti = i∆t, i = 0, 1, · · · , L.

∂γu(x,t)
∂tγ is discretized as the following [12]

∂γu(x, ti)

∂tγ
=

∆t−γ

Γ(2− γ)

i−1∑
k=0

bk[u(x, ti−k)− u(x, ti−k−1)] (14)

where bk = (k + 1)γ − k1−γ , b0 = 1.
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Substituting the relations (13) and (14) in Eq. (11), we have

∆t−γ

Γ(2− γ)

i−1∑
k=0

2k2−1∑
n2=1

M2−1∑
m2=0

bk (cn2,m2
(ti−k)− cn2,m2

(ti−k−1))ψn2,m2
(x)

= A(

2k1−1∑
n1=1

M1−1∑
m1=0

dn1,m1ψn1,m1(t))

2k2−1∑
n2=1

M2−1∑
m2=0

cn2,m2(ti)ψ
′
n2,m2

(x)

+B(

2k1−1∑
n1=1

M1−1∑
m1=0

dn1,m1ψn1,m1(t))

2k2−1∑
n2=1

M2−1∑
m2=0

cn2,m2(ti)
∂αψn2,m2

(x)

∂xα

+ r

M2−1∑
m2=0

cn2,m2
(ti)ψn2,m2

(x) (15)

Moreover, the boundary conditions for the call and put options are obtained as

follows

2k2−1∑
n2=1

M2−1∑
m2=0

cn2,m2(ti)ψn2,m2(xmin) = 0,

2k2−1∑
n2=1

M2−1∑
m2=0

cn2,m2(ti)ψn2,m2(xmax) = exmax −Ke−r(T−ti), (16)

2k2−1∑
n2=1

M2−1∑
m2=0

cn2,m2
(ti)ψn2,m2

(xmin) = Ke−r(T−ti) − exmin ,

2k2−1∑
n2=1

M2−1∑
m2=0

cn2,m2
(ti)ψn2,m2

(xmax) = 0, (17)

respectively. In Eq. (15), there are 2k2−1M2 unknown cn2,m2
where n2 = 1, 2, · · · , 2k2−1,m2 =

0, 1, · · · ,M2−1; 2k1−1M1 unknown values of dn1,m1
where n1 = 1, 2, · · · , 2k1−1,m1 =

0, 1, · · · ,M1− 1, 2k1−1M1 and six unknown constants a0, a1, a2, b0, b1 and b2. Con-

sidering Eqs. (16), (17) and taking the collocation points

xj =
2j − 1

2k2M2
, j = 1, 2, · · · , 2k2−1M2 − 2, (18)

we can obtain the unknowns cn2,m2 based on the unknown constants dn1,m1 , a0, a1, a2, b0, b1
and b2 for call and put option respectively. So, the approximate solution of DP (11)

is obtained based on dn1,m1
, a0, a1, a2, b0, b1 and b2. Now, to find these unknown

constants , we minimize the following functional

S(d) =

I∑
i=1

(ū(x∗, ti;σ)− E(ti))
2. (19)
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Given that the obtained system of equations is ill-conditioned, so we use the

Levenberg-Marquardt regularization [13].

It has been shown that the matrix form of the functional (19) is

S(d) = [E − Ū(d)]T [E − Ū(d)], (20)

where

[E − Ū(d)]T ≡ [E1 − Ū1, E2 − Ū2, · · · , EI − ŪI ],

in which Ei = E(ti), Ūi = ū(x∗, ti;σ), i = 1, 2, · · · , I and

d = [d1,0, d1,1, · · · , d1,M1−1, · · · , d2k1−1,1, d2k1−1,2, · · · , d2k1−1,M1−1, a0, a1, a2, b0, b1, b2].

Now, we minimize the least squares norm by equating the derivatives of S(d) to

zero, that is

∇S(d) = 2

[
−∂Ū

T (d)

∂d

]
[E − Ū(d)] = 0,

in which

∂ŪT (d)

∂d
=



∂
∂d1,0
∂

∂d1,1
...
∂

∂d
2k1−1,M1−1

∂
∂a0
...
∂
∂b2


[Ū1 Ū2 · · · ŪI ].

Therefore, we can write the sensitivity matrix as [13]

J(d) =

[
∂ŪT (d)

∂d

]T
=



∂Ū1

∂d1,0
∂Ū1

∂d1,1
· · · ∂Ū1

∂d
2k1−1,M1−1

∂Ū1

∂a0
· · · ∂Ū1

∂b2

∂Ū2

∂d1,0
∂Ū2

∂d1,1
· · · ∂Ū2

∂d
2k1−1,M1−1

∂Ū2

∂a0
· · · ∂Ū2

∂b2

...
...

...
...

...
∂ŪI

∂d1,0
∂ŪI

∂d1,1
· · · ∂ŪI

∂d
2k1−1,M1−1

∂ŪI

∂a0
· · · ∂ŪI

∂b2
.

 (21)

When the sensitivity coefficients of the elements of the matrix J(d), are small, the

determinant of the matrix (J(d))TJ(d) is approximately zero and the inverse prob-

lem is ill-conditioned. Also, if any column of J(d) is a linear combination of the

other columns, the determinant of the matrix (J(d))TJ(d) is null [13].

Now, we use the Levenberg-Marquardt regularization with the following computa-

tional algorithm [13].

Consider an initial guess for the vector of unknown coefficients d and denote it with

d(0).



166 Journal of Mathematics and Modeling in Finance

1) Allocate a value for the regularization parameter and denote it with µ0 and

set k = 0.

2) Compute Ū(d(0)) and S(d(0)).

3) Using the current values of (d(0)), compute the sensitivity matrix Jk and

Ωk = diag[(Jk)TJk].

4) Solve the following system of algebraic equations[
(Jk)TJk + µkΩk

]
∆(d(0))k =

(
Jk
)T [

E − Ū
(
(d(0))k

)]
.

5) Compute (d(0))k+1 = ∆(d(0))k + (d(0))k.

6) If S
(
(d(0))k+1

)
≥ S

(
(d(0))k

)
, set 10µk instead of µk and go to step 4.

7) If S
(
(d(0))k+1

)
< S

(
(d(0))k

)
, accept (d(0))k+1 and set 0.1µk instead of µk.

8) If ∥(d(0))k+1 − (d(0))k∥ < tol, so an acceptable approximation is obtained

where the value of tol is given. Otherwise, set k + 1 instead of k and go to

step 3.

4 Numerical simulations

In this section, we provide some numerical simulations to illustrate the efficiency

of the method and obtain the prices of the call and put European options. To find

volatility σ and the price of European options by the provided numerical method,

we consider the overposed measured data u(0.1, ti) = 0 where ti = i∆t and assume

k1 = k2 = 2, M1 = M2 = 5. The used parameters’ value are reported in Table

1. To investigate the accuracy of numerical solutions, we assume that the true

Table 1: Parameters’ value

S0 Strike K r γ α T L

100 250 0.02 0.75 1.76 100 4

volatility σ(t) is defined as

σex(t) = 0.1 cos(4πt)− 0.1t+ 0.2,

and compare the obtained volatility by numerical method for FPDE σes(t) with the

true volatility σex(t). Figures 1(a), 1(b) and 1(c) show the comparison between the

true volatility σex(t) and the estimated volatility by the numerical method. Also,

we compare the obtained values for A(σ(t)) and B(σ(t)) based on σex(t) and σes(t).

In Figures 2(a) and 2(b), we represent these estimated values. Also, in Table 2, we

present the price of call and put European option for the true volatility σex and

the obtained volatility by numerical method for FPDE.
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Figure 1: The comparison between the true volatility σex(t) and the estimated
volatility by the numerical method

Figure 2: The comparison between the obtained values for A and B for σex(t) and
σes(t)

5 Conclusions

In this study, the inverse fractional diffusion equation in terms of the Levy process is

solved by Chebyshev wavelets. We also obtained the unknown volatility for solving

the price of fractional financial derivatives of the European options price. Moreover,

we made a comparison between European call and put option prices based on the
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Table 2: The prices of call and put European option with true volatility and the
obtained volatility by numerical method for inverse FPDE

Strike K σex(t) σes(t)

Call price 250 18.9431 18.9321

Put price 250 1.1364 1.0225

provided numerical solutions of the inverse fractional partial differential equation

and solutions corresponding to the true volatility. The numerical results illustrated

that the method is effective and accurate to approximate the price of call and put

European options.
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