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Abstract:
Abstract:
The aim of this paper is to numerically price the European double barrier option
by calculating the governing fractional Black-Scholes equation in illiquid markets.
Incorporating the price impact into the underlying asset dynamic, which means
that trading strategies affect the underlying price, we consider markets with fi-
nite liquidity. We survey both cases of first-order feedback and full feedback.
Asset evolution satisfies a stochastic differential equation with fractional noise,
which is more realistic in markets with statistical dependence. Moreover, the Sinc-
collocation method is used to price the option. Numerical experiments show that
the results highly correspond to our expectation of illiquid markets.
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1 Introduction

After the financial crisis, market traders realized that a better understanding of the

limited liquidity influences on all features of the financial market was needed. One

of the origins of such effects is the inclusion of the price impact of option hedging

strategies resulting from the relaxation of the assumption of infinite liquidity of

the market in underlying assets, which implies that trading affects the price of

underlying assets, unlike in Black-Scholes markets. Models that incorporate such

an effect unavoidably lead to nonlinear feedback. Inspired by [1] and the references

therein, we consider two groups of feedback: First, a hedging strategy that does

not consider the feedback effect (first-order feedback with linear governing PDE);

second, a hedging strategy that does take into account the feedback effect (full

feedback with nonlinear PDE).
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In this paper, we assume that the process of asset price, {St, t ≥ 0}, follows the
fractional CEV diffusion model of the form [1]

dSt = (r −D)Stdt+ σ(t, St)StdB
H
t , (1)

where r(t) is the interest rate, D(t) denotes the dividend yield paid to the stock

and σ(t,St) = γSρt is the volatility function, in which γ is constant and ρ ≤ 0

is the elasticity factor. Therefore, when S → ∞, the local volatility function σ

is bounded. Also, BH
t denotes the fractional Brownian motion (fBm), stochastic

noise, which is a continuous Gaussian process, neither Markov nor semi-martingale

and depends on the Hurst parameter. The Hurst parameter 0 < H ≤ 1 classifies

a time series into different groups. If H = 1
2 , the returns are uncorrelated. For

H < 1
2 , the time series have anti-persistent behavior (short-range memory), and

for H > 1
2 persistent behavior (long-range memory) is experienced. The Hurst

index H describes the raggedness of the stochastic motion, with a higher value

leading to a smoother process. When H = 1
2 , the fBm is exactly the classical

Brownian motion with no memory effect. The parameter H allows us to model

the statistical dependence of the log returns. Brownian motion increments are

independent, while the fBm increments are serially correlated. Therefore, new

information has a persisting effect on the process, which implies a certain level of

predictability. Thereby, unlike the classical Brownian motion, the historical path

of the process matters when its future evolution is forecasting [2].

In our finite liquidity market setup, a price impact term is added to the CEV

process (1), i.e.

dSt = (r −D)Stdt+ γSρ+1
t dBH

t + λ(t,St)dF(t,St), (2)

in which F(t,St) is the number of extra shares traded due to some deterministic

hedging strategy and λ(t,St) is a function depended to the model of price impact [3].

Applying Itô’s formula to F(t,S) results

dF =
∂F

∂t
dt+

∂F

∂S
dS+

1

2

∂2F

∂S2 (dS)
2 + ...,

which substituting into (2), we get leading order

(1− λ
∂F

∂S
)dSt =

[
(r −D)St + λ

∂F

∂t

]
dt+ γSρ+1

t dBH
t +

λ

2

∂2F

∂S2 (dSt)
2. (3)

By squaring (3) and using
(
dBH

t

)2 → (dt)α (2H = α), we derive an expression for

(dSt)
2 as dt→ 0

(dSt)
2 =

γ2S
2(ρ+1)
t

(1− λ∂F∂S )
2
(dt)α +O

(
(dt)

α
2 +1
)
. (4)
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Replacing (4) into (3) yields

dSt = µ(t,St)dt+ σ̂(t,St)dB
H
t +

λσ̂2(t,St)

2(1− λ∂F∂S )

∂2F

∂S2 (dt)
α, (5)

in which

µ(t,S) :=
1

(1− λ∂F∂S )

[
(r −D)S+ λ

∂F

∂t

]
, σ̂(t,S) :=

γSρ+1

(1− λ∂F∂S )
.

Furthermore, we have (See Eq. (4.11) in [4])

(dt)α = α!(1− α)!tα−1dt. (6)

Thus, substituting in Eq. (5), we obtain

dSt = µ̂(t,St)dt+ σ̂(t,St)dB
H
t , (7)

where

µ̂(t,S) := µ(t,S) +
λtα−1

2(1− λ∂F∂S )
α!(1− α)!σ̂2(t,S)

∂2F

∂S2 .

Using Maruyama’s notation of fractional order [4], we can approximate the frac-

tional CEV diffusion process (7) with

dSt = µ̂(t,St)dt+ σ̂(t,St)ω(t)(dt)
α
2 , (8)

in which ω(t) is the companion Gaussian white noise associated with BH
t , apparently

with the mathematical expectation E{ω(t)} = 0 and the variance E{ω2(t)} = 1 [5].

The rest of the paper is organized as follows: In Section 2, we derive a time-

fractional Black-Scholes (BS) equation under the generalized CEV model (8). Sec-

tion 3 explains the main properties of the Sinc function. In Section 4, a collocation

scheme based on the Sinc function is implemented. Some numerical test examples

are illustrated in Section 5. Finally, Section 6 contains the main conclusions.

2 Derivation of fractional Black-Scholes equation

In the present study, inspired by [6], we derive the time-fractional BS equation

governing the price of the European double barrier option. Suppose that V(S, t) be

the price of the European double barrier option, where the underlying asset price

follows the generalized CEV process (8).

According to the fractional Taylor’s series [4], we have

dV =
1

α!

∂αV

∂tα
(dt)α +

∂V

∂S
dS+

1

2

∂2V

∂S2 (dS)
2

= (1− α)!tα−1 ∂
αV

∂tα
dt+

∂V

∂S
dS+

1

2

∂2V

∂S2 (dS)
2. (9)
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Also, from Eq. (8), we have

(dSt)
2 = µ̂2(t,St)(dt)

2 + µ̂(t,St)σ̂(t,St)ω(t)(dt)
α
2 +1 + σ̂2(t,St)ω

2(t)(dt)α

→ σ̂2(t,St)(dt)
α

= α!(1− α)!tα−1σ̂2(t,St)dt, (10)

where in the last equality we have used Eq. (6).

Hence, by replacing (8) and (10) into Eq. (9), we obtain

dV =
[
(1− α)!tα−1 ∂

αV

∂tα
+
tα−1

2
α!(1− α)!σ̂2(t,St)

∂2V

∂S2

+ µ̂(t,St)
∂V

∂S

]
dt+ σ̂(t,St)

∂V

∂S
ω(t)(dt)

α
2 . (11)

To conclude the fractional BS equation, we assume that market is arbitrage free.

Thus, we construct a riskless portfolio P(t) of option price V(S, t) and underlying

asset price St, and also, a dividend process D(t), as follows

P(t) = ∆St −V(S, t), (12)

D(t) = DSt ⇒ dD(t) = DStdt, (13)

in which ∆ denotes shares of underlying asset for hedging the portfolio such that

dP(t) = rP(t)dt. Hence

rP(t)dt = dP(t) = ∆(dSt + dD(t))− dV(S, t). (14)

Thus, by replacing Eqs. (7), (11) and (13) into Eq. (14), we have

rP(t)dt =
[
∆(µ̂(t,S) + DS)− (1− α)!tα−1 ∂

αV

∂tα
− µ̂(t,S)

∂V

∂S

− tα−1

2
α!(1− α)!σ̂2(t,S)

∂2V

∂S2

]
dt+ (∆− ∂V

∂S
)σ̂(t,S)ω(t)(dt)

α
2 . (15)

Since the hedging portfolio is risk free, choosing ∆ = ∂V
∂S , we remove the coefficient

of random term from (15). Thus, from Eqs. (12) and (15), we obtain

r(S
∂V

∂S
−V) = DS

∂V

∂S
− (1− α)!tα−1 ∂

αV

∂tα
− tα−1

2
α!(1− α)!σ̂2(t,S)

∂2V

∂S2 ,

and by replacing σ̂(t,S), we get

∂αV

∂tα
+
γ2α!S2(ρ+1)

2(1− λ∂F∂S )
2

∂2V

∂S2 +
t1−α

(1− α)!

[
(r −D)S

∂V

∂S
− rV

]
= 0, (16)

where ∂αV
∂tα denotes the right modified Riemann-Liouville derivative of order α ∈

(0, 1).
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The trading strategy F in (16) should be chosen an option delta based on some

form of option V∗, i.e., F = ∂V∗

∂S since ∆ = ∂V
∂S [3]. This implies that the strategy

the hedgers are assumed to follow matters now. A naive strategy is V∗ = VBS for

the BS value which is not a solution of (16). This leads to the linear fractional

PDE

∂αV

∂tα
+

γ2α!S2(ρ+1)

2(1− λ∂
2VBS

∂S2 )2
∂2V

∂S2 +
t1−α

(1− α)!

[
(r −D)S

∂V

∂S
− rV

]
= 0. (17)

This case is called first-order feedback.

Another case is when the hedger is assumed to be aware of the feedback effect

and so accordingly would change the hedging strategy. This case, which is called

full feedback, corresponds to the case V∗ = V, when the adopted trading strategy

has to be found as a part of the problem. This leads to the nonlinear fractional

PDE

∂αV

∂tα
+

γ2α!S2(ρ+1)

2(1− λ∂
2V
∂S2 )2

∂2V

∂S2 +
t1−α

(1− α)!

[
(r −D)S

∂V

∂S
− rV

]
= 0. (18)

The European double barrier knock-out option price V(S, t) is considered with

the payoff and boundary conditions as follows:

Call option: 
V(S,T) = max{S−K, 0}, S ∈ (Bl,Bu),

V(Bl, t) = φl(t), t ∈ (0,T),

V(Bu, t) = φu(t), t ∈ (0,T),

(19)

Put option: 
V(S,T) = max{K− S, 0}, S ∈ (Bl,Bu),

V(Bl, t) = φl(t), t ∈ (0,T),

V(Bu, t) = φu(t), t ∈ (0,T),

(20)

where Bl,Bu are the lower and upper boundary barriers, respectively.

Changing the variable τ = T− t in the right modified Riemann-Liouville derivative
∂αV
∂tα yields the following Caputo fractional derivative (see Eqs. (13)-(15) in [6])

∂αV

∂tα
(S, t) = −0D

α
τV(S,T− τ). (21)

Moreover, by changing the variables x = ln(S) in Eqs. (17)-(18), we obtain the

following time-fractional BS equations.
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First-order feedback:

0D
α
τ u(x, τ) =

γ2α!e2ρx

2ϕ(ex,T− τ)
(uxx(x, τ)− ux(x, τ))

+
(T− τ)1−α

(1− α)!
[(r(T− τ)−D(T− τ))ux(x, τ)− r(T− τ)u(x, τ)] ,

(22)

where

ϕ(z, y) :=

(
1− λ(z, y)

∂2VBS

∂z2
(z, y)

)2

,

Full feedback:

0D
α
τ u(x, τ) =

γ2α!e2ρx

2

(uxx(x, τ)− ux(x, τ))

(1− e−2xλ(ex,T− τ)[uxx(x, τ)− ux(x, τ)])
2

+
(T− τ)1−α

(1− α)!
[(r(T− τ)−D(T− τ))ux(x, τ)− r(T− τ)u(x, τ)] ,

(23)

where u(x, τ) = V(ex,T−τ) and the operator 0D
α
τ [·] denotes the Caputo fractional

derivative defined as [7]:

0D
α
t u(x, t) =

1

Γ(1− α)

∫ t

0

(t− s)−αus(x, s)ds, α ∈ (0, 1), (24)

with the following initial and boundary conditions:

for Call option: 
u(x, 0) = max{ex −K, 0}, x ∈ Ω,

u(bl, τ) = φl(T− τ), τ ∈ (0,T),

u(bu, τ) = φu(T− τ), τ ∈ (0,T),

(25)

for Put option: 
u(x, 0) = max{K− ex, 0}, x ∈ Ω,

u(bl, τ) = φl(T− τ), τ ∈ (0,T),

u(bu, τ) = φu(T− τ), τ ∈ (0,T),

(26)

in which Ω := [bl, bu], bd := ln(Bl) and bu := ln(Bu).

3 Fundamental properties

In this section, the preliminaries of the numerical method are presented. The Sinc

function, denoted by Sinc(x), x ∈ R, is defined by the following formula [8, 9]

Sinc(x) =

{
1, x = 0,
sin(πx)
πx , x ̸= 0.
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The Sinc expansion of function F(x) is formulated by

F(x) ≃
n∑

i=−n
F(i∆̂)θ(i, ∆̂;x), x ∈ R, (27)

in which ∆̂ > 0 is a step size and the ith Sinc function is

θ(i, ∆̂;x) := Sinc
( x
∆̂

− i
)
, i ∈ Z. (28)

For approximating the function F(x) on the interval Ω := (bl, bu), we apply the

double exponential (DE) transformation function x = ψ(t) on (27), such that

ψ(t) :=
bu + bl

2
+
bu − bl

2
tanh

(π
2
sinh(t)

)
,

and

{ψ}−1(x) = log
( 1
π
log
( x− bl
bu − x

)
+

√
1 +

{ 1

π
log(

x− bl
bu − x

)
}2)

.

The interpolation (27) on the interval Ω is given by

F(x) ≃ Fn(x) =
n∑

i=−n
F
(
ψ(i∆̂)

)
θ
(
i, ∆̂; {ψ}−1(x)

)
.

Theorem 3.1. ( [10]) Let n be a positive integer, F ∈ Lz (ψ(Bι)) such that

Bι = {s ∈ C : |Ims| < ι}, ι ∈ (0,
π

2
),

and ∆̂ is given by ∆̂ = 1
n log (2nι/z) . Thus, we have

max
x∈Ω

|F(x)−Fn(x)| ⩽ ζexp
( −πιn
log(2ιn/z)

)
, (29)

where the constant ζ is independent of n.

Remark 3.2. ( [11]) Let C = ψ−1 and θi(x) = θ(i, ∆̂; {ψ}−1(x)). The k-th derivative

of θi(x) with respect to C, evaluated at the point xj = ψ(j∆), are given by

δ[i, j; k] := ∆̂k d
k

dCk
[θi(x))]|x=xj , k = 0, 1, 2, . . . ,

in which the values of the derivative for k = 0, 1, 2 are given by

δ[i, j; 0] = [θi(x)]|x=xj
=

 1, i = j,

0, i ̸= j,

δ[i, j; 1] = ∆̂
d

dC
[θi(x)]|x=xj =

 0, i = j,

(−1)j−i

j−i , i ̸= j,

δ[i, j; 2] = ∆̂2 d
2

dC2
[θi(x)]|x=xj

=


−π2

3 , i = j,

−2(−1)j−i

(j−i)2 , i ̸= j.
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4 Numerical Discussion

In this section, we propose a numerical scheme based on the Sinc function to find

a solution for the time-fractional BS equations (22) and (23). So, first we consider

a method for the discretization of the time-fractional derivative.

Let the time mesh points τm = mh, m = 0, 1, ...,M and h = T
M . Moreover,

suppose that um(x) denotes an approximation to u(x, τ) at the time mesh point

τ = τm.

Lemma 4.1. ( [12]) Let u(x, τ) ∈ C(Ω × (0,T)) and α ∈ (0, 1). Applying the

forward finite difference operator, we have

0D
α
τmu(x, τm) ∼=

m∑
r=1

βr{u(x, τm−r+1)− u(x, τm−r)}+O(h2−α),

where

βr :=
r1−α − (r − 1)1−α

Γ(2− α)hα
.

By applying Lemma 4.1 to (22) and (23), we obtain the time discretization form

of First-order feedback:

(β1 + ϱm)um(x)− ϑmu
m
x (x)− γ2α!e2ρx

2ϕ(ex,T− τm)
(umxx(x)− umx (x))

= β1u
m−1(x)−

m∑
r=2

βr{um−r+1(x)− um−r(x)}, (30)

and the time discretization form of Full feedback:

(β1 + ϱm)um(x)− ϑmu
m
x (x)− γ2α!e2ρx[umxx(x)− umx (x)]

2 (1− e−2xλ(ex,T− τm)[umxx(x)− umx (x)])
2

= β1u
m−1(x)−

m∑
r=2

βr{um−r+1(x)− um−r(x)}, (31)

where

ϑm :=
(T− τm)1−α

(1− α)!
(r(T− τm)−D(T− τm)), ϱm :=

(T− τm)1−α

(1− α)!
r(T− τm),

with the initial and boundary conditions

for Call option: u0(x) = max{ex −K, 0}, um(bl) = um(bu) = 0, (32)

for Put option: u0(x) = max{K− ex, 0}, um(bl) = um(bu) = 0. (33)

Now, we present numerical approximation based on the Sinc function to solve (30)-

(33) as:

um(x) =

n∑
i=−n

cmi θi(x) = CmΘ(x)T, (34)
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where

Cm =
[
cm−n, c

m
−n+1, ..., c

m
n−1, c

m
n

]T
, (35)

Θ(x) = [θ−n(x), θ−n+1(x), ..., θn−1(x), θn(x)]
T
. (36)

Assume that δ[i, j; k], k = 0, 1, 2 on the interval Ω are defined in Remark 3.2. By

evaluating um(x) at collocation points xj , j = −n, ...n, we have [12]

Um = CmΦT
0 , (37)

where

Φk :=
[
δ[i, j; k]

]
n̄×n̄

, n̄ = 2n+ 1, k = 0, 1, 2,

and

Um :=
[
um(x−n), u

m(x−n+1), ..., u
m(xn−1), u

m(xn)
]T
.

The first order and the second order derivatives of (34) at the collocation points xj ,

j = −n, ...n, are defined by [12]

Um
x = CmΨT

1 , (38)

Um
xx = CmΨT

2 , (39)

in which

Ψ1 := − 1

∆̂
Π
[
C

′
]
Φ1,

Ψ2 :=
1

∆̂2
Π

[[
C

′
]2]

Φ2 −
1

∆̂
Π
[
C

′′
]
Φ1.

Moreover, assume that Π [v] denotes a n̄× n̄ diagonal matrix

Π [v] := diag
[
v(x−n), v(x−n+1), ..., v(xn−1), v(xn)

]
.

4.1 First-order feedback

We consider a numerical solution for the time discretization form of first-order

feedback model (30) as

um(x) =

n∑
i=−n

cmi θi(x) = CmΘ(x)T. (40)

By substituting (40) in (30) and evaluating at the collocation points xj , j = −n, ...n,
and also applying the relations (37)-(39), we obtain a system of linear algebraic

equations in each time level, as

CmAm = Bm
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where

Am := (β1 + ϱm)ΦT
0 − ϑmΨT

1 −Π [Pm] (ΨT
2 −ΨT

1 ), (41)

Pim :=
γ2α!e2ρxi

2ϕ(exi ,T− τm)
, i = −n, ..., n, (42)

Bm :=

(
β1Cm−1 −

m∑
r=2

βr{Cm−r+1 −Cm−r}

)
Θ(x)T, (43)

with the initial condition (Call or Put option) B1 =
[
β1u

0(x−n), ..., β1u
0(xn)

]T
.

4.2 Full feedback

Similar to Subsection 4.1, we consider a numerical solution for the time discretiza-

tion form of full feedback model (31) as

um(x) =

n∑
i=−n

cmi θi(x) = CmΘ(x)T. (44)

By substituting (44) in (31) and evaluating at the collocation points xj , j = −n, ...n,
and also applying the relations (37)-(39), we obtain a system of nonlinear algebraic

equations in each time level, as

CmAm − FCm[ΨT
2 −ΨT

1 ]

2
(
1−Π[Pm]Cm[ΨT

2 −ΨT
1 ]
)2 = Bm,

in which

Am := (β1 + ϱm)ΦT
0 − ϑmΨT

1 , (45)

Pim := e−2xiλ(exi ,T− τm), i = −n, ..., n, (46)

F := diag
[
γ2α!e2ρx−n , ..., γ2α!e2ρxn

]
, (47)

Bm :=

(
β1Cm−1 −

m∑
r=2

βr{Cm−r+1 −Cm−r}

)
Θ(x)T, (48)

with the initial condition (Call or Put option) B1 =
[
β1u

0(x−n), ..., β1u
0(xn)

]T
.

5 Numerical Experiments

Herein, we implement the described method for the models (22) and (23), with the

initial and boundary conditions (25) and (26). Let r(t) = 0.1, D(t) = 0.02 (for call

option), D(t) = 0.2 (for put option), σ0 = 0.2, S0 = 0.5, T = 1, Bd = 0.5, Bu = 2.5,

K = 1.5, γ = σ0

Sρ
0
, and ∆̂ = 1

n log (nπ/6).
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Figure 1: The value of European call and put options with first-order feedback at
T = 1 with ρ = −0.1 and different values of λ.
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Figure 2: The value of European call and put options with full-feedback at T = 1
with ρ = −0.1 and different values of λ.
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Figure 3: Call option price for different times to expiration date, with λ = 0 (Up)
and λ = 1 (Down) : [full-feedback (left) and first-order feedback (right)].

Figure 1 and Figure 2 show the values of European barrier call and put options

with first-order feedback and full-feedback at T = 1 when S ∈ (Bl,Bu), with
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Figure 4: Put option price for different times to expiration date, with λ = 0 (Up)
and λ = 1 (Down) : [full-feedback (left) and first-order feedback (right)].
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Figure 5: The value of European call option at T − t = 1 with α = 0.8, λ = 0.1
and different values of ρ.

ρ = −0.1, α = 0.9 and several values of λ, n = 15 and M = 150. We see that the

results of the numerical scheme sufficiently correspond to the exact payoff, even for

large values of λ (increasing the price impact) and also the nonlinear full-feedback
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Figure 6: The value of European put option at T − t = 1 with α = 0.8, λ = 0.1
and different values of ρ.

case.

Figure 3 displays the call option price for different times to expiration date, with

λ = 0 (Up, without considering the price impact) and λ = 1 by full-feedback (Down

; left) and first-order feedback (Down ; right), when α = 0.95, ρ = −0.1. Figure 4

shows the put option price for different times to expiration date, with λ = 0 (Up)

and λ = 1 by full-feedback (Down ; left) and first-order feedback (Down ; right),

when α = 0.95, ρ = −0.1. In both cases, the results are surprisingly as expected

which shows the efficiency of the numerical scheme in handling the price impact

factor.

Figure 5 shows the value of European call option and Figure 6 displays the value

of European put option, for first-order feedback and full-feedback at T − t = 1,

when α = 0.8 and different values of ρ, when λ = 0.1. It is obvious from the results

that we should be cautious about choosing the elasticity factor ρ in our CEV model.

The negative value of option which is a sign of friction in the illiquid market, could

be avoided in practice by imposing the condition V ≥ 0, which effectively creates

another free boundary on the PDE at V = 0.

6 Conclusion

In this research, we consider the fractional CEV equation as the dynamics of asset

price, which is a rich model that captures both the volatility smile and the persistent

effect of real market data. We have attempted to price the European double-barrier
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call and put options in the market with finite liquidity. For this purpose, we adopted

a collocation approach based on the Sinc functions. The numerical results show that

the price impact can be perfectly controlled to make this model a more realistic

pricing tool.
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