
Journal of Mathematics and Modeling in Finance (JMMF)
Vol. 3, No. 1, Winter & Spring 2023

Research paper

The fast algorithm for computing all steady states in over-
lapping generations models

Alexey Zaytsev1

1 RANEPA, Moscow, Russian Federation
zaytsev-av@ranepa.ru

Abstract:
Modern research often requires the use of economic models with multiple
agents that interact over time. In this paper we research overlapping gen-
erations models, hereinafter OLG. In these models, the phenomenon of the
multiplicity of long-term equilibrium may arise. This fact proves to be
important for the theoretical justification of some economic effects, such
as the collapse of the market and others. However, there is little theoret-
ical research on the possibility of multiple equilibria in these models. At
the same time, the works that exist are devoted to models with only few
periods. This is due to the fact that the complexity of algorithms that
calculate all long-term equilibria grows too fast with realistically selected
lifespan values. However, solutions of some OLG models after the intro-
duction of additional variables can become polynomial systems. Thus it
is possible to represent many long-term equilibria as an algebraic variety.
In particular, the Gröbner basis method became popular. However, this
approach can only be used effectively when there are few variables. In this
paper we consider the task of finding long-term equilibrium in overlapping
generations models with many periods. We offer an algorithm for finding
the systems solutions and use it to investigate the presence of multiple so-
lutions in realistically calibrated models with long-lived agents. We also
examine these models for multiple equilibria using the Monte Carlo method
and replicate previously known results using a new algorithm.

Keywords: OLG-models, multiplicity of equilibrium, Gröbner basis, poly-
nomial systems
Classification: JEL Codes: C02, C32, D11, D58

1 Introduction

In this article we apply computational methods to realistically calibrated overlap-

ping generations models. In particular, a new equilibrium finding algorithm has

been proposed. We use it to search for multiple equilibrium in several OLG models.

2Corresponding author

Received: 22/07/2023 Accepted: 07/10/2023

https://doi.org/10.22054/jmmf.2023.74945.1096

204 Journal of Mathematics and Modeling in Finance

OLG models are used in many areas of modern economics, such as macroeco-

nomics and finance (ALtig et al., 2001; Auerbach and Kotlikoff, 1983; Auerbach and

Kotlikoff, 1987; Summers, 1981). These models have improved over time, adding

several regions, various commodities, and demographic changes, such as Kotlikoff

et al. (2007). Recent work on climate change has included OLG models (Bovenberg

and Heijdra, 1998; Fried et al., 2018; Kotlikoff et al., 2021).

Unfortunately, these models may have multiple equilibria. Kehoe and Levine

(1990) provides a simple example of a three-period model in which there is a multi-

plicity of long-term equilibria. However, Kubler and Schmedders (2010) states that

with a large number of agent lifetimes, the probability of multiplicity is small.

The presence of multiple equilibria in the economic system can explain impor-

tant phenomena such as market collapses (Hong and Stein (2003) and Basak et

al. (2006)). Although this phenomenon is well studied for financial markets, less is

known for housekeeping models. Information on the possibility of multiple equilib-

rium is of practical importance. Thus, with two equilibriums, one is preferable to

the other, and the behaviour strategy of economic agents can change according to

their expectations.

Basiri et al. (2022) proposes an alternative algorithm for finding a Gröbner basis

for a model with production and endogenous labor. It is proposed to first find a

polynomial from a single variable, which lies in ideal generated by the equations for

the model, and, using the shape lemma, to complete it to the Gröbner basis. This

algorithm significantly speeds up the search for a solution, but still spends a lot of

time (more than a minute) finding equilibrium, making it unsuitable for the study

of the phenomenon of multiple solutions.

This article uses a new algorithm that works even faster. In particular, it uses

the method of quickly finding all real roots of a polynomial with certain properties.

The new algorithm can be used to find multiple solutions.

We first look at the simplest model and replicate the results of Kubler and

Schmedders (2010) using a new algorithm. Next we consider the model with ex-

ogenous labor and replicate the results of Basiri et al. (2022). Our algorithm

allows us to conduct Monte Carlo experiments and examine the model for multiple

equilibrium. Finally, were looking at an extended model with endogenous labor.

This work is organized is organized as follows: The second chapter describes a

simple model with a known example of multiple solutions. In the third, we propose

a new algorithm for finding equilibrium that does not use Gröbner bases. In Part

Four, a new algorithm for finding the roots of a polynomial from a single variable

was devised to speed up computation, allowing solutions of polynomials of the

desired type to be considered. The fifth examines the expanded initial model with

exogenous labor and the manufacturing firm and transfers all results. Chapter

Six discusses the extended specification for endogenous labor. The seventh part

will give examples of how the algorithm works, including multiple equilibrium in a

simple model. Chapter eight contains the results of the search for possible multiple

Paper 12: Algorithm for solving OLG models 205

solutions in all the models reviewed and the time in which the algorithm finds

solutions. Chapter 9 contains a brief description of the work done and the results

achieved.

2 Simple model

Consider this model. Discrete time extends from −∞ to +∞. At each time one

agent is born that lives for n periods. In the ath period, each agent receives a

donation of ea. For simplicity and without loss of generality it can be assumed

that there is no time discount in the model and the utility function is not time

dependent. Then the agent that was born in the tperiod maximizes the utility

function

Ut =

n∑
a=1

u(ca(t+ a− 1))

where ca(t + a − 1) is consumption of this agent at period t + a − 1. Suppose

utility is independent of time and rate.

Equilibrium is given by the equation

∑n

a=1 c̄a(t)− ea = 0

(c̄1(t), c̄2(t+ 1), . . . , c̄n(t+ n− 1)) ∈ argmax
c(t),...,c(t+n−1)

Ut(c(t), . . . , c(t+ n− 1))

(1)

In this case, the maximum is subject to
∑n

a=1 p(t+ a− 1)(c(t+ a− 1)− ea) = 0.

Its consistent with the fact that agents trade with each other.

To solve this system you need to find an infinite number of prices and consump-

tion. We cannot do this with our methods. Instead, we can look for long-term

equilibrium.

The long-term status adds two conditions:

 pt+1

pt
= q

c̄a(t) = ca
(2)

There are two types of long-term equilibrium: monetary (at q = 1) and real

(q ̸= 1). We will be interested in the number of real solutions.

Applied research often uses the utility function u(c) = c1−σ

1−σ for 0 < σ < 1 and

the logarithmic function for σ = 1. Under these conditions, the system takes the

form of:

206 Journal of Mathematics and Modeling in Finance

cσa+1q − cσa = 0, a = 1, . . . , n− 1∑n

a=1 q
a−1(ca − ea) = 0∑n

a=1(ca − ea) = 0

(3)

Indeed, the system has a solution at q = 1 and ca = (1n
∑n

a=1 ea). To find other

solutions, we will replace w = q 1
σ . After the replacement, the system will appear

as:

ca+1w − ca = 0, a=1,. . . ,n-1 (4a)
n∑

a=1

(ca − ea) = 0 (4b)

n∑
a=1

wσ(a−1)(ca − ea) = 0 (4c)

The solutions of this system (if you remove w = 1) are the long-term equilibrium

of the model.

Note that the rate of root discovery depends on how many nonzero coefficients

a polynomial has. Therefore, one should look for the most closed form of a given

polynomial of all possible. In this case, the polynomial is expressed as the sum in

which the number of members depends on the number of periods. This is due to

the fact that ea can be any real number, so the number of parameters of the system

is linearly dependent on the number of periods.

3 Pipeline for finding solution

In this model, as in all the studies examined in this paper, the problem of finding

a solution to a polynomial version of equations is reduced to finding the roots of

one polynomial. Consider how this works in this case. Using 4a, we get equations

for consumption in each period:

ca = cnw
n−a (5)

By framing 5 in 4b, we express cn through ea:

n∑
a=1

(cnw
n−a − ea) = 0

By converting this equation using the formula of the sum of the geometric pro-

gression and multiplied by 1 − w, we get:

cn(1− wn) = (

n∑
a=1

ea)(1− w) (6)

Paper 12: Algorithm for solving OLG models 207

Now you can substitute 5 and 6 in 4c:

n∑
a=1

wσ(a−1)((

n∑
a=1

ea)(1− w)wn−a − ea) = 0

By using transformations similar to 6, we can make the equation appear

wσ−1(1− w)(1− w(σ−1)n)(

n∑
a=1

ea)−
n∑

a=1

waσ(1− wn)(1− wσ−1)ea = 0 (7)

The solutions of this polynomial can be extended to the solution of the entire

system, namely, using intermediate equations 6 and 5. Indeed, knowing the roots

of 7, you can substitute them in 6 and get the value of cn, and then substitute it

in 5. Thus, by reducing the system to one polynomial, we have saved information

about the whole system through intermediate steps.

The resulting algorithm will look like this:

Reduce the problem to a system of polynomial equations, adding auxiliary vari-

ables if necessary.

Convert the system to one polynomial from one variable.

Find the real roots of this polynomial and weed out those that have no economic

meaning (for example, those that have negative consumption).

Using intermediate calculations from step 2, recover the remaining variables.

4 Finding polynomial roots

The challenge is to find real solutions to the polynomial. In this case, it is desirable

to think of an algorithm that will depend on the number of non-zero coefficients at

most linearly.

This algorithm is based on Carvalho (2017), modifying it to solve a specific

problem. The main idea of his work is that real roots can be found recursively,

using knowledge of derivative roots. Namely, if there is a f(x) polynomial, then

between the roots of the derivative it is monotonically decreasing or increasing.

Then, if there is a root on such a site, it can be quickly found using, for example,

binary search or Newtons method. Thus, to calculate the roots of a polynomial, one

must first calculate all its derivatives until the degree of the derivative is 1. Then

you can easily find the root, and therefore you can continue to search for roots of

derivatives of greater degree.

This algorithm has several drawbacks, the main one being a large number of

recursion iterations. If the polynomial degree is 1000, it will look for the roots

of 1000 polynomials. In our case, most coefficients are zeros. Then, if you use

the standard implementation of polynomials as an array of coefficients, there will

be a lot of nonnegative zeros stored in the memory. Instead, you can use the

208 Journal of Mathematics and Modeling in Finance

implementation of a polynomial as a dictionary, where the k integer key corresponds

to degree, and the value is a factor at xk.

If you want to calculate the value of a polynomial, for example at point 10, the

computer will have to work with numbers of the order of 101000. Moreover, if you

take a derivative of such a polynomial many times, the last polynomial will have

coefficients of about 1000! , which makes computing on the computer even longer.

We propose a modification of this algorithm that eliminates these problems.

First, one can use the fact that a polynomial has most coefficients equal to zero. In

particular, most derivatives have a free coefficient equal to 0. The roots of such a

polynomial are easier to find, because among them there is a zero root.

Lets say, when we take the derivative again, we have a polynomial of f(x) with

a zero free coefficient. Then instead of its roots one can look for the roots of the

polynomial f(x)
xk , where k is a multiplicity of zero It has a non-zero free coefficient,

which eliminates unnecessary iterations. Then you can add the zero root and we

get the roots we need.

Second, for binary search it is not so much the value in a point that is important

as its sign. Therefore, it is possible to find the roots of the polynomial on the

monotonous region knowing only if the value of the polynomial at a point is positive

or negative. This can be used as follows: let us calculate the value of the f(x)

polynomial at |a| > 1. Instead, you can calculate the values of the rational function
f(x)

xdeg(f) . Note that large values do not have problems with numbers which absolute

values are less than 1.

dThird, to find the roots of a polynomial, you can multiply it by any constant

and the solutions do not change. In this way, it is possible to avoid the problem of

excessively high coefficients by keeping the senior coefficient equal to one at each

step.

By applying all the above improvements to the algorithm in practice, we will get

an algorithm whose speed is sufficient for our purposes.

5 Model with exogenous labor

First, consider a simpler model with exogenous labor. This model was considered

in the work of Basiri et al. (2022).

The model has a discrete time that runs from −∞ to ∞. There is one firm

involved in the model which consumtion good is produced according to the Cobb-

Douglas formula

Yt = Kα
t L

1−α
t + (1− δ)Kt

where Yt denotes a firms output after price normalization, and Kt and Lt de-

notes capital and labor. Share capital is alpha, depreciation is delta. Then profit

maximization conditions take the form of

Paper 12: Algorithm for solving OLG models 209

αKα−1
t L1−α

t = rt + δ

and

(1− α)Kα
t L

−α
t = wt

where rt and wt denote interest rates and wages respectively.

Also in the model there are households, each of which lives N periods. At the

same time, the household that appeared in the period with the number t maximizes

the utility function

Ut(c) = U(c) =

N∑
i=1

βiv(ct+i−1,i)

Provided

kt+1,i = (1 + rt)kt,i−1 + wtli − ct,i

where ct,i, kt,i and lt,i denote household consumption, savings, and labor for ithe

lifetime of t. We assume that households do not value labor and normalize

N∑
i=1

li = 1

It is important for our task to be able to characterize the solution of the system

by polynomial equations, so it will be convenient to focus on the utility function

v(c) =

−c−γ γ > 0

ln(c) γ = 0

It is also necessary to consider the condition of supply and demand equilibrium

for capital

Kt =

N∑
i=1

kt,i

As with the small model, we will investigate the long-term equilibrium of the

model. We also assume that all model parameters (α, β, γ, δ, l1, . . . , lN) are rational

numbers. Then it is possible to write a system of equations, the solutions of which

are the long-term equilibrium of the model.

210 Journal of Mathematics and Modeling in Finance

ci =ki−1(1 + r) + wli − ki (i = 1, . . . N) (8a)

c−γ−1
i =β(1 + r)c−γ−1

i+1 (i = 2, . . . N) (8b)

1 + r =Kα−1α+ 1− δ (8c)

w = (1-α)Kα (8d)

K =
∑N

i=1 ki (8e)

k0 =kN = 0 (8f)

We need a polynomial system, so well make some replacements. First, suppose

that α = m
n , where m and n are natural numbers. Secondly, we will introduce a

new variable S, such that Sn = K. This ratio allows you to write Kα−1 = Sm−n

and finally multiplying 8c by Sm−n we get a polynomial equation. And third, enter

a p variable such that pγ+1 = β(1 + r). After these changes, we get a polynomial

system.

ci = ki−1(1 + r) + wli − ki (i = 1, . . . N) (9a)

ci = pci−1 (i = 2, . . . N) (9b)

pγ+1 = β(1 + r) (9c)

K = Sn (9d)

Sn−m(r + δ) = α (9e)

w = (1− α)Sm (9f)

K =

N∑
i=1

ki (9g)

k0 = kN = 0 (9h)

For our purposes it will be convenient to consider the case when household labor

does not change from period to period (li =
1
N) Lets write up a plan. From 9b we

withdraw that

ci = c1p
i−1 (10)

Substituting 10 and 9g in the sum of all the equations from 9a and applying the

formula for the sum of geometric progression, you get

pN − 1

p− 1
c1 = Kr + w = (Snr + w) (11)

Now you can multiply the equation by p− 1 and get a polynomial

(pN − 1)c1 = (p− 1)(Snr + w) (12)

Now lets consider the weighted sum of equations from 9a where the equation

with the number i has the weight (1 + r)N−i. Then you can again use 10, the

Paper 12: Algorithm for solving OLG models 211

geometric progression formula twice and multiply by the required polynomial to

get

((1 + r)p− 1)(pN − (1 + r)N)c1 = w((1 + r)N − 1)(p− (1 + r))/N (13)

Now you can multiply this equation by N(pN − 1) and use 12 and get

[N(Snr+w)(pN−1)(p−1)((1+r)p−1)(pN−(1+r)N)−w(p−(1+r))((1+r)NpN−1)] = 0

(14)

You can also express r and w from 9e and 9f and get a polynomial

Sm[N(δαβ − pγ + β(1− δ))(pN − 1)(p− 1)(p(γ+1) − β)(βNpN − pγN)−
α(pγ − β(1− δ))(βp− pγ)(p(γ+1)N − βN)] = 0 (15)

S was defined so that the solution of S = 0 made no economical sense, so you

can simplify this to a 1-variable polynomial

N(δαβ − pγ + β(1− δ))(pN − 1)(p− 1)(p(γ+1) − β)(βNpN − pγN)−
α(pγ − β(1− δ))(βp− pγ)(p(γ+1)N − βN) = 0 (16)

Using the algorithm described in chapter three, we can find solutions.

6 Model with endogenous labor

We will expand the OLG model to include a more natural endogenous condition.

Some equations remain the same:

αKα−1
t L1−α

t = rt + δ (17a)

(1− α)Kα
t L

−α
t = wt (17b)

kt+1,i = (1 + rt)kt,i−1 + wtli − ct,i (17c)

Kt =

N∑
i=1

kt,i (17d)

Now labor is endogenous, so:

L =
∑

lt,i

Note that in the exogenous model this condition was also fulfilled, but was not

an equation, since lis were not variables. Also, households themselves now choose

212 Journal of Mathematics and Modeling in Finance

how much they work in each period, so negative utility from labor must be added

to the utility function.

U(c, l) =

N∑
i=1

βi(
c1−θ
i − 1

1− θ
− ν l

1+γ
i

1 + γ
)

Since we are looking for long-term equilibrium, the system looks like:

ci = ki−1(1 + r) + wli − ki (i = 1, . . . , N) (18a)

β(1 + r)c−θ
i = c−θ

i−1 (i = 2, . . . , N) (18b)

l−γ
i = β(1 + r)l−γ

i−1 (i = 2, . . . , N) (18c)

νcθi l
γ
i = w (i = 1, . . . , N) (18d)

1 + r = αKα−1L1−α + 1− δ (18e)

w = (1− α)KαL−α (18f)

K =

N∑
i=1

ki (18g)

L =

N∑
i=1

li (18h)

k0 = kN = 0 (18i)

Make the replacements:

Sn =
K

L

and

pθγ = β(1 + r)

Then the equation system will take the form:

Paper 12: Algorithm for solving OLG models 213

ci = ki−1(1 + r) + wli − ki (i = 1, . . . , N)

ci = pγci−1 (i = 2, . . . , N)

pθli = li−1 (i = 2, . . . N)

pθγ = β(1 + r)

K = SnL

νcθi l
γ
i = w

Sn−m(r + δ) = α

w = (1− α)Sm

K =
∑
ka

L =
∑
la

k0 = kN = 0

(19)

We can simplify the system as in the previous chapter:

Lets get rid of consumption like in 12

pγN − 1

pγ − 1
c1 = Kr + wL = L(Snr + w) (20)

(pγN − 1)c1 = (pγ − 1)L(Snr + w) (21)

You can also get rid of the labor:

(pθ − 1)L = (pθN − 1)lN (22)

Now it is possible to link labor and remaining consumption in one equation

derived similarly to 13

((1 + r)pθ − 1)(pγN − (1 + r)N)c1 = wlN ((1 + r)NpθN − 1)(pγ − (1 + r)) (23)

Lets combine the three previous equations into one and get:

L[(Snr + w)(pθN − 1)(pγ − 1)((1 + r)pθ − 1)(pγN − (1 + r)N)−
w(pγN − 1)(pθ − 1)(pγ − (1 + r))((1 + r)NpθN − 1)] = 0 (24)

Now, similarly to the last step in the previous chapter, lets express r and w:

LSm[(pθγ − β(1− δ)− δαβ)(pθN − 1)(pγ − 1)(pθ(γ+1) − β)(βNpγN − pθγN)−
(1− α)(pθγ − β(1− δ))(pγN − 1)(pθ − 1)(βpγ − pθγ)(pθ(γ+1)N − βN)] = 0 (25)

We obtain the required polynomial in one variable.

214 Journal of Mathematics and Modeling in Finance

7 Examples

We have implemented the algorithm for finding roots of polynomials in Python

3.10.9. You can look at source code on https://github.com/SellBound/polysolve.

We can randomly generate economic parameters for each model. After that we used

formulas for polynomials in one variable for each model, computed them and found

its roots. We can also find all other variables and test solutions for economic rele-

vance. Below are examples of how the algorithm works.

7.1 Simple model

To begin with, here is an example of finding multiple equilibrium in a simple model.

N σ e1 e2 e3 e4 e5

5 5 0.09693 0.88628 0.7565 0.38374 0.31883

Table 1: Simple model parameters

We will find equilibrium in the model with the parameters specified in the table 1.

By substituting these parameters into the formula for a polynomial in one variable,

we get 26

− 0.3188329x29 + 2.761111x25 − 2.507194x24 + 0.06491200000000003x20

− 0.37276x19 + 0.37276x15 −−0.129776x14 + 0.129776x10 + 0.789343x9

− 3.231625x5 + 2.539216x4 − 0.096934 (26)

Using the new algorithm, we can find all the real roots of the polynomial above.

However, it is not yet a root of a whole system. We can try to continue with

this root until the whole system is solved, but there may be problems. First, when

using the algorithm, we sometimes multiplied many terms from our system by other

polynomials. The roots of these polynomials appear in the solution, but we should

not take them into consideration. Secondly, negative solutions make no economic

sense, so we forget them too. Third, in the process of calculating the complete

solution, negative values of consumption, labor and other indicators may appear.

These cases dont suit us either. Here and further by filtering we will understand the

selection of roots according to the above criteria. After eliminating the redundant,

there will be three solutions:

In this table, U represents the total utility in all periods.

This shows that the algorithm, among others, can find multiple solutions. So

in two equilibrium there is deflation (for example, in the first decision prices are

reduced by 10 times per period). In these models, consumption increases over time.

In a single example of q >1, inflation between periods exceeds 50 percent. In this

equilibrium, consumption decreases.

https://github.com/SellBound/polysolve

Paper 12: Algorithm for solving OLG models 215

w q c1 c2 c3 c4 c5 U

0.65238 0.11816 0.17439 0.26731 0.40975 0.62807 0.96274 -330.0354

0.88619 0.54655 0.37806 0.42661 0.48140 0.54322 0.61298 -29.08206

1.09631 1.58367 0.58214 0.53100 0.48435 0.44180 0.40298 -25.90597

Table 2: Long-term equilibrium

The only optimal equilibrium is achieved only in the third case with a positive

interest rate. In this case, the first equilibrium is the most suboptimal and should

be avoided.

7.2 Model with exogenous labour

Now lets look at an example of finding long-term equilibrium in a model with

exogenous labor. We generate random parameters:

N σ β δ α γ

70 4 0.9780 0.0560 0.5348 7

Table 3: Parameters of the model with exogenous labour

The table 3 shows the parameters of the model from which we will look for

equilibrium. Using the algorithm, we find the polynomial in one variable:

− 0.005999586708825199x631 + 1x577 − 0.9933554817275747x576

− 1.9370923749882019x569 + 1.9244594692916281x568 + 0.9376348296629071x561

− 0.931635242954082x560 − 0.2115421881527618x87 + 0.21294778408733164x86

+ 0.40702726232947406x79 − 0.40969965484325477x78 − 0.19581099215433925x71

+0.19708015785473637x70−0.001405595934569846x16+0.0013747486647801611x9

+ 0.0012976438490005303x8 − 0.0012691657003971093 = 0 (27)

Note that this polynomial has degree 631; for a standard root algorithm, this

would take a long time to solve. But it has only 17 non-zero coefficients, which

makes it much easier to find using the new algorithm. You can now find the real

roots and filtering out the economically meaningless. There remains one solution

with p = 1.0196 and r = 0.1939, the results can be found in the table 5.

The results show that during the lifetime of the agent, its consumption increases

by 4.5 times. The capital chart is in the form of an inverted letter U. In this case,

the peak of savings is reached in the period with number 58 and takes a value of

2.5 times more than the peak consumption.

216 Journal of Mathematics and Modeling in Finance

7.3 Model with endogenous labor

Now lets look at an example of finding long-term equilibrium in an endogenous

model. Generate random parameters (table 4).

N σ β δ α γ θ ν

70 5 0.9827 0.0813 0.4 3 4 9651

Table 4: Parameters of the model with endogenous labor

Using the algorithm, we find the polynomial from one variable (the equation 28).

0.6x1358 − 0.6x1354 − 0.5895953281731733x1349 − 0.5416398185960283x1346

+ 0.5895953281731733x1345 + 0.5416398185960283x1342 + 0.5322471776613056x1337

− 0.5322471776613056x1333 − 1x1151 + 0.4x1148 + 0.6x1144 + 1.5242986988846505x1139

− 0.39306355211544897x1136 + 0.39306355211544897x1135 − 1.5242986988846505x1132

− 0.5322471776613056x1127 − 0.38624739000403563x1123 + 0.9184945676653412x1120

+1x871−1x868−0.9347033707114772x859+0.9347033707114772x856−0.9826588802886222x855+

0.9826588802886222x852 + 0.9184945676653412x843 − 0.9184945676653412x840+

0.2938967785528849x521 − 0.2938967785528849x518 − 0.2747063095546261x509+

0.2747063095546261x506 − 0.288800279333211x505 + 0.288800279333211x502+

0.2699425945551685x493 − 0.2699425945551685x490 − 0.2938967785528849x241+

0.11755871142115396x238 + 0.17633806713173092x234 + 0.4479864771545527x229

− 0.11552011173328444x226 + 0.11552011173328441x225 − 0.44798647715455264x222

− 0.15642573090852271x217 − 0.11351686364664579x213 + 0.2699425945551685x210

+ 0.17633806713173092x28 − 0.17633806713173092x24 − 0.1732801675999266x19−

0.15918619782134166x16 + 0.1732801675999266x15 + 0.15918619782134166x12

+ 0.15642573090852271x7 − 0.15642573090852271x3 (28)

This polynomial has degree 1358; applying standard methods to it is useless, but

our algorithm does it in a fraction of a second.

Now you can find the real roots and filter out the economically worthless ones,

and you get one solution that you can find in the table 6.

Lets analyze the obtained results: First, a realistic interest rate of 4.2%. Second,

during the lifetime of the agent, consumption increased by 50%, and hil labor

decreased by 40%. Third, the capital curve takes the form of a parabola with

branches down with a peak at period 43 and a value that is 5 times higher than

peak consumption.

Paper 12: Algorithm for solving OLG models 217

8 Monte-Carlo experiments

8.1 Simple model

For the simplest model, the results depend on the parameters N and σ.

The table 7 provides information on how long it took to solve 1, 000 models with

parameters ei generated evenly randomly from 0 to 1. As can be seen from the

table, results depend on a combination of N and σ, and may also depend on parity.

But still, its enough to run a lot of tests in a relatively short time.

Note that our algorithm is not designed to work with small models, so classical

methods can work faster. However, this does not change the fact that the difference

between these models is less obvious, so the algorithm can be applied to small

models as well.

8.2 Model with exogenous labor

For the exogenous model, 100 simulation tests were performed. At the same time,

the parameters of α, β and δ were generated randomly from a uniform distribution

on a segment from 0 to 1. The γ was a random natural number from 5 to 20 and

σ from 3 to 10.

The table 8 contains information on how long it took to solve 100 models in the

texo column.

Basiri et al. (2022) describes an algorithm that finds equilibrium in a 70-period

model. It takes the algorithm 70 seconds simply to find the real roots of the

polynomial in one model and even more time to find a complete solution. At the

same time our model in 2 seconds finds solutions to 100 models and time does not

depend on the number of periods. It can be concluded that the new algorithm

works much more efficiently than the existing solutions.

8.3 Model with endogenous labor

Now lets look at the algorithm results for the endogenous problem.

The parameters of σ, α, β, δ and γ were randomly generated in the same way

as in the exogenous model. θ was generated in the same way as γ, and ν with

a 1
2 probability was x or 1

x , where x is a random amount taken from a uniform

distribution of [0.1].

The table 8 in the tendo column contains information on how long it takes the

algorithm to calculate the equilibrium in 100 models.

Note that the given problem is solved almost an order of magnitude slower,

because the polynomial whose roots need to be found has more nonzero coefficients.

There is another plus of our algorithm: it doesnt depend on the number of periods,

because the kind of multiplication does not depend on N .

218 Journal of Mathematics and Modeling in Finance

8.4 Study models for multiple equilibria

Multiple equilibrium tests were also performed. For a simple model, there were

already results describing the probability of multiple equilibrium, which were de-

scribed in Kubler and Schmedders (2010). The new algorithm replicated the results

of this work. Tests were also performed on two models with labor. α, β, γ, δ pa-

rameters were randomly sampled in the same way as exogenous models. The θ

parameter was sampled just like the γ. And the ν parameter was generated this

way: first we got a random number of x from a uniform distribution from 0 to 1

and then with a probability of 1
2 ν took the value of x or 1

x . More than 50,000

iterations were made for both models, but no multiplicity was found, which gives

hope that there is no multiplicity of equilibrium in realistically calibrated models.

9 Conclusion

In this paper we described a new algorithm for finding long-term equilibrium in

OLG models. In the process, a method was devised to quickly find the real roots of

the polynomial. The new algorithm gave a significant increase in the speed of work,

which allowed the study of economic models with the Monte Carlo method. The

new algorithm replicated results relating to the existence of examples of multiplicity

in models with few periods and without labor. In particular, it was observed that

only one of these results was an effective solution. Exo- and endogenous models

have also been investigated for the existence of examples of multiplicity. After many

iterations, none were found. This may mean that in realistically calibrated models,

a multiplicity of long-term equilibria is unlikely.

10 Appendix

S = 1.0388 w = 1.1156 c23 = 0.0219 k23 = 0.0461 c47 = 0.0349 k47 = 0.1181

K = 5.1326 k0 = 0 c24 = 0.0224 k24 = 0.0486 c48 = 0.0356 k48 = 0.1214

c1 = 0.0143 k1 = 0.0016 c25 = 0.0228 k25 = 0.0512 c49 = 0.0363 k49 = 0.1245

c2 = 0.0146 k2 = 0.0032 c26 = 0.0233 k26 = 0.0537 c50 = 0.037 k50 = 0.1275

c3 = 0.0149 k3 = 0.0049 c27 = 0.0237 k27 = 0.0564 c51 = 0.0378 k51 = 0.1305

c4 = 0.0152 k4 = 0.0066 c28 = 0.0242 k28 = 0.0591 c52 = 0.0385 k52 = 0.1332

c5 = 0.0155 k5 = 0.0084 c29 = 0.0247 k29 = 0.0618 c53 = 0.0392 k53 = 0.1357

c6 = 0.0158 k6 = 0.0101 c30 = 0.0251 k30 = 0.0646 c54 = 0.04 k54 = 0.1379

c7 = 0.0161 k7 = 0.0119 c31 = 0.0256 k31 = 0.0674 c55 = 0.0408 k55 = 0.1398

c8 = 0.0164 k8 = 0.0138 c32 = 0.0261 k32 = 0.0703 c56 = 0.0416 k56 = 0.1413

c9 = 0.0167 k9 = 0.0157 c33 = 0.0266 k33 = 0.0733 c57 = 0.0424 k57 = 0.1422

Paper 12: Algorithm for solving OLG models 219

c10 = 0.0171 k10 = 0.0176 c34 = 0.0272 k34 = 0.0763 c58 = 0.0432 k58 = 0.1425

c11 = 0.0174 k11 = 0.0195 c35 = 0.0277 k35 = 0.0793 c59 = 0.0441 k59 = 0.1419

c12 = 0.0177 k12 = 0.0215 c36 = 0.0282 k36 = 0.0824 c60 = 0.0449 k60 = 0.1404

c13 = 0.0181 k13 = 0.0235 c37 = 0.0288 k37 = 0.0855 c61 = 0.0458 k61 = 0.1378

c14 = 0.0184 k14 = 0.0256 c38 = 0.0293 k38 = 0.0886 c62 = 0.0467 k62 = 0.1337

c15 = 0.0188 k15 = 0.0277 c39 = 0.0299 k39 = 0.0918 c63 = 0.0476 k63 = 0.1279

c16 = 0.0192 k16 = 0.0299 c40 = 0.0305 k40 = 0.0951 c64 = 0.0486 k64 = 0.1201

c17 = 0.0195 k17 = 0.0321 c41 = 0.0311 k41 = 0.0983 c65 = 0.0495 k65 = 0.1098

c18 = 0.0199 k18 = 0.0343 c42 = 0.0317 k42 = 0.1016 c66 = 0.0505 k66 = 0.0965

c19 = 0.0203 k19 = 0.0366 c43 = 0.0323 k43 = 0.1049 c67 = 0.0515 k67 = 0.0797

c20 = 0.0207 k20 = 0.0389 c44 = 0.033 k44 = 0.1083 c68 = 0.0525 k68 = 0.0586

c21 = 0.0211 k21 = 0.0412 c45 = 0.0336 k45 = 0.1116 c69 = 0.0535 k69 = 0.0323

c22 = 0.0215 k22 = 0.0436 c46 = 0.0343 k46 = 0.1149 c70 = 0.0546 k70 = 0

Table 5: Long-term equilibrium in model with exogenous labor

p = 1.002 r = 0.0422 S = 1.2163 w = 1.3131 L = 56.2174 K = 398.3248

c1 = 1.0464 l1 = 1.0431 k1 = 0.3233 c36 = 1.2893 l36 = 0.7897 k36 = 8.3663

c2 = 1.0527 l2 = 1.0348 k2 = 0.6431 c37 = 1.297 l37 = 0.7834 k37 = 8.4512

c3 = 1.0589 l3 = 1.0266 k3 = 0.9593 c38 = 1.3047 l38 = 0.7772 k38 = 8.5238

c4 = 1.0653 l4 = 1.0185 k4 = 1.2719 c39 = 1.3125 l39 = 0.7711 k39 = 8.5836

c5 = 1.0717 l5 = 1.0104 k5 = 1.5807 c40 = 1.3204 l40 = 0.765 k40 = 8.63

c6 = 1.0781 l6 = 1.0024 k6 = 1.8857 c41 = 1.3283 l41 = 0.7589 k41 = 8.6626

c7 = 1.0845 l7 = 0.9945 k7 = 2.1866 c42 = 1.3362 l42 = 0.7529 k42 = 8.6807

c8 = 1.091 l8 = 0.9866 k8 = 2.4834 c43 = 1.3442 l43 = 0.7469 k43 = 8.6837

c9 = 1.0975 l9 = 0.9788 k9 = 2.776 c44 = 1.3522 l44 = 0.741 k44 = 8.6711

c10 = 1.1041 l10 = 0.971 k10 = 3.0642 c45 = 1.3603 l45 = 0.7352 k45 = 8.6421

c11 = 1.1107 l11 = 0.9633 k11 = 3.3478 c46 = 1.3685 l46 = 0.7293 k46 = 8.5961

c12 = 1.1173 l12 = 0.9557 k12 = 3.6267 c47 = 1.3767 l47 = 0.7236 k47 = 8.5324

c13 = 1.124 l13 = 0.9482 k13 = 3.9008 c48 = 1.3849 l48 = 0.7178 k48 = 8.4503

c14 = 1.1307 l14 = 0.9406 k14 = 4.1699 c49 = 1.3932 l49 = 0.7121 k49 = 8.3489

c15 = 1.1375 l15 = 0.9332 k15 = 4.4338 c50 = 1.4015 l50 = 0.7065 k50 = 8.2276

c16 = 1.1443 l16 = 0.9258 k16 = 4.6923 c51 = 1.4099 l51 = 0.7009 k51 = 8.0854

c17 = 1.1511 l17 = 0.9185 k17 = 4.9453 c52 = 1.4183 l52 = 0.6954 k52 = 7.9214

c18 = 1.158 l18 = 0.9112 k18 = 5.1925 c53 = 1.4268 l53 = 0.6898 k53 = 7.7348

c19 = 1.165 l19 = 0.904 k19 = 5.4338 c54 = 1.4353 l54 = 0.6844 k54 = 7.5247

220 Journal of Mathematics and Modeling in Finance

c20 = 1.1719 l20 = 0.8968 k20 = 5.6688 c55 = 1.4439 l55 = 0.679 k55 = 7.2899

c21 = 1.1789 l21 = 0.8897 k21 = 5.8975 c56 = 1.4526 l56 = 0.6736 k56 = 7.0296

c22 = 1.186 l22 = 0.8827 k22 = 6.1195 c57 = 1.4612 l57 = 0.6683 k57 = 6.7426

c23 = 1.1931 l23 = 0.8757 k23 = 6.3346 c58 = 1.47 l58 = 0.663 k58 = 6.4277

c24 = 1.2002 l24 = 0.8687 k24 = 6.5425 c59 = 1.4788 l59 = 0.6577 k59 = 6.0839

c25 = 1.2074 l25 = 0.8619 k25 = 6.743 c60 = 1.4876 l60 = 0.6525 k60 = 5.7099

c26 = 1.2146 l26 = 0.855 k26 = 6.9358 c61 = 1.4965 l61 = 0.6473 k61 = 5.3045

c27 = 1.2219 l27 = 0.8483 k27 = 7.1206 c62 = 1.5055 l62 = 0.6422 k62 = 4.8662

c28 = 1.2292 l28 = 0.8416 k28 = 7.297 c63 = 1.5145 l63 = 0.6371 k63 = 4.3937

c29 = 1.2365 l29 = 0.8349 k29 = 7.4648 c64 = 1.5235 l64 = 0.6321 k64 = 3.8856

c30 = 1.2439 l30 = 0.8283 k30 = 7.6235 c65 = 1.5326 l65 = 0.6271 k65 = 3.3404

c31 = 1.2514 l31 = 0.8217 k31 = 7.773 c66 = 1.5418 l66 = 0.6221 k66 = 2.7565

c32 = 1.2589 l32 = 0.8152 k32 = 7.9127 c67 = 1.551 l67 = 0.6172 k67 = 2.1323

c33 = 1.2664 l33 = 0.8088 k33 = 8.0423 c68 = 1.5603 l68 = 0.6123 k68 = 1.4659

c34 = 1.274 l34 = 0.8023 k34 = 8.1613 c69 = 1.5696 l69 = 0.6074 k69 = 0.7558

c35 = 1.2816 l35 = 0.796 k35 = 8.2695 c70 = 1.579 l70 = 0.6026 k70 = 0

Table 6: Long-term equilibrium in model with endogenous labor

N texo tendo

5 2.040 13.720

10 1.680 13.151

15 2.037 13.409

20 1.659 13.127

25 2.144 14.543

30 1.822 13.968

35 2.130 14.533

40 1.822 13.632

45 2.106 14.737

50 1.768 13.802

55 2.127 14.270

60 1.797 13.922

65 2.121 14.383

70 1.775 13.334

Table 8: Time spent for finding equilibrium in models with exo- and endogenous
labor 100 times

Paper 12: Algorithm for solving OLG models 221

N σ t

3 3 1.886

3 4 2.101

3 5 3.300

3 6 3.323

3 7 3.751

4 3 4.943

4 4 2.367

4 5 5.454

4 6 7.020

4 7 5.733

5 3 6.258

5 4 4.522

5 5 4.029

5 6 4.447

5 7 12.910

3 10 2.555

3 15 4.032

3 20 2.638

Table 7: Time spent for finding equilibrium in simple model 1000 times

Acknowledgement

The article was prepared as part of the research work of the state task of RANEPA..

Bibliography
[1] Altig A.,Auerbach A.,Kotlikoff L., 2001, Simulating fundamental tax reform in the United

States American Economic Review, 91 (3), 574-595.

[2] Auerbach A.,Kotlikoff L., 1987, Evaluating fiscal policy with a dynamic simulation model,
The American Economic Review, 77(2) 49-55.

[3] Auerbach A.,Kotlikoff L., National savings, economic welfare, and the structure of taxation,
1983, Behavioral simulation methods in tax policy analysis, 459-498

[4] Basak S.,Cass D.,Manuel J.,Pavlova A., 2006, Multiplicity in General Financial Equilibrium
with Portfolio Constraints, Institute for Economic Research (PIER) Working Paper Series.

[5] Basiri A.,Riahi M
”
Kubler F.,Rahmany S., 2023, Efficient Calculation of All Steady States

in Large-Scale Overlapping Generations Models, Journal of Mathematics and Modeling in
Finance, https://doi.org/10.22054/jmmf.2023.71545.1083

[6] Becker T.,Weispfenning V., 2012, Gröbner bases: a computational approach to commutative
algebra, Springer Science & Business Media, 141.

[7] Bovenberg L.,Heijdra B. 1998, Environmental tax policy and intergenerational distribution,
Journal of Public Economics, 67, 1-24.

[8] Carvalho O., 2017, A simple recursive algorithm to find all real roots of a polynomial, Re-
searchgate.

222 Journal of Mathematics and Modeling in Finance

[9] Fried S
”
Novan K.,Peterman W., 2018, The distributional effects of a carbon tax on current

and future generations, Review of Economic Dynamics, 30, 30-46.

[10] Hong H.,Stein J., 2003, Differences of Opinion, Short-Sales Constraints, and Market Crashes,
Review of Financial Studies, 16, 487-525.

[11] Kehoe, T.,Levine D., 1990, The economics of indeterminacy in overlapping generations mod-
els, Journal of Public Economics, 42, 219-243.

[12] Kotlikoff L.,Kubler F.,Polbin A.,Sachs J.,Scheidegger S., 2021, Making carbon taxation a
generational win win, International Economic Review, 62(1), 3-46.

[13] Kotlikoff L.,Smetters K.,Walliser J., 2007, Mitigating America’s demographic dilemma by
pre-funding social security, Journal of monetary Economics, 54, 247-266.

[14] Kubler F.,Schmedders K., 2010, Tackling multiplicity of equilibria with Gröbner bases, Op-
erations research, 58(4-part2), 1037-1050.

[15] Kubler F.,Schmedders K., 2010, Uniqueness of steady states in models with overlapping
generations, Journal of the European Economic Association, 8(2-3), 635-644.

[16] Summers L., 1981, Capital Taxation and Accumulation in a Life Cycle Growth Model, The
American Economic Review, 71, 533-544.

How to Cite: Alexey Zaytsev1, The fast algorithm for computing all steady states in
overlapping generations models, Journal of Mathematics and Modeling in
Finance (JMMF), Vol. 3, No. 1, Pages:203–222, (2023).

The Journal of Mathematics and Modeling in Finance (JMMF) is licensed under a

Creative Commons Attribution NonCommercial 4.0 International License.

