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Abstract:
Given the importance of policyholder classification in helping to make a
good decision in predicting optimal premiums for actuaries. This paper
proposes, first, an optimal construction of policyholder classes. Second,
Poisson-negative Binomial mixture regression model is proposed as an al-
ternative to deal with the overdispersion of these classes. The proposed
method is unique in that it takes Tunisian data and classifies the insured
population based on the K-means approach which is an unsupervised ma-
chine learning algorithm. The choice of the model becomes extremely dif-
ficult due to the presence of zero mass in one of the classes and the signif-
icant degree of overdispersion. For this purpose, we proposed a mixture
regression model that leads us to estimate the density of each class and to
predict its probability distribution that allows us to understand the under-
lying properties of our data. In the learning phase, we estimate the values
of the model parameters using the Expectation-Maximization algorithm.
This allows us to determine the probability of occurrence of each new in-
sured to create the most accurate classification. The goal of using mixed
regression is to get as heterogeneous a classification as possible while hav-
ing a better approximation. The proposed mixed regression model, which
uses a number of factors, has been evaluated on different criteria, including
mean square error, variance, chi-square test and accuracy. According to
the experimental findings on several datasets, the approach can reach an
overall accuracy of 80%. Then, the application on real Tunisian data shows
the effectiveness of using the mixed regression model.
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1 Introduction

Despite the large number of automobile accidents worldwide, their causes remain a

difficult subject to determine in a definitive way due to the complex relationships be-

tween many contributing factors. The importance of the subject of modeling and

forecasting traffic accidents has piqued the interest of many researchers,(S.Tang

et al.[33]) . Under the umbrella terms ”computer intelligence” and ”data extrac-

tion,” a variety of techniques and methodology have been used in the literature,

(M.Lichman[20]), including neural networks, support vector machines, regression,

decision trees, Bayesian networks, rules of association, clustering techniques, case-

based reasoning, and ontologies. This study seeks to integrate several policyholder-

specific factors through machine learning algorithms to arrive at an optimal predic-

tion of the number of accidents for each new policyholder. Clustering techniques

aim at discovering clusters of a set of models or data and are widely used in any

discipline that involves the analysis of multivariate data (L.Breiman et al.[15],[17]).

Their application in different fields is multiple and diverse. They can also be used in

insurance in general. In order to test the usefulness and performance of the classes,

we experiment with unsupervised K-means, taking into account the property of the

machine learning-based technique. We adopt class selection to find a set of optimal

classes especially when we have a well-seen zero mass in our dataset to improve the

accuracy.

The determination of the occurrence frequency of a certain phenomenon, in

particular the number of accidents in our case, is an information very much used

by actuaries in the world of car insurance in order to determine the probability

that an individual (insured) belongs to such a well-determined class. The stability

of the classes has been evaluated on several random runs in terms of intra-cluster

and inter-cluster to have an optimal number of classes.

In the modeling of accounting processes, such as the frequency of sinistres, two

types of models are frequently used: the poisson regression model and the negative

binomial regression model. There is a substantial body of literature on the appli-

cation of these models: Shi and Valdez [25], Winkilmann [30], Greene [8], Yau et

al. [31], Yang et al. [32].

The Poisson regression model has been frequently utilized in the insurance sec-

tor to model data on the quantity or frequency of claims. M.Aitkin et al [18] and

Renshaw [1], for example, applied the Poisson model to two different sets of UK au-

tomotive claims data. The Poisson regression model has been considered practical

and convenient for insurance practitioners; in addition to determining statistical in-

ference and hypothesis testing using statistical theories. This model also allows the

fitting procedure to be performed easily using any statistical software that includes

an Iterative Weighted Least Squares (IWLS) regression routine.

When adopting a count model for assessing counting data, it is important to

evaluate if there is at least overdispersion or an excess of zeros (e.g., Hinde and
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Demétrio [11], Akantziliotou et al. [3], Sellers and Raim [26], or Del Castillo and

Pérez-Casany [5]). When the variance (observed) exceeds the mean (expected) vari-

ance, overdispersion is most frequently present. This condition can also result from

a zero-inflation sample (or an overabundance of zeros) or a long tail. Both mea-

sures are routinely applied to the Poisson distribution, and the negative binomial

has lately been employed to model both types of count data sets.

Numerous writers investigated novel probability distributions based on the mix-

ing mechanism. For instance, Simon [24] produced a negative binomial distribution

by combining the mean of the Poisson distribution with the gamma distribution.

Jerald [13] combined mixed Poisson regression with negative binomial regression.

By combining the negative binomial distribution with the Lindley distribution,

which has a thick tail and an alternative for modeling count data of insurance

claims, which has a thick tail and a large value at zero, Zamani and Ismail [12],[34]

established a new mixed negative binomial.

Because of their complex data structures, insurance loss data cannot always be

well modeled by a single distribution. For univariate loss data, one alternative

method in statistical analysis is to use a mixture of distributions. When the indi-

vidual risk factors are available, a mixture of regressions is a natural extension to

modeling the risk heterogeneity that the individual risk factors capture. Stephen

and Richard [23] proposed the mixture model, which serves as the foundation for

a Markov-switching regression model. Lindsay [16] and McLahlan and Peel [19]

provide comprehensive reviews of mixing models. A mixture model, also known as

a mixture of experts model in machine learning, is an ensemble learning technique

that applies the idea of training experts on subtasks of a predictive modeling issue

(Jiang and Tanner[29]). Recent research on insurance loss modeling has also focused

on using mixture models to deal with complex data sets. To explain multivariate

count data with extra zeros, Zhang et al.[35] proposed a multivariate zeroinflated

hurdle model. Lee and Lin (2012) created a multivariate version of an Erlang mix-

ture. To simulate insurance claim amounts, Lukasz et al.[28] developed a blend of

neural networks with gamma loss. To simulate insurance claim amounts combining

censored and shortened data, Roel et al.[22] used a mixture of Erlangs.

Fung et al. [6], Fung et al. [7], and Tseung et al. [27] proposed a class of so-

called logit-weighted reduced mixture of experts (LRMoE) models for multivariate

claim frequencies or severities distributions.

However, because there are a large number of insured without accident in the

portfolio over an exercise period (one year), the number of zeros in the variable

response (frequency of accident) is significant.

To address the importance of null values as well as the heterogeneity of the popu-

lation, a Poisson-negative binomial mixture regression model has been proposed.

The interest of using a mixture regression is first of all to have a better approxi-

mation; moreover to have a classification as heterogeneous as possible.

Our empirical technique is novel in that it uses Tunisian data on the one hand,
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and that we use the K-means machine learning method to classify the data, as well

as a Poisson-NB mixture regression to forecast the optimal number of accidents

for each new insured to predict an optimal premium. The performance of the pro-

posed model was evaluated by several criteria such as, mean-squared-error (MSE),

deviance, Chi-square test and accuracy.

There are two primary sections to this essay. The first section presents an indepth

study of the methodology adopted in this work. First, we describe the K-means clas-

sification method. Then, the probabilistic or econometric counting models (Poisson,

NB) for the distribution of accidents used as an estimation model are summarized.

Finally, we presented a proposed new regression model (Poisson-NB mixture re-

gression) for which the EM algorithm was used to learn its parameters.The second

part is devoted to a real application on a Tunisian insurance company. The data

is provided first, followed by some exploratory statistics. Second, the empirical

findings are examined, which are divided into two sections: an interpretation of

the explanatory variables’ relevance and a comparison of our novel model to other

regression models. The paper ends with conclusions that summarize the results

obtained and discusses suggestions for further studies.

2 Methodology

In this section, we use the ”K-means” classification algorithm in order to have

an optimal number of classes that are as heterogeneous as possible between them.

Then, we perform a generalized linear model (GLM) for each class. The presence of

a mass at zeros in one of classes and the degree of overdispersion is quite high, which

leads to a major problem of model choice. Here, we propose a mixture regression

between the ”Poisson” and ”Negative Binomial” distributions. In the learning part,

we use the (EM) algorithm to estimate the parameters model. Those, help us to

predict the probability of appearance of each new insured in order to make an

optimal classification.

The following diagram summarizes the structure of this work.

2.1 K-means

The objective of classification and unsupervised learning is to identify groups of

observations with similar characteristics. From this classification, we aim to have

individuals (the insured) in the same group come together and in different groups

stand out as much as possible. Therefore, if a particular piece of data is a member of

one cluster, it cannot be a member of another. There are several types of clustering,

all of which have been well investigated in the literature. Because it is unsupervised

and has a linear algorithmic complexity, we selected the K-means algorithm for this

project. In this scenario, data will be assigned a suitable membership value, and

the number of clusters will be established by running K −means with various k
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Figure 1: A graphic depicting the employed method.

values, computing the sum of squared errors of the various clusters ((SSE)), and

determining the silouette Score (S).

The squared distances between the cluster is centroid and each member are

added to form the SSE. As a result, we would to estimate a number of clusters k so

that the distance between their centroids and the observations in the same cluster

is as small as possible. We are talking about keeping the intra-class distance to a

minimum. The silhouette score (S) is utilized to determine the optimal number of

clusters for our dataset. In this case, we are attempting to optimize the inter-class

distance between data points with cluster centers. In statistics and probability

theory, the Konig-Huygens theorem is a remarkable identity between the variance

and the mean. This theory allows to link the inter and intra inertia based on the

following fundamental relation.

Total inertia= Inter - class inertia + Intra - class inertia

The optimal number of clusters K, according to Figure 2, is K = 2. The graphic

on the left of Figure 2, which represents the intra-class, shows that when K = 2,

the best minimization occurs. Furthermore, the inter-class silhouette Score suggests

that K = 2, which is extremely close to 1, showing that the clusters are dense and

well spaced, as well as being the curve’s maximum point.
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Figure 2: algorithmic k-means clustering of data.

2.2 GLM regression model

GLM extends the familiar linear regression models for quantitative data to include

count and frequencies data, for which the assumption of normal errors is no longer

reasonable.

GLM Poisson model:

Let Y be the random variable for claims number in the ith policyholder. Assume

that, Y follows a Poisson distribution with parameter λ. Its probability mass

function is given by:

P(Y = y) = Pois(y|λ) = exp(−λ)λy

y!
(1)

One property of Poisson regression model is mean-variance equality (or ”equidis-

persion”) conditional on explanatory variables :

E(Yi|Xi) = Var(Yi|Xi) = λi = eXiβ , i = 1, ....., n

We assume that the claims number Yi of the ith customer is a function of the

covariates Xi = [1, xi1, xi2, xi3, xi4, xi4, xi5, xi6, xi7, xi8], where xi a px1 vector of

explanatory variables, and β a px1 vector of regression parameters. If the condi-

tional distribution of Yi given Xi is a poisson distribution with parameter λi = eXiβ

where β = [β0, β1, β2, β3, β4, β5, β6, β7, β8], then the conditional distribution of Yi

given Xi is Poisson. The coefficient regression parameter β will be estimated by

the maximum likelihood method. The maximum likelihood estimator β̂ of β verify

the following likelihood equations:

∂l(β)

∂βj
=

n∑
i=1

(yi − λi)xij = 0, j = 1, 2, ..., p (2)

Since Eq(2) is also equal to the weighted least squares, the maximum likelihood

estimates, β̂, may be solved by using the Iterative Weighted Least Squares (IWLS)
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regression.

One can notice that this model allows the variance to exceed the mean. Moreover,

the Poisson regression model can be regarded as a limiting model of the negative

binomial regression model as ν = 1/α approaches 0.

GLM Negative binomial model:

The negative binomial model is a generalization of the Poisson model for overdisper-

sion in that it assumes that events occur contagiously and/or in a heterogeneous

environment rather than simulating a series of isolated occurrences with a fixed

expectation.

By adding a gamma noise variable with a mean of 1 and a scale parameter of nu,

the Poisson distribution can be made more generic. The Poisson-gamma mixture

(Negative binomial) distribution that results is constructed as: Consider that, the

number Y of claims (accidents), given the parameter λ, is distributed according

to the Poisson model with parameter λ, where λ denotes the different underlying

mean risk of each policyholder to have an accident.

Let us assume that

Y |λ ∼ Poisson(λ) and λ ∼ Γ(µ, α)

Where Γ(µ, α) denotes the following Gamma density function:

Γ(µ, α) =
λµ−1αµ exp (−αλ)

Γ(µ)
1(0,+∞)(λ), µ > 0, α > 0,

mean E(λ) = µ/α and variance V ar(λ) = µ/α2.

Using the total probability formula, the negative binomial distribution of Y consid-

ered in this study has the following form:

NB(y|µ, α) = P(Y = y|µ, α)

=
Γ(y + α−1)

Γ(y + 1)Γ(α−1)
(

1

1 + αµ
)α

−1

(
αµ

1 + αµ
)y (3)

A group of p regressor variables (also known as the explanatory variables x) are

used in negative binomial regression to get the mean of Y . The expression relating

these quantities is:

E(Yi|Xi) = µi = eXiθand Var(Yi|Xi) = eXiθ(1 +
1

α
eXiθ),

In what follows, we assume that the claims number Yi of the ith customer is a

function of the covariates Xi = [1, xi1, xi2, xi3, xi4, xi4, xi5, xi6, xi7, xi8].

If the conditional distribution of Yi given Xi is a poisson distribution with pa-

rameter µi = eXiθ, where θ = [θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8]
T , then the conditional
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distribution of Yi given Xi is negative binomial.

The regression coefficients θ1, θ2, , θp are approximated unknown parameters based

on a collection of data.

Lawless [9] and L. Simon [14] provide a detailed explanation of the maximum like-

lihood estimation of the negative binomial regression model and the computation

of related statistics. The moment estimation, which Breslow [18] initially proposed,

is frequently used to calculate the parameters of the negative binomial model.

The importance of the null values and the heterogeneity of the corresponding pop-

ulation doesn’t exclude the limits of the negative binomial model. For this reason,

we attempted to apply the mixture regression model.

2.3 Proposed mixture regression model

The major problem in regressions is the choice of counting model, especially when

we have a very heterogeneous data set. So the question that arises here: What is

the most adequate and accessible regression model between the Poisson model and

the Negative Binomial model? We adopt the ”K −means” classification method

to have an optimal selection. It is also well acknowledged that accident count or

frequency statistics in the vehicle insurance industry frequently display zero mass

and overdispersion, or extra-Poisson variation, which occurs when the response vari-

able’s variance exceeds the mean. When the Poisson model is applied incorrectly,

the standard errors are underestimated and the significance of the regression pa-

rameters is overestimated, resulting in a misleading inference about the regression

parameters. However, depending on the property of our dataset we obtained two

classes using ”K −means”.(See Figure 1)

A first class that follows the Poisson distribution since we have in a situation of

equidispersion between the mean and the variance of the response variable.

And a second class which follows the Negative Binomial distribution where we have

an access of zeros and an overdispersion. This classification leads us to propose a

”Poisson-NB”mixture regression model which gave us an accessibility to predict an

optimal number of accidents for each new insured.

A crucial step in creating new probability distributions that can be utilized as a

more adaptable substitute for conventional statistical distributions, particularly in

overdispersion, is the mixing of probability distributions. We assume that the λ

undergo a specific classification for the insured of an automobile insurance company,

and that for a given individual, the distribution of accidents number Y follows a

mixture of Poisson and Negative Binomial distributions.

Then, the probability mass function of Y that a randomly selected individual is

given by:

P(Y = y) = π1Pois(y|λi) + π2NB(y|µi, αi) (4)

where:
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.π1: denotes the positive mixing weight of belongs to the Poisson class (C0).

.π2=1− π1: denotes the positive mixing weight of belongs to the BN class (C1).

2.4 Learning parameters of mixture model

We adopt the ”K − means” classification method to have an optimal selection.

Based on this classification, we obtain two classes (K = 2). This last one, leads

us to estimate the parameters of the proposed model, we use the EM algorithm.

Given the cluster ck denotes the kth class, yi ∼ fk(.|θk), then the mixture mass

function of yi is given by

f(y) =
∑K

k=1 πkfk(y|θk).

The mixture model is a heterogeneous data model. It has a complex distribution

of an observed variable Y = (y1, y2, ..., yn) given by (4).

Maximize the incomplete likelihood function:

l(y1, y2, ...., yn|Θ) =

n∏
i=1

(πPois(yi|λix) + (1− π)NB(yi|µix, αix))

=

n∏
i=1

(π
exp(−λix)λ

yi
ix

yi

+(1− π)
Γ(yi + α−1

ix )

Γ(yi + 1)Γ(α−1
ix )

(
1

1 + αixµix
)α

−1
ix α−1

ix (
αixµix

1 + αixµix
)yi)

with respect to Θ = (α, λ, µ, π) is a difficult task.

In order to estimate the mixture model parameters, we apply the EM algorithm. It

is useful in a variety of heterogeneous or incomplete data problems. It is introduced

by A.Dempster and al.[2], G.Maclachlan and al.[9]. The EM algorithm derives its

name from the fact that each iteration operates two distinct steps: Expectation

and Maximization steps.

1-Expectation step: The posterior probability such that the ith observation yi
belongs to the kth class (k=1,2), is calculated in the lth iteration denoted by:

τ
(l)
ik = E(zik|Θ(l), Y1 = y1, Y2 = y2.....Yn = yn)

= E(zik|Θ(l), Yi = yi)

=
π
(l)
k fk(yi|Θ(l)

k )∑K=2
k=1 π

(l)
k fk(yi|Θ(l)

k )

with i = 1, ......, n; k = 1, 2 and Θ(l) = Θ(l)(y1, ......., yn) is the estimated

parameter vector at the lth iteration. Where,fk(y|θk) denotes the mass func-

tion given the kth cluster. For each observation yi, we define the random vector
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Zi = (zi1, zi2, ..., zik) such that zik = 1 if yi belongs to the class ck. The ran-

dom variables (Zi)1<i<n are called latent variables or missing values which indicate

the label class of yi. Such that, Zi = (zi1; zi2) denotes a dataset associated with

(y1, y2, ...., yn). If Zik = 1 this means that the observation yi belongs to the class

(k = 1, 2).

2-Maximization step: The conditional expectation of the complete data log like-

lihood Q is maximized with respect to the parameter vector denoted by

Q(Θ||Θ(l)) = E(loglc(y1, ....yn, z1, ....zn|Θ)|y1, ....yn,Θ(l))

=

n∑
i=1

K=2∑
k=1

E(zik|Θ(l); yi)(log(πk) + log(fk(yi|θk))

=

n∑
i=1

K=2∑
k=1

τ
(l)
ik [logπk + logfk(yi|Θk)] (5)

where Θ = (π1, π2; Θ1,Θ2) is the unknown parameters vector, Θ(l) = (π
(l)
1 , π

(l)
2 ;

a
(l)
1 , a

(l)
2 ; Θ

(l)
1 ,Θ

(l)
2 ) is the parameters vector in the lth iteration and lc is the maxi-

mum likelihood function from complete data given by

lc(y1, ....yn;Z1, .....Zn|Θ) =

n∏
i=1

K=2∏
k=1

πzik
k fzik(yi|Θk)

and the log-likelihood function from complete data is the follows,

loglc(y1, ....yn;Z1, .....Zn) =

n∑
i=1

K=2∑
k=1

[ziklog(πk) + ziklog(fk(yi|Θk)] (6)

According to equation (5), Q(Θ | Θ(l)) is the expected value of the log likelihood

function of Θ, with respect to the current conditional distribution of z1, .., zn given

y1, ..., yn and the current estimates of the parameters Θ(l).

Q(Θ||Θ(l)) =

n∑
i=1

K=2∑
k=1

τ
(l)
ik [logπk + logfk(yi|Θk)] (7)

At the (l + 1)th iteration, we have

Θ(l+1) = Argmax
Θ

Q(Θ||Θ(l)) (8)

In particular, the description of the EM algorithm [2] is given below where the

parameters of the Poisson-NB mixture model are µ, α, λ and the mixing weight π.
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Algorithm 1 The EM algorithm for Poisson-NB mixture model

1)Initialization: Θ(0) = (α(0), λ(0), µ(0), π(0))

2) In the iteration l:
2-1 Expectation step:

τ
(l)
ik ←

π(l)fk(yi|Θ(l))
π(l)fk(yi|Θ(l))+(1−π(l))fk(yi|Θ(l))

2-2 Maximization step:

∂Q
∂µ = 0← µ(l+1)

∂Q
∂λ = 0← λ(l+1)

∂Q
∂α = 0← α(l+1)

∂Q
∂π = 0← π(l+1)

3) If ||Θ(l+1) − Θ(l))|| < ϵ is not satisfied return to step 2). where ϵ > 0 is the
threshold.

3 Actual Application

3.1 Data set

Let the variable yi be the number of accidents of an individual i in a given pe-

riod. Suppose that the number of accidents is independent from one individual

to another. The set of these variables follow a Poisson law. The policyholder file

contains a number of characteristics that can be used to explain and forecast the

frequency, nature, and severity of auto accidents. These variables include details

about the vehicle, including kind, power, the number of seats, and age, as well

as individual-level information, like age, prior driving experience (Bonus-malus),

driving license seniority, the number of drivers, and their location. These charac-

teristics are outlined in the Table 1 below:
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Covariates Descriptions

X1 Driver age

X2 Vehicle age

X3 Vehicle power

X4 Bonus-Malus

X5 Number of driver

X6 Driving license seniority

X7 Number of vehicle seats

X8 Area

Table 1: Description of covariates

This example is based on data that we received from an insurer who runs an

automobile insurance company in Tunisia. The main goal of this study resides in

investigating the effect of a set of covariates (X1, X2, X3, X4, X5, X6, X7, X8),

on the number N of accidents counts. The data consists of 4908 insureds from the

year 2019. The descriptive statistical analysis of all the explanatory variables in

this study is shown in Table 2. The following (dependent variable) is the variable

we’re attempting to explain: Annual number of accidents involving a person’s fault.

It’s a discrete variable with non-negative values that don’t usually go beyond three

accidents.(See Table 3)

Mean Std.Dev Min Max

N 1.446 1.343 0 3

X1 4.178201 0.333421 3.232846 5.257965

X2 1.320309 0.274465 0.682837 2.033251

X3 5.634409 0.530544 4.243349 7.053131

X4 3.911844 1.462189 1.259547 5.762619

X5 2.642031 0.532639 1.278380 3.939587

X6 1.366549 0.516778 0.524627 2.668481

X7 7.269772 0.984514 5.215808 8.727790

X8 2.636905 0.530625 1.169238 3.685506

Table 2: Table illustrating the descriptive statistics of data
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Number of claims Frequency percentage cumulative frequency cumulative percent

0 0.505349 50.5349 0.870352 87.0352

1 0.365002 36.5002 0.365002 36.5002

2 0.129648 12.9648 0.999999 99.999

3 0.000321 00.0321 1.00032 100.032

Table 3: Proportional frequency of claims

3.2 Results and discussion

Using data from the files of our private insurer, we will first try to answer the follow-

ing question: what is the statistical relationship between the number of accidents

of an individual, his personal qualities and the characteristics of his vehicle? And

secondly, what is the most appropriate and robust model for fitting the data set?

Models Poisson NB

Covariables Coefficient P-Value Coefficient P-Value

Intercept −5.2779 0.000 −6.3149 0.000

X1 −0.6581 0.000 −0.6305 0.000

X2 −0.4256 0.000 −0.3620 0.034

X3 0.1175 0.097 0.1436 0.173

X4 1.0256 0.000 1.0598 0.000

X5 −0.1144 0.123 −0.0822 0.453

X6 −0.1542 0.166 −0.1792 0.271

X7 0.3112 0.000 0.3595 0.000

X8 0.2848 0.000 0.3034 0.005

Table 4: Coefficients regression and their P-Values for Poisson and NB models

Both the GLM Poisson and GLM negative binomial regressions indicate the

same explanatory variables for claim frequency, with similar effects. Based on the

P-Value analysis, the two models (GLM Poisson regression and GLM NB regres-

sion) indicate that five main effects (Driver age X1, Vehicle age X2, Bonus-malus

X4, Number of vehicle seasts X7, Area X8) are significant (P-Value<0.05), but

regarding the best significance for (X2, X8) , the GLM Poisson regression model

shows its effectiveness as shown in the Table (4). We notice an increase of the

claims with the Bonus-Malus coefficient (X4), which is natural since it reflects the

past of the driver, moreover the coefficient number of vehicle places (X7) also it

leads to an increase, since the latter differs according to the category of use, i.e. use

of a family car (business of 5 places) is not the same as utility use (commercial of 2
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places) and use of transport of persons (cab =4 places, renting = 9 places and rural

transport =8 places). Table (4) shows that there is a significant correlation and a

positive effect between the area factor (X8) and the response variable (number of

claims ’N ’), which translates into the importance of road conditions in reducing the

number of accidents. In this study, we compare the infrastructure of the northern

and southern countries of Tunisia and we find that the more we have a good road

structure, the more the drivers are comfortable in driving and consequently less

road accidents.

It is now known which factors have a significant effect on the number of accidents.

But what we are interested in here is how to rank a new insured from its own

coordinates to estimate its number of accidents in order to predict its optimal

premium. To do this, we rely on the K−meansmethod as indicated in the previous

section and on GLM Poisson and NB regression to predict an optimal number of

accidents for each insured. From the criteria of choice of model performance, Table

(5) shows that GLM Poisson regression is the best model compared to GLM NB

regression for the first class (C0). On the other hand, GLM NB regression shows

its performance for the second class (C1).

Class C0 C1

Models Poisson NB Poisson NB

Deviance 0.51237 7.4449 161.48 70.191

AIC 32.5124 51.4417 82.8 67.6

BIC 81.89191 106.31 243.269 152.02

Pearson− chi2 0.281 7.47 165 73.1

Table 5: Criteria for each class’s comparison with Poisson and NB regression models

Criteria Poisson NB Poisson-NB Mixture

MSE 0.05817 0.05261 0.0153

AIC 676.6 956.4 432.11

BIC 735.09 821.39 441.96

Errorrate 0.044 0.037 0.0007

Table 6: Model selection criteria

The MSE, AIC, BIC, and error rate values utilized in model selection are shown

in Table(6). The model with the smallest error value is the best fit. In compar-

ison to the other distributions discussed here, the Poisson-NB regression mixture

distribution is the best at fitting the data set, as shown by the above results (GLM
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Poisson regression, GLM NB regression). The results showed that in the classifica-

tion problem, the mixture distribution is a formidable contender.

4 Conclusions and perspectives

The key goal for all auto insurance firms is to forecast the number of accidents

for each new insured in order to have an accurate classification. The important

role of this paper is to use the mathematical tools and learning methods necessary

to achieve this goal. Among the best known classification methods, we used the

K−means method to have the most possible heterogeneous classes between them,

through an inter classification and an intra classification. In this paper, we used

the K − means as a machine learning method to classify our data sets, as well

as a regression method to estimate explanatory variables and predict the number

of accidents. Using machine learning approaches, we can divide insureds into two

groups (K=2) based on the number of incidents they have had and the risk models

they have used. For the insurer, this methodology identifies a two-class solution:

-First class is the most dangerous; it is reserved for insureds who have had more

than one accident during the exercise period.

-The second class is the least dangerous; it is for insureds who have never had an

accident or have had only one accident during the exercise period.

The results show that when compared to the other regressions, the Poisson-NB

mixture regression has a lower AIC; error rate and minimal MSE value. This demon-

strates that the proposed mixture model is the best fit for estimating policyholder

accidents.

The acquired results can help to increase accuracy of the extended mixture

regression model used to estimate the coefficients of the level of premiums in the

Tunisian Bonus-malus table, which can be used to predict the premium paid by the

insured.
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