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Abstract:
This study suggests a novel approach for calibrating European option pric-
ing model by a hybrid model based on the optimized artificial neural net-
work and Black-Scholes model. In this model, the inputs of the artifi-
cial neural network are the Black-Scholes equations with different maturity
dates and strike prices. The presented calibration process involves training
the neural network on historical option prices and adjusting its parameters
using the Levenberg-Marquardt optimization algorithm. The resulting hy-
brid model shows superior accuracy and efficiency in option pricing on both
in sample and out of sample dataset.
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1 Introduction

The pricing of European options plays a crucial role in financial markets, as it en-

ables investors to assess the value of their investments and make informed decisions.

However, accurately pricing these options can be a challenging task, as traditional

models often fail to capture the complexity of the market dynamics. In recent

years, artificial neural networks (ANNs) have emerged as a powerful tool for option

pricing, offering increased flexibility and accuracy compared to traditional models.

Calibration of European option pricing model refers to the process of adjusting the

parameters of a model in order to accurately price European options. Pricing these

options requires the use of mathematical models, such as the Black-Scholes model,

which rely on certain input parameters to generate accurate pricing estimates. Cali-

bration involves adjusting these parameters to reflect market conditions and ensure
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that the model prices options in line with observed market prices. This process is

crucial for traders and investors to make informed decisions about trading options

and managing risk in their portfolios.

The importance of estimating and calibrating the parameters of financial models

cannot be understated, as it has significant economic implications and has become a

focal point for researchers in recent times. Various methods exist for model calibra-

tion, including techniques such as nonparametric calibration, least-squares fitting

and relative entropy ( [4]). However, these methods often necessitate the specifi-

cation of initial guesses for regularization terms, posing a challenge for accurate

calibration. Alternatively, other estimation techniques like maximum likelihood

estimation (MLE) and the expectation-maximization (EM) algorithm offer viable

options for estimating the parameters of a given process (see [26]; [17]). Bayesian

estimation, prioritizing parameter estimation, relies on the Markov chain Monte-

Carlo (MCMC) for computational purposes ( [24]; [6]). The implementation of

the MCMC algorithm typically demands a significant time and simulation commit-

ment. The method of moments, deriving model moments, has gained traction in

parameter estimation in recent years. [28] investigated the parameters estimation

of Lévy-Ornstein-Uhlenbeck model with similar approaches studied by [30] and [25].

Challenges arise when the density function is required for estimating model param-

eters using MLE method, especially if the financial model being implemented does

not allow for the explicit determination of the density function. When dealing with

these situations, it is necessary to take into account an estimation of the function,

which introduces a new layer of complexity to the problem.

In this study, we address the classical issue in mathematical finance: the calibra-

tion of option pricing models to market data, which has recently gained attention in

the financial community in the context of ANN . Previous works, such as [9] and [8],

have explored this topic, as well as additional references cited within. In summary,

the essence of these works is to optimize the parameters of asset pricing models

so that they minimize the discrepancy (measured by a certain norm) between the

model-predicted prices and the market-provided prices (refer to [13] and [15] for

more details). Specifically in this paper, we focus on option pricing models for

clarity. The motivation behind utilizing ANN techniques for this problem stems

from the realization that computing option prices using traditional models can be

time-consuming, leading to slow calibration processes. The approach introduced

in this study breaks down the calibration into two distinct steps. Initially, a slow

pricer is approximated by an ANN, which is trained using a set of in-sample data,

enabling the weights of the ANN to be determined. Subsequently, in the calibration

process, the model pricer is replaced with the trained ANN from the previous step,

expediting the overall calibration procedure.

In recent years, machine learning (ML) algorithms have become popular for

forecasting time series. These algorithms utilize intricate mathematical models to

analyze extensive data sets and uncover patterns and connections that might not
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be obvious to human analysts. One of the key advantages of using ANNs as an ML

algorithm is their ability to effectively approximate non-linear functions and handle

multi-dimensional variables. ANNs function as behavioral approximations similar

to the human brain and can be trained with the appropriate number of hidden lay-

ers and computational resources to approximate complex functions. Researchers

have explored using ANNs to estimate parameters for various types of equations,

such as stochastic, ordinary, partial, and uncertain differential equations. However,

the application of ANN in estimating Black-Scholes parameters for modeling op-

tion prices has not been thoroughly investigated. This paper aims to address this

gap by employing an optimized ANN to calibrate the Black-Scholes model using

the Levenberg-Marquardt (LM) optimization method, with performance evalua-

tion based on numerical results. The LM optimization method combines elements

of both the steepest descent and Gauss-Newton algorithms, allowing it to efficiently

navigate complex and nonlinear parameter spaces (see [21]). One of the key advan-

tages of using the LM algorithm for calibration is its ability to handle ill-conditioned

problems and noisy data, making it robust and reliable for a wide range of appli-

cations. Additionally, the algorithm is computationally efficient and can often

converge to a solution faster than other optimization methods.

The adventitious of calibration of ANN model parameters by LM optimization

offers a powerful and versatile tool for refining mathematical models and achieving a

closer alignment between theoretical predictions and real-world data. By iteratively

adjusting the parameter values based on the gradient and curvature of the objective

function, the algorithm converges towards a set of optimal parameter values that

best fit the observed data (see [19]). Calibration algorithms aim to minimize the

error criterion, or loss function, by exploring a range of parameters intelligently.

Previous studies have discussed this approach (see [16]; [20]). The loss function can

be likened to the inverse vega on option market prices, as explored in other works

(see [3]; [11]). One common method for calibrating parametric models, such as the

Heston model and its variations, is using the least squares method on option prices.

When calibrating the proposed ANN model, we aim to minimize the mean square

error (MSE) between option market prices and a semi-analytical solution of option

prices using the LM method.

2 The framework of ANN-based calibration

The architecture of an ANN typically made up of three layers: the input layer, hid-

den layer, and output layer, each containing neurons that are spread out throughout

the network. Research in this field suggests that there is a possibility for the hidden

layer to include multiple layers, rather than just one ( [23]), but some theoretical

studies have shown that using just one hidden layer is sufficient for estimating com-

plex nonlinear functions. Experimental evidence presented by [7] also supports the

idea that using more than one hidden layer can lead to the network getting stuck
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in local minimums, with no significant improvement in forecasting accuracy.

The ANN framework can be viewed as a sequence of functional advancements.

This task involves creating the M linear combinations of the input variables x1, x2
, . . . , xN in the specified form as follows

aj =

N∑
i=1

w
(1)
ji xi + w

(1)
j0 , j = 1, . . . ,M, (1)

where the caption (1), it is specified that the parameters pertain to the input layer of

the ANN structure. The biases and weight vectors are denoted as w(1)ji and w(1)j0,

respectively, while aj represents the activation value. Let h(·) be a differentiable

and nonlinear function serving as the activation function, expressed as:

zj = h(aj). (2)

The biases and weight parameters can be modified according to the activation

function in this scenario. These parameters are influenced by the output of the

activation functions and are assigned to the hidden modules within the structure

of the ANN. The function can be represented as such:

y(X,W ) = f
( M∑

j=1

wjϕj(X)
)
. (3)

The activation functions commonly used to address both non-linear and lin-

ear regression problems include the hyperbolic tangentsigmoid (tansig), logsigmoid

(logsig), and linear (purelin) functions. To calculate the output module activations,

a linear combination of these values is represented as shown in Eq. (2).

ak =

M∑
j=1

w
(2)
kj zj + w

(2)
k0 , k = 1, . . . ,K, (4)

LetK represent the total number of outputs. By applying an appropriate activation

function, the outputs generated by the neuron activations are transformed into a

set of outputs for the ANN, denoted as yk. This function is treated as a regression

problem, where yk is equal to ak. Furthermore, the output neurons are mapped

into multiple binary problems using the ReLu function, thereby ensuring that

yk = σ(ak), (5)

where

σ(a) = max
(
0, a
)
, (6)

Equivalently, a softmax activation function can be expressed as follows

p(Ck | X) =
exp(exp(ak))∑
j exp(exp(aj))

. (7)
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In this study, we consider the inputs of the neural network as an analytical (or

semi-analytical) function of the option price written on a particular asset with value

S on a given day as follows:

xi ≡ C(Λ;S, Ti,Ki), i = 1, 2, . . . , N,

where Λ is the parameters set of the desired option on the ith neuron of the input

layer, and strike price Ki and maturity time Ti on the ith neuron are derived from

market information.

One way to represent the activation function of an ANN is by using the ReLu

function. Here is the expression for it:

Pk = σ
( M∑

j=1

w
(2)
kj h

( N∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
, k = 1, . . . , N. (8)

Let w(2)kj represent the weights connecting neurons from the hidden layer to the

output layer, w(1)ji represent the weights connecting neurons from the input layer

to the hidden layer, and w(1)j0 and w(2)k0 represent the bias values for the hidden

and output layers, respectively. Moreover, h and σ are the output result on the hid-

den and output layer. Assuming thatW := {w(1)
ji , w

(2)
kj , w

(1)
j0 , w

(2)
k0 }k,i=1,...,N,j=1,...,M ,

and by denoting Θ := {W,Λ} as the set of ANN parameters and the option price

function, we provide the estimation of Θ.

Figure 1: A one-hidden-layer neural network used in this study.

The structure of an ANN is determined by a nonlinear function of a vector

of input variables X := xi to the vector of output variables P := Pk, which is

controlled by a vector of adjustable parameters W (see [7]). In this research, the
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identity function is utilized as the activation function connecting the input and

hidden layers in this study. Conversely, the ReLU function is implemented as the

activation function that links the hidden and output layers. The goal of using an

adventious RELu function is to improve the performance of a neural network or

deep learning model by customizing the activation function to better fit the data

and optimize the learning process. Another advantage is that the ReLU function

closely resembles biological reality by disallowing negative values. Consequently,

Eq. (8) can be expressed as follows:

Pk(Θ) = max
[
0,

M∑
j=1

w
(2)
kj

( N∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

]
, k = 1, . . . , N.

To achieve our goal of forecasting option prices, we have structured the ANN as 5

input neurons (related to the option price), 3 hidden neurons (determined through

trial and error), and 1 output neuron (predicting the option price for a specific

market). This configuration is represented as 5-3-1 in Figure 1.

3 The ANN optimized by LM algorithm

To predict option prices, the dataset described in the previous section is divided

into separate parts. There is no universally agreed upon data partition ratio in

the literature. Previous research (such as [27]) found that the selection of data for

training can impact the final outcome of data prediction. To ensure the reliability

of the neural network, it is necessary to implement the algorithm on multiple par-

titions. In this study, the dataset for option prices is divided into an 80-20 ratio,

where the first number represents the percentage of training data and the second

number represents the percentage of test data. The primary goal of the LM algo-

rithm is to minimize the value of a given objective function by iteratively updating

the parameters of the model in the direction that reduces the error between the

predicted and actual values. This is achieved by calculating the gradient of the

objective function and determining the step size in the parameter space that will

result in the greatest reduction in the error. The LM optimization algorithm is a

popular method for performing this parameter update as it combines the strengths

of gradient descent and Gauss-Newton methods for efficient and robust optimiza-

tion (10). This function serves as a generalization of the error function, which helps

accelerate convergence. By determining the optimal values for these parameters,

the model is ready to predict option prices within the neural network structure.

Once all the necessary parameters have been identified, the next step is to de-

termine a suitable approach. A commonly used method is to identify the optimal

parameters that minimize the discrepancy between market prices and model prices.

There are various definitions of this discrepancy, with one common approach being
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to calculate the mean squared error:

Ξ̄ =
1

N

N∑
k=1

| Pk(Θ)− Yk |2

Yk
. (9)

This objective function measures the relative difference between market prices (de-

noted by Yk) and model prices (calculated using a specific set of parameters Θ).

The total number of observations selected for estimation is represented by N . How-

ever, using mean squared error as the objective function has a drawback it may

give disproportionate weight to cheaper options (see [2] and [12]). To address this

issue, we opted to use mean squared errors as follows:

Ξ =
1

N

N∑
k=1

| Pk(Θ)− Yk |2 . (10)

With this revised approach, the goal is to search the parameter space systematically

in order to identify a parameter set that minimizes the mean squared error between

model prices and market prices.

Selecting the right optimization method is a key concern in the optimization

process. Local minimization, for example, relies heavily on an initial guess that is

very close to the true optimal solution. While this approach can be quicker, it often

yields unreliable results due to its dependence on the starting point. The objective

function (10) may not be convex, leading to the presence of multiple local minima,

potentially causing the global minimum to be mistaken for a local minimum. In

contrast, a well-designed global optimization method is capable of bypassing local

minima and accurately pinpointing the global minimum in a more efficient manner.

The calculation of option prices and empirical studies using the ANN model

requires input parameters that are not directly available from the market data. Ac-

cording to a study in [1], the implicit structural parameters can differ significantly

from the estimated parameters obtained from sample data in the time series. It is

crucial to fine-tune the model parameters to ensure that the model’s price aligns

with the market prices. This discrepancy between the market data and the pa-

rameters further complicates the calibration process. In reality, achieving precise

matches of observed prices is unfeasible and lacks significance. As a result, the cal-

ibration issue for the model is treated as a nonlinear optimization challenge. The

objective is to reduce the discrepancy between the option prices calculated by the

model and those traded in the market for a specific set of options. One method to

quantify this discord is by calculating the MSE between the market prices and the

model, resulting in solutions for the nonlinear least square problem.

Let Yi(Ki, Ti) denote the market price of a European call option with strike Ki

and expiry date Ti, and let Pi(Θ,Ki, Ti) be the European call option price computed

by the ANN model using N inputs, treating Black-Scholes equations with maturity

date Tk and strike price Ki for all i = 1, . . . , N . In order to calibrate the model
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parameters, Θ, the residuals for the N option prices are adjusted as follows:

Ei(Θ) :=
1

N

N∑
k=1

| Pi(Θ)− Yi |2, i = 1, . . . , N.

Define the residual vector E(Θ) ∈ Rn×1 as follows:

E(Θ) :=
(
E1(Θ), E2(Θ), . . . , EN (Θ)

)⊤
.

The calibration of the proposed ANN model is treated as a nonlinear least-square

problem given by:

min
Θ∈Rm×1

Ξ(Θ), (11)

where m denotes the total number of parameters, and

Ξ(Θ) =
1

2
∥E(Θ)∥2 =

1

2
E⊤(Θ)E(Θ). (12)

When the number of observations exceeds the number of model parameters, specif-

Algorithm 1 Calibration of designed ANN model by using LM algorithm.

Require: The initial guess Θ0, initial damping factor ϖ0 = ωmax{diag[J0]}, toler-
ance level Tol and ζ0 = 2
Calculate ∥E(Θ0)∥ and J0

for i = 0, 1, 2, . . . do
Obtain Θi values by solving system (14)
Calculate Θi+1 = Θi +∆Θi and ∥E(Θi+1)∥
Calculate ϱ = ∆Θ⊤

i

(
ϖk∆Θi + JiE(Θk)

)
and ϱ′ = ∥E(Θk)∥ − ∥E(Θk+1)∥

if ϱ > 0 and ϱ′ > 0 then
Calculate Ji+1, ϖi+1 = ϖi, ζi+1 = ζi

else
Set ϖi = ϖiζi, ζi = 2ζi and repeat from line 4

end if
if ∥E(Θi)∥ ≤ Tol then
Break

end if
end for

ically when N ≫ m, we are working with an overdetermined system.

The operator that deals with changes along the parameter vector Θ is denoted

as ∇ = ∂/∂Θ, and we use ∇∇⊤ as the Hessian operator.

Let J := (Jji)i=1,...,N,
j=1,...,m

= ∇E⊤ ∈ Rm×n be the Jacobian matrix of the residual

vector E, such that

Jji =

[
∂Ei

∂Θj

]
=

[
∂P (Θ;Ki, Ti)

∂Θj

]
.
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Additionally, we define H(Ei) := ∇abla⊤Ei ∈ Rm×m as the Hessian matrix of each

residual Ei with elements Hjk (Ei) =
[

∂2Ei

∂Θj∂Θk

]
. In accordance with the nonlin-

ear least-square expressions (11) and (12), the gradient and Hessian of Ξ can be

expressed as follows

∇Ξ = JE,

∇∇⊤Ξ = JJ⊤ +

n∑
i=1

EiH(Ei). (13)

The LM algorithm works by minimizing a multi-variable function represented as

the sum of squares of non-linear real-valued functions, as detailed in [21]. Widely

accepted as a standard technique for handling non-linear least-squares problems,

the LM algorithm has been extensively utilized and studied across various fields

within applied mathematics. Depending on the proximity of the current solution

to the optimal one, the algorithm’s behavior can mimic either method. When

the solution is far from optimal, it operates akin to a steepest descent method,

converging slowly. Conversely, when closer to the optimal solution, it transitions

into a Gauss-Newton method. The search step within this algorithm is determined

by calculating

∆Θ = (JJ⊤ +ϖI)−1∇Ξ, (14)

where the damping factor ϖ and the identity matrix I are embedded in the opti-

mization process. The steepest descent and Gauss-Newton methods are employed

by adjusting the parameter ϖ, when the target amount in a particular step deviates

significantly from the optimal value. To achieve this, a substantial value is incre-

mentally applied to ϖ, ensuring that the Hessian matrix is primarily influenced by

a diagonal matrix, like the identity matrix.

∇∇⊤Ξ ≈ ϖI.

When the objective and optimal values are closely clustered at a particular step,

the Gauss-Newton approximation assigns a small value to ϖ in order to dominate

the Hessian matrix. In such situations, we obtain

∇∇⊤Ξ ≈ JJ ⊤, (15)

The second part in equation (13) disappears. Eq. (15) provides a reliable approxi-

mation when Ei or H(Ei) is small. This situation arises in two cases: when dealing

with a small residual problem, or when Ξ exhibits near-linear behavior. It is im-

portant to highlight that this model is expected to yield a minimal residue within

the optimal range; otherwise, it is not a suitable model.
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4 Empirical studies

In this section, we experimentally evaluate the effectiveness of option pricing model

calibration by ANN model , whose inputs are Black-Scholes equations (here we

call this structure ANN-Black-Scholes) with different strike prices and maturity

times. For this purpose, we consider the European call option of the SPX and

VIX markets on trading days 2023-1-27 and 2023-1-31, respectively, with various

strike prices and maturity dates. The calibrated parameters involved in the Black-

Scholes model along with the error measures as mean square error (MSE) and

mean absolute error (MAE) in both in sample and out of sample datasets by two

calibration methods based on the Black-Scholes and ANN-Black-Scholes pricing

models for the SPX and VIX markets are presented in Tables 1 and 2, respectively.

It should be noted that the in sample refers to data that was used to train and

develop a model, while out of sample refers to data that was not used during the

training phase and is used to test the model’s performance on new and unseen data.

We can see the graphical representation of these results in Figures 2-7. As can be

seen from these tables and figures, the calibration of the option pricing model by

the ANN-Black-Scholes structure is more accurate and can be used in practice for

the pricing of financial options.

Table 1: Assessing the accuracy of the in sample and out of sample dataset obtained
by the Black-Scholes and ANN-Black-Scholes models calibrated from the European
option price in SPX market on trading day 2023-1-27.

In sample Out of sample

Maturity date MSE MAE MSE MAE Parameter estimation

Black-Scholes model

2023-1-31 0.7535 0.6222 0.2439 0.4018 r = 0.1249, σ = 0.1397

2023-2-9 17.8782 3.7194 117.2197 10.6777 r = 0.0885, σ = 0.0739

2023-3-3 70.5238 7.7238 350.7596 18.4467 r = −0.1140, σ = 0.3098

ANN-Black-Scholes model

2023-3-3 0.6207 0.5892 0.0991 0.1728 r = 0.3043, σ = 0.1228

2023-2-9 4.4464 1.7502 4.8920 2.1838 r = 0.1699, σ = 0.1779

2023-3-3 4.2334 1.5310 19.5738 4.2802 r = 0.1269, σ = 0.0003

The tables and figures presented clearly demonstrate the superior calibration of

the option pricing model using the ANN- Black-Scholes structure. When compar-

ing the predicted option prices to the actual market prices, the ANN-Black-Scholes

model consistently outperformed traditional Black-Scholes and other pricing mod-

els. This level of accuracy is crucial in the financial industry, where small discrepan-

cies in option pricing can have significant financial implications. By incorporating

the ANN technology into the Black-Scholes framework, financial institutions and in-

vestors can have more confidence in the prices they are using to value options. This
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Table 2: Assessing the accuracy of the in sample and out of sample dataset obtained
by the Black-Scholes and ANN-Black-Scholes models calibrated from the European
option price in VIX market on trading day 2023-1-31.

In sample Out of sample

Maturity date MSE MAE MSE MAE Parameter estimation

Black-Scholes model

2023-1-31 0.4245 0.5972 0.2043 0.4519 r = 0.0013, σ = 0.6631

2023-2-9 0.4450 0.6607 0.2255 0.4740 r = 0.5133, σ = 0.5381

2023-3-3 0.7162 0.5891 0.4751 0.6892 r = 0.0599, σ = 0.2503

ANN-Black-Scholes model

2023-3-3 0.2069 0.4037 0.0338 0.1522 r = 0.1802, σ = 0.5793

2023-2-9 0.0880 0.2461 0.0118 0.0880 r = 0.1251, σ = 0.0259

2023-3-3 0.2221 0.4103 0.2961 0.4453 r = 0.6178, σ = 0.1454
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Figure 2: Evaluating accuracy of calibrated Black-Scholes (yellow color) and ANN
equipped with Black-Scholes models (orange color) with European option price in
SPX market (blue color) from 2023-1-27 with maturity date 2023-1-31.

enhanced accuracy also opens up opportunities for more complex option strategies

that may have been previously viewed as too risky due to uncertainties in pric-

ing. With the ANN-Black-Scholes model, traders and investors can have greater

certainty in the pricing of these more advanced options, allowing for more sophis-

ticated investment strategies. The results presented in these tables and figures

provide strong evidence that the calibration of the option pricing model by the

ANN-Black-Scholes structure is not only more accurate but also practical for use

in real-world financial applications. This advancement in option pricing technology

has the potential to revolutionize the way options are priced and traded in the

financial markets.
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For American options, which allow for early exercise, our method would need to

be modified to account for the additional complexity of determining the optimal

exercise strategy. This could potentially be achieved by incorporating decision

tree algorithms or reinforcement learning techniques into our hybrid structure. By

optimizing the neural network to better capture the dynamics of early exercise,

we could improve the accuracy of our calibration for American options. Moreover,

for exotic options, which have non-standard payoff structures, our method could

be extended by training the neural network on a wider range of exotic option

types and payoffs. By incorporating more exotic payoffs into the training data,

our neural network could learn to better approximate the pricing of these complex

options. Additionally, we could explore the use of Monte Carlo simulations or

other numerical methods to better model the behavior of exotic options within

our hybrid structure. By continually refining and expanding the capabilities of our

method through the incorporation of advanced techniques and data, we believe that

our hybrid structure could be extended to effectively calibrate pricing models for a

broader range of option types, including American and exotic options.

We believe that in the future, ML models built on recurrent neural network

(RNN) or convolutional neural network (CNN) could replace the neural network

model used in the current calibration framework. There are several potential ben-

efits to experimenting with different neural network architectures such as RNN or

CNNs for calibrating European option pricing models. One benefit is that these

architectures may be better suited to capturing non-linear relationships and com-

plex patterns in the data. RNNs, for example, are particularly good at capturing

sequential dependencies in time-series data, which could be relevant for modeling

the dynamics of option prices over time. CNNs, on the other hand, are adept at

capturing spatial patterns in data, which could be useful for identifying spatial

correlations in option pricing data. Another benefit is that experimenting with

different neural network architectures could potentially improve the accuracy and

performance of the pricing model. Each architecture has its own strengths and

weaknesses, and by exploring different options, researchers may be able to find a

model that better fits the specific characteristics of the data they are working with.

Additionally, using a hybrid approach that combines the strengths of different neu-

ral network architectures with the Black-Scholes model could lead to a more robust

and accurate pricing model. For example, the Black-Scholes model may be good

at capturing the underlying fundamentals of option pricing, while a neural network

could help to improve the model’s ability to capture complex patterns and dynam-

ics in the data. Exploring different neural network architectures for calibrating

option pricing models could open up new possibilities for improving the accuracy

and performance of these models, and may lead to more reliable pricing estimates

in the long run.
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Figure 3: Evaluating accuracy of calibrated Black-Scholes (yellow color) and ANN
equipped with Black-Scholes models (orange color) with European option price in
SPX market (blue color) from 2023-1-27 with maturity date 2023-2-9.
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Figure 4: Evaluating accuracy of calibrated Black-Scholes (yellow color) and ANN
equipped with Black-Scholes models (orange color) with European option price in
SPX market (blue color) from 2023-1-27 with maturity date 2023-3-3.

5 Conclusion

In this study, we have proposed an optimized artificial neural network approach

for calibrating European option pricing models when its inputs were Black-Scholes

models with various strike prices and maturity dates. By training the neural net-

work on a dataset of option prices using LM optimization algorithm, we were able to

effectively capture the complex relationships between the input parameters and the

corresponding option prices. The empirical results on European call option of SPX

and VIX markets demonstrated that the optimized neural network significantly

outperforms traditional calibration methods in terms of accuracy and efficiency.

The neural network was able to effectively learn the underlying patterns in the
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Figure 5: Evaluating accuracy of calibrated Black-Scholes (yellow color) and ANN
equipped with Black-Scholes models (orange color) with European option price in
VIX market (blue color) from 2023-1-31 with maturity dates 2023-2-8 and 2023-2-
15.
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Figure 6: Evaluating accuracy of calibrated Black-Scholes (yellow color) and ANN
equipped with Black-Scholes models (orange color) with European option price in
VIX market (blue color) on trading day 2023-1-31 with maturity dates 2023-2-22
and 2023-3-1.

Black-Scholes model and accurately predict option prices for a wide range of strike

prices and maturity dates. Our findings suggested that artificial neural networks

can provide a valuable tool for calibrating option pricing models and improving

the accuracy of pricing calculations in the financial industry. This approach has

the potential to enhance risk management practices and decision-making processes

for investors and traders. Further research could explore the application of neu-

ral networks in other areas of options pricing and financial modeling to continue

advancing the field.
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Figure 7: Evaluating accuracy of calibrated Black-Scholes (yellow color) and ANN
equipped with Black-Scholes models (orange color) with European option price in
VIX market (blue color) from 2023-1-31 with maturity dates 2023-3-22 and 2023-
4-19.
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Driven by General Lévy Process. In: Annales de lISUP, Institut de statistique de lUniversitt’e
de Paris 53: 3-18.

[26] Wang, X., He, X., Bao, Y., & Zhao, Y. (2018). Parameter estimates of Heston stochas-
tic volatility model with MLE and consistent EKF algorithm. Science China Information
Sciences, 61, 1-17.

[27] Witten I. H., & Frank, E. (2005). Data mining: practical machine learning tools and tech-
niques (Data management systems). San Mateo: Morgan Kaufmann.

[28] Wu, Y., Hu, J., & Zhang, X. (2019). Moment estimators for the parameters of Ornstein-
Uhlenbeck processes driven by compound Poisson processes. Discrete Event Dynamic Sys-
tems, 29, 57-77.

[29] Xie, Z., Kulasiri, D., Samarasinghe, S., & Rajanayaka, C. (2007). The estimation of parame-
ters for stochastic differential equations using neural networks. Inverse Problems in Science
and Engineering, 15(6), 629-641.

[30] Zhang, S., Zhang, X., & Sun, S. (2006). Parametric estimation of discretely sampled Gamma-
OU processes. Science in China Series A: Mathematics, 49, 1231-1257.

How to Cite: Farshid Mehrdoust1, Maryam Noorani2, Calibration of European option pricing
model using a hybrid structure based on the optimized artificial neural network and
Black-Scholes model, Journal of Mathematics and Modeling in
Finance (JMMF), Vol. 4, No. 1, Pages:67–82, (2024).

The Journal of Mathematics and Modeling in Finance (JMMF) is licensed under a

Creative Commons Attribution NonCommercial 4.0 International License.


