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Abstract:
This paper investigates the complexities surrounding uncertain portfolio
selection in cases where security returns are not well-represented by histor-
ical data. Uncertainty in security returns is addressed by treating them
as uncertain variables. Portfolio selection models are developed using the
quadratic-entropy of these uncertain variables, with entropy serving as a
standard measure of diversification. Additionally, the study underscores
the superior risk estimation accuracy of Average Value-at-Risk (AVaR)
compared to variance. The research concentrates on the computational
challenges of portfolio optimization in uncertain environments, utilizing the
Mean-AVaR-Quadratic Entropy paradigm to meet investor requirements
and assuage concerns. Two illustrative examples are provided to show the
efficiency of the proposed models in this paper.
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1 Introduction

The primary objective of the optimum portfolio selection theory is to maximize the

profits of investors by considering a range of alternative investments based on their

individual preferences. Initially, the mean-variance model developed by Markowitz

served as the foundation for addressing the portfolio selection problem [33]. Numer-

ous research have subsequently been conducted to explore portfolio optimization

within the context of these two moments of the return distribution [45]. Subsequent
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to this, extensive research has been conducted to explore diverse methodologies that

can be employed to model investment risk, aiming to achieve a more accurate esti-

mation of risk. For instance, previous studies have utilised risk functions or Value

at Risk (VaR) measures such as [2, 4, 5, 13, 24, 38, 39, 44, 47, 49]. However, VaR suf-

fers from certain limitations. Firstly, it fails to provide information regarding the

magnitude of losses exceeding the VaR level. Additionally, VaR does not satisfy

the coherence criterion. Consequently, the concept of average value-at-risk (AVaR)

has emerged as an alternative risk measure.

The proposal of AVaR is suggested as a potential solution to address the inher-

ent issues associated with VaR. VaR, being a risk measure that lacks coherence

in general, necessitates the introduction of AVaR as a more suitable alternative.

In numerous articles, alternative terms such as conditional Value-at-Risk (CVaR),

Tail Value-at-Risk (TVaR), or Expected Shortfall (ES) are employed to refer to the

same concept [6, 23, 40, 42]. However, for the purpose of this discussion, we will

adopt the term average value-at-risk (AVaR) as it more accurately captures the

essence of the variable under consideration. Risk is derived from the presence of

uncertainty, which may be categorised into two main types: objective uncertainty

and subjective uncertainty. Stochasticity is a fundamental form of objective un-

certainty, whereas probability theory serves as a mathematical discipline dedicated

to the analysis of the characteristics and dynamics of random events. The conven-

tional risk metric known as Value at Risk (VaR) or Average Value at Risk (AVaR)

has typically been introduced within a stochastic framework. The present research

introduces the concept of the credibilistic AVaR as a novel risk measure, offering a

more advantageous alternative to VaR within the framework of uncertainty theory

as proposed by Liu [27]. Numerous manuscripts addressing optimal portfolio selec-

tion problems have been published, highlighting the insufficiency of relying solely

on average and variance, or alternative risk estimators such as AVaR, for determin-

ing the optimal portfolio allocation.

In conventional practice, it has been widely accepted that security returns exhibit

stochastic behaviour, hence necessitating the application of probability theory as

the primary means for achieving optimal portfolio selection. However, it is evident

that the effectiveness of security measures is influenced by a range of factors, such

as social, political, economic, human cognitive, and notably psychological factors.

Research has demonstrated that historical data does not well capture short-term

security returns. Empirical data suggests that the probability distribution of under-

lying asset returns exhibits greater peaks and heavier tails compared to the normal

distribution. Furthermore, it is observed that the first two moments alone are inad-

equate in characterising this distribution. Several studies have employed fuzzy vari-

ables as a means to address the aforementioned problems [1,10,12,25,32]. However,

the utilisation of fuzzy variables has been found to present certain paradoxes [19,30].

Consequently, the concept of uncertainty theory has garnered significant attention,

leading many researchers to incorporate Liu’s uncertain measurement theory into
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their portfolio selection models [15–18,34,36,50].

To assess diversification, entropy serves as a widely accepted measure of diver-

sity [11,14,20–22,37,41,46]. It is recognized that a higher entropy value in portfo-

lio weights indicates a greater level of portfolio diversification. Previous literature

has explored the use of entropy as an objective function in multi-objective model

portfolio selection [20, 21, 41, 46]. Furthermore, Bera and Park [3] have presented

asset allocation models that utilize entropy and cross entropy measures to generate

well-diversified portfolios. When entropy is employed as an objective function to

determine portfolio weights, the resulting weights are automatically non-negative.

This means that an entropy-based model naturally avoids short-selling, which can

be a desirable situation in portfolio selection for both theoretical and practical rea-

sons [7,8, 43].

Some studies recently applied different kinds of entropy with respect to portfolio

optimization in uncertain environments [26,31,35,48]. Dai in [9] defined quadratic

entropy which has wider range and much easier to compute, compared with other

traditional kinds of entropy. So in this manuscript Mean-AVaR-quadratic entropy

is utilized to meet investor requirements and assuage concerns.

First, we verify the uncertain model in the framework of uncertain theory for

portfolio selection by considering uncertain returns. Second, AVaR is considered

as risk, and replaced Average Value-at-Risk instead of variance and add quadratic

entropy to the mean-AVaR model in an uncertain environment and create a mean-

AVaR-quadratic entropy uncertain portfolio optimization model. The uncertain

mean-AVaR-quadratic entropy model will be formulated to get the basic opinion

of accounting return, risk, entropy simultaneously in the portfolio optimization

problem in general.

The present paper is structured in the following manner. In Section 2, a com-

prehensive understanding of uncertain variables will be acquired by a thorough

examination of relevant knowledge. Following this, Section 3 will delve into the

examination and AVaR and validation of quadratic entropy pertaining to three

distinct categories of uncertain returns. In the fourth section, many models have

been developed to address portfolio selection within the framework of mean-AVaR-

quadratic entropy. In Section 5, two examples are employed to illustrate the efficacy

of the suggested approach. In Section 6, a set of concluding remarks are presented.

2 Preliminaries

Consider Γ be a non-empty set, and define the σ -algebra L be a collection of all

the events Θ ∈ L over Γ. It could be defined as a function that for each event

Θ return M{Θ} which indicates the belief degree which means that we believe Θ

will occur. Liu [27] offered the following five axioms, in order to define uncertain

measure in an axiomatic form, to ensure that the number M{Θ} is not arbitrary

and has special mathematical properties;
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1: (Normality axiom) M(Γ) = 1 ;

2: (Monotonicity axiom) M(Θ1) ≤ M(Θ2) every where Θ1 ⊆ Θ2 ;

3: (Duality axiom) M(Θ) +M(Θc) = 1 for every event Θ;

4: (Subadditivity axiom) For each sequence of events {Θj} that can be counted,

we have

M(

∞⋃
j=1

Θj) ≤
∞∑
j=1

M(Θj)

Definition 2.1. [28]. The set function M which satisfies the above axioms, is called

an uncertain measure.

Definition 2.2. [28]. Consider Γ be a non-empty set, the σ-algebra L be a collection

of all the events over Γ, and M be an uncertain measure according to the above

definition, the triple (Γ, L,M) is named an uncertain space.

5: (Product Measure Axiom) [28]. Let the triple (Γk, Lk,Mk) for k = 1, 2, ..., n,

where Γ = Γ1×Γ2× ... and L = L1×L2× ... be uncertainty spaces, then it satisfyed

in

M(

∞∏
k=1

Θk) ≤
∞∧
k=1

Mk(Θk)

Where Θk, are arbitrary events and chosen from Lk for k = 1, 2, ..., n, respectively.

Definition 2.3. [28]. The uncertainty distribution for an uncertain variable such

as η is defined by function Φ : R → [0, 1] that Φ(x) = M{η ≤ x}.

Theorem 2.4. [29] Let Φ1,Φ2, ...,Φn be uncertainty distributions of independent

uncertain variables η1, η2, ..., ηn, respectively. If f(t1, t2, ..., tn) be increasing strictly.

Then

η = f(η1, η2, ..., ηn), (1)

is an uncertain variable with uncertainty distribution

Ψ(t) = sup
f(t1,t2,...,tn)=t

(
min

1≤i≤n
Φi(ti)

)
, t ∈ R, (2)

and following inverse function

Ψ−1(α) = f [Φ−1
1 (α),Φ−1

2 (α), ...,Φ−1
n (α)], (3)

Where Φ−1
1 (α),Φ−1

2 (α), ...,Φ−1
n (α) are unique for each α ∈ (0, 1).

Definition 2.5. [27]. The expected value of an uncertain variable η is defined by

E[η] =

∫ ∞

0

M{η ≥ r}dr −
∫ 0

−∞
M{η ≤ r}dr, (4)

while at least one of the above integrals be finite.
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Theorem 2.6. [29]. Let a1 and a2 be real numbers and η1 and η2 be independent

uncertain variables where them expected values are finite, then we have

E[a1η1 + a2η2] = a1E[η1] + a2E[η2]. (5)

Definition 2.7. [28](Liu 2009a) The entropy of an uncertain variable with an un-

certainty distribution Φ is denoted as

H[ξ] =

∫ ∞

−∞
S(Φ(x))dx, (6)

where S(t) = −tlnt− (1− t)ln(1− t).

In order to quantify the uncertainty related to event A, the term S(M{A})
is utilized. To establish a precise definition of entropy, it is sufficient to choose

a function S(t) that exhibits an increasing trend on the interval [0, 0.5] and a

decreasing trend on the interval [0.5, 1]. Consequently, drawing inspiration from

Vajda (1968)’s quadratic entropy, Dai endeavor to define a quadratic entropy within

the context of uncertainty theory.

Definition 2.8. [9] The quadratic entropy, denoted as Q[ξ], characterizes the uncer-

tainty of an uncertain variable, represented by ξ, with an uncertainty distribution

of Φ, and defined by

Q[ξ] =

∫ ∞

−∞
(Φ(t))(1− Φ(t))dt, (7)

The simplicity in calculating quadratic entropy is apparent when contrasted with

traditional entropy.

Theorem 2.9. [9] Let ξ be an uncertain variable taking values on the interval [a, b].

Then

Q[ξ] ≤ b− a

4

and equation holds if ξ has an uncertainty distribution Φ(t) = 0.5 on [a, b].

Proof. The theorem follows from the fact that the function Φ(t)(1− Φ(t)) reaches

its maximum 1
4 at Φ(t) = 0.5. Quadratic entropy has a wider range in measuring

the information deficiency. Firstly, we shows that for any given uncertain variable,

its quadratic entropy is less than its entropy.

Theorem 2.10. [9] Let ξ be an uncertain variable. Then its entropy H[ξ] is greater

than its quadratic entropy Q[ξ].

Proof. For any 0 ≤ t ≤ 1, we have

−ln t ≥ 1− t

2
.
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It implies that

−t ln t− (1− t)ln(1− t) ≥ t(1− t)

2
+

(1− t)t

2
≥ t(1− t).

For all x, we have 0 ≤ Φ(x) ≤ 1. It follows that

Q[ξ] =

∫ +∞

−∞
Φ(x)(1− Φ(x))dx

≤
∫ +∞

−∞
−Φ(x)lnΦ(x)− (1− Φ(x))ln(1− Φ(x))dx

= H[ξ].

The theorem is proved.

The above theorem and example imply that quadratic entropy has a wider range,

compared with traditional entropy, in measuring the information deficiency.

Theorem 2.11. [9] Given that ξ represents an uncertain variable, and k is a real

number. Then

Q[ξ + k] = Q[k]. (8)

In other words, the quadratic entropy remains unchanged regardless of the transla-

tions applied.

Proof. Given that ξ is characterized by an uncertainty distribution Φ, it can be

inferred that the uncertain variable ξ + k will possess an uncertainty distribution

Φ(t− k). This conclusion is based on the definition of quadratic entropy as

Q[ξ + k] =

∫ ∞

−∞
(Φ(t− k))(1− Φ(t− k))dt =

∫ ∞

−∞
(Φ(t))(1− Φ(t))dt = Q[ξ], (9)

The theorem is proved.

Theorem 2.12. [9] Assume ξ is an uncertain variable with regular uncertainty

distribution Φ. If the quadratic entropy Q[ξ] exists, then

Q[ξ] =

∫ 1

0

(Φ−1(α))(2α− 1)dα. (10)

Theorem 2.13. [9] Let ξ and η be independent uncertain variables. Then for any

real numbers a and b, we have

Q[aξ + bη] = |a|Q[ξ] + |b|Q[η]. (11)

Theorem 2.14. [9] Let ξ be an uncertain variable with expected value e and variance

σ. Then

Q[ξ] ≤ σ√
3
. (12)

and the equality holds if and only if it is a linear uncertain variable L(e−
√
3σ, e+√

3σ).
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Definition 2.15. Let λ ∈ (0, 1] be a confidence level and η be an uncertain variable,

Then the function V aR : (0, 1] → R denotes Value-at-Risk of η, and defined by

V aR(λ) = sup{x|M{η ≥ x} ≥ λ}.

Theorem 2.16. For the risk confidence level λ ∈ (0, 1],

V aR(λ) = Φ−1(1− λ),

where Φ−1(1− λ) denotes the inverse of uncertainty distribution function Φ(λ).

Definition 2.17. Let λ ∈ (0, 1] be the confidence level for an uncertain variable η,

then the function AV aR : (0, 1] → R denotes the average Value-at-Risk of η, and

defined by

AV aR(λ) =
1

λ

∫ λ

0

V aR(γ)dγ.

3 explanation of the problem

Consider for α < β, η ∼ L(α, β) be a linear uncertain variable.

i) The expected value of η is obtained as

E[η] =
α+ β

2
(13)

ii) The Value-at-risk of η is obtained as

V aR(λ) = λα+ (1− λ)β, 0 ≤ λ ≤ 1. (14)

iii) The Average Value-at-risk of η is obtained as

AV aR(λ) =
λα

2
+ (1− λ

2
)β, 0 ≤ λ ≤ 1. (15)

iV) The quadratic entropy of η is obtained as

Q(η) =
β − α

6
. (16)

Proof. i)It is known that the uncertainty distribution of the linear uncertain vari-

able η is [27]

Φ(τ) =


0, τ ≤ α,
τ−α
β−α , α ≤ τ ≤ β,

1, τ ≥ β.

(17)

So

Φ−1(τ) = τβ + (1− τ)α. (18)
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Using (4),

E[η] =

∫ +∞

0

(1− Φ(τ))dτ −
∫ 0

−∞
Φ(τ)dτ. (19)

then, if α ≥ 0,

E[η] = (

∫ α

0

1dτ +

∫ β

α

(1− τ − α

β − α
)dτ +

∫ +∞

β

0dτ)−
∫ 0

−∞
0dτ =

α+ β

2
(20)

If β ≤ 0,

E[η] =

∫ +∞

0

0dτ − (

∫ α

−∞
0dτ +

∫ β

α

τ − α

β − α
dτ +

∫ 0

β

1dτ) =
α+ β

2
(21)

If α ≤ 0 ≤ β,

E[η] =

∫ β

0

(1− τ − α

β − α
)dτ +

∫ 0

α

τ − α

β − α
dτ =

α+ β

2
(22)

Thus

E[η] =
α+ β

2
(23)

ii)Using (18),

Φ−1(1− τ) = (1− τ)β + ατ. 0 ≤ τ ≤ 1. (24)

Then using theorem (2.16), the proof is obvious.

iii)Using (2.17) and (24), for 0 ≤ λ ≤ 1,

AV aR(λ) =
1

λ

∫ λ

0

V aR(γ)dγ

=
1

λ

∫ λ

0

(αγ + β(1− γ)dγ

=
λα

2
+ (1− λ

2
)β.

iv) Using definition (2.8),

Q(η) =

∫ β

α

(
τ − α

β − α
.
β − τ

β − α
)dτ =

β − α

6
.

Consider for a < b < c, η ∼ Z(a, b, c) be a Zigzag uncertain variable.

i) The expected value of η is obtained as

E[η] =
a+ 2b+ c

4
(25)
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ii) The Value-at-risk of η is obtained as

V aR(λ) =

{
(2λ− 1)a+ (1− λ)2b, 0 < λ ≤ 1

2 ,

2bλ+ (1− 2λ)c, 1
2 ≤ λ < 1.

(26)

iii) AVaR of η is obtained as

AV aR(λ) =

{
(1− λ

2 )2b+ a(λ− 1), 0 < λ ≤ 1
2 ,

1
4λ (2b− a)− λc+ bλ, 1

2 ≤ λ < 1.
(27)

iV) The quadratic entropy of η is obtained as

Q(η) =
c− a

6
. (28)

Proof. i)It is known that the uncertainty distribution of the Zigzag uncertain vari-

able η is [27]

Φ(τ) =


0, τ ≤ a,
τ−a

2(b−a) , a ≤ τ ≤ b,
τ+c−2b
2(c−b) , b ≤ τ ≤ c,

1, τ ≥ c.

(29)

So

Φ−1(τ) =

{
2bτ − a(2τ − 1), 0 ≤ τ ≤ 1

2 ,

2b(1− τ) + c(2τ − 1), 1
2 ≤ τ ≤ 1.

(30)

Using (4),

E[η] =

∫ +∞

0

(1− Φ(τ))dτ −
∫ 0

−∞
Φ(τ)dτ.

then, if a ≥ 0,

E[η] = (

∫ α

0

1dτ +

∫ b

a

2b− τ − a

2(b− a)
dτ +

∫ c

b

c− τ

2(c− b)
dτ +

∫ +∞

c

0dτ)−
∫ 0

−∞
0dτ =

a+ 2b+ c

4

If a ≤ 0 ≤ b,

E[η] =

∫ b

0

2b− a− τ

2(b− a)
dτ +

∫ c

b

c− τ

2(c− b)
dτ +

∫ +∞

c

0dτ −
∫ a

−∞
0dτ −

∫ 0

a

τ − a

2(b− a)
dτ =

a+ 2b+ c

4
.

If b ≤ 0 ≤ c,

E[η] =

∫ c

0

c− τ

2(c− b)
dτ +

∫ +∞

c

0dτ −
∫ a

−∞
0dτ −

∫ b

a

τ − a

2(b− a)
dτ −

∫ 0

b

τ + c− 2b

2(c− b)
dτ =

a+ 2b+ c

4
.
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If c ≤ 0,

E[η] =

∫ +∞

0

0dτ −
∫ a

−∞
0dτ −

∫ b

a

τ − a

2(b− a)
dτ −

∫ c

b

τ + c− 2b

2(c− b)
dτ −

∫ 0

c

1dτ =
a+ 2b+ c

4
.

Thus

E[η] =
a+ 2b+ c

4
.

ii)Using (30),

Φ−1(1− τ) =

{
2b(1− τ)− a(2τ − 1), 0 < τ ≤ 1

2 ,

2bτ + c(1− 2τ), 1
2 ≤ τ < 1.

Then using theorem (2.16), the proof is obvious.

iii)Using (2.17) and (24), for 0 < λ ≤ 1
2 ,

AV aR(λ) =
1

λ

∫ λ

0

V aR(γ)dγ

=
1

λ

∫ λ

0

2b(1− γ)− a(2γ − 1)dγ

= 2b(1− λ

2
) + a(λ− 1).

and for 1
2 ≤ λ < 1,

AV aR(λ) =
1

λ

∫ λ

0

V aR(γ)dγ

=
1

λ
(

∫ 1
2

0

2b(1− γ)− a(2γ − 1)dγ +

∫ λ

1
2

((1− 2γ)c+ 2bγ)dγ)

= 2b(1− λ

2
) + a(λ− 1).

iv) Using definition (2.8),

Q(η) =

∫ b

a

(
τ − a

2(b− a)
.
2b− a− τ

2(b− a)
)dτ +

∫ c

b

(
τ + c− 2b

2(c− b)
.
c− τ

2(c− b)
)dτ =

c− a

6
.

Consider a Normal uncertain variable η ∼ N(e, σ) where e, σ > 0.

i) The expected value of η is obtained as

E[η] = e. (31)

ii) The VaR of η is obtained as

V aR(λ) = e−
√
3σ

π
ln

λ

1− λ
(32)
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iii) The AVaR of η is obtained as

AV aR(λ) = eλ−
√
3σ

π
[λlnλ+ (1− λ)ln(1− λ)] (33)

iv) The quadratic entropy of η is obtained as

Q(η) =

√
3σ

π
. (34)

Proof. i)It is known that the uncertainty distribution of the normal uncertain vari-

able η is [27]

Φ(τ) =
(
1 + exp(

π(e− τ)√
3σ

)
)−1

, τ ∈ R, (35)

So

Φ−1(τ) = e−
√
3σ

π
ln

1− τ

τ
(36)

Using (4),

E[η] =

∫ +∞

0

(1− Φ(τ))dτ −
∫ 0

−∞
Φ(τ)dτ.

Then,

E[η] =

∫ +∞

0

1−
(
1 + exp(

π(e− τ)√
3σ

)
)−1

dτ −
∫ 0

−∞

(
1 + exp(

π(e− τ)√
3σ

)
)−1

dτ = e.

ii)Using (36),

Φ−1(1− τ) = e−
√
3σ

π
ln

τ

1− τ
(37)

Then using theorem (2.16), the proof is obvious.

iii)Using (2.17) and (37),

AV aR(λ) =
1

λ

∫ λ

0

V aR(γ)dγ

=
1

λ

∫ λ

0

(e−
√
3σ

π
lnγ +

√
3σ

π
ln(1− γ))dγ

= eλ−
√
3σ

π
[λlnλ+ (1− λ)ln(1− λ)].

iv) Using definition (2.8),

Q(η) =

∫ ∞

−∞
(1 + e

π(e−τ)√
3σ )−1(1− (1 + e

π(e−τ)√
3σ )−1)dτ =

√
3σ

π
.
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4 Portfolio Selection Problem

Markowitz models had considered the security returns as random variables. As

explained in the introduction, there are situations that returns of securities may be

uncertain variables. In these cases, uncertain variables will be used to describe the

security returns. Let ηi denotes uncertain return of the ith security, and xi repre-

sents the proportion of investment in the ith security, and the given risk confidence

level is denoted by λ ∈ (0, 1]. The investment return is determined by the expected

value and risk by AVaR of a portfolio.

One of the problems in portfolio optimization is minimizing the Average Value at

Risk (AVaR) in order to reduce risk at a given expected return level ϑ that investors

find acceptable. To assess diversification, entropy serves as a widely accepted mea-

sure of diversity. It is recognized that a higher entropy value in portfolio weights

indicates a greater level of portfolio diversification, so quadratic entropy is admis-

sible more than ϱ. In this case, the portfolio optimization model can be displayed

as

minimize AV aR[

n∑
i=1

xiηi] (38)

subject to


E[
∑n

i=1 xiηi] ≥ ϑ,

Q[
∑n

i=1 xiηi] ≥ ϱ,∑n
i=1 xi = 1,

xi ≥ 0, i = 1, 2, ..., n.

Alternatively, another portfolio selection problem can be maximizing expected re-

turn on the limitation that the risk which denotes by AVaR does not overpass a

preset risk level ϖ and quadratic entropy is admissible more than ϱ in advance.

This optimization model becomes as

maximize E[

n∑
i=1

xiηi] (39)

subject to


AV aR[

∑n
i=1 xiηi] ≤ ϖ,

Q[
∑n

i=1 xiηi] ≥ ϱ,∑n
i=1 xi = 1,

xi ≥ 0, i = 1, 2, ..., n.

This optimization problem can be formulated in some other different kinds, such

as maximizing entropy or multi-objective programming model as

maximize E[
∑n

i=1 xiηi]

maximize Q[
∑n

i=1 xiηi]

minimize AV aR[
∑n

i=1 xiηi]

(40)
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subject to

{ ∑n
i=1 xi = 1.

xi ≥ 0, i = 1, 2, ..., n.

In order to solve this problem, consider wi, i = 1, 2, 3, 4 be positive real numbers

which indicate the weights of the three appropriated objectives, and wi ∈ [0, 1], so

this multi-objective model can be transformed into a single-objective optimization

model as

minimize w1AV aR[
∑n

i=1 xiηi]− w2E[
∑n

i=1 xiηi]− w3Q[
∑n

i=1 xiηi] (41)

subject to

{ ∑n
i=1 xi = 1.

xi ≥ 0, i = 1, 2, ..., n.

Note that if x∗ be an optimal solution of model (41), then x∗ will be a pareto

optimal solution of multi-objective programming model (40).

Theorem 4.1. Let ηi ∈ L(αi, βi) for i = 1, 2, ..., n be a linear uncertain variable,

and 0 < λ ≤ 1. Then model (38) can be changed to the crisp equivalent as following

form

minimize

n∑
i=1

xi(
λαi

2
+ (1− λ

2
)βi) (42)

subject to



∑n
i=1 xi(

αi + βi
2

) ≥ ϑ,∑n
i=1 xi(

βi − αi

6
) ≥ ϱ,∑n

i=1 xi = 1,

xi ≥ 0, i = 1, 2, ..., n.

and model (39) can be changed to the crisp equivalent as following form

maximize

n∑
i=1

xi(
αi + βi

2
) (43)

subject to



∑n
i=1 xi(

λαi

2 + (1− λ

2
)βi) ≤ ϖ,∑n

i=1 xi(
βi − αi

6
) ≥ ϱ,∑n

i=1 xi = 1,

xi ≥ 0, i = 1, 2, ..., n.

Proof. Since, all of uncertain variables are linear in this mean that ηi ∈ L(αi, βi)

for i = 1, 2, ..., n. Moreover, the expected value have obtained as E[
∑n

i=1 xiηi] =
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∑n
i=1 xi(

αi + βi
2

) and the variance AV aR[
∑n

i=1 xiηi] =
∑n

i=1 xi(
λαi

2 + (1 − λ

2
)βi)

and the quadratic entropy Q[
∑n

i=1 xiηi] =
βi − αi

6
. Substituting the above formu-

las into model (38) and (39), the theorem will be proved.

Theorem 4.2. Let ηi ∈ N(ei, σi) for i = 1, 2, ..., n be a Normal uncertain variable,

and 0 < λ ≤ 1. Then model (38) can be changed to the crisp equivalent as following

form

minimize

n∑
i=1

xi(eiλ−
√
3σi
π

[λlnλ+ (1− λ)ln(1− λ)]) (44)

subject to


∑n

i=1 xiei ≥ ϑ,∑n
i=1 xi(

√
3σi

π ) ≥ ϱ,∑n
i=1 xi = 1,

xi ≥ 0, i = 1, 2, ..., n.

and model (39) can be changed to the crisp equivalent as following form

maximize

n∑
i=1

xiei (45)

subject to


∑n

i=1 xi(eiλ−
√
3σi

π [λlnλ+ (1− λ)ln(1− λ)]) ≤ ϖ,∑n
i=1 xi(

√
3σi

π ) ≥ ϱ,∑n
i=1 xi = 1,

xi ≥ 0, i = 1, 2, ..., n.

Proof. Since, all of uncertain variables are Normal in this mean that ηi ∈ N(ei, σi)

for i = 1, 2, ..., n. Moreover, the expected value have obtained as E[
∑n

i=1 xiηi] =∑n
i=1 xiei and the variance AV aR[

∑n
i=1 xiηi] =

∑n
i=1 xi(eiλ −

√
3σi

π [λlnλ + (1 −
λ)ln(1− λ)]) and the quadratic entropy Q[

∑n
i=1 xiηi] =

∑n
i=1 xi(

√
3σi

π ). Substitut-

ing the above formulas into model (38) and (39), the theorem will be proved.

5 Numerical Example

Example 5.1. Suppose that there are 10 stocks which their monthly return rates are

estimated by experienced experts and they are Linear uncertain variables. Table 1

represents the simulated expected values of these stocks. An investor would like to

create an optimal portfolio, and he wishes to minimize The Average Value at Risk,

so solving model (44) to obtain the optimal portfolio is the main concern.
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Table 1: data of securities which are linear uncertain variables for example 1.

stocks x1 x2 x3 x4 x5

L(0.4, 0.9) L(1.7, 2.4) L(0.3, 0.7) L(0.1, 0.6) L(0.5, 1.5)

stocks x6 x7 x8 x9 x10

L(2, 3.3) L(0.9, 1.4) L(2.1, 2.3) L(0.8, 1) L(1, 1.2)

Consider that in investor’s mind, the minimum expected return that can accept

is 2.5, and the Avarage Value at Risk not allowed to exceed 0.6, λ = 0.1 and mini-

mum expected entropy that can accept be 0.08, which shows the level of portfolio

diversification. Then the model (44) will be as follows:

minimize 0.875x1 + 2.365x2 + 0.68x3 + 0.575x4 + 1.45x5 (46)

+2.235x6 + 1.37x7 + 2.29x8 + 0.99x9 + 1.19x10

subject to



0.65x1 + 2.05x2 + 0.5x3 + 0.35x4 + x5 + 2.65x6 + 1.15x7 + 2.2x8

+0.9x9 + 1.1x10 ≥ 2.5,

0.083x1 + 0.116x2 + 0.066x3 + 0.083x4 + 0.166x5 + 0.216x6

+0.083x7 + 0.033x8 + 0.033x9 + 0.033x10 ≥ 0.08,

x1 + x2 + ...+ x10 = 1,

xi ≥ 0, i = 1, 2, ..., 10.

and the model (45) will be as follows:

maximize 0.65x1 + 2.05x2 + 0.5x3 + 0.35x4 + x5 + 2.65x6 (47)

+1.15x7 + 2.2x8 + 0.9x9 + 1.1x10

subject to



0.875x1 + 2.365x2 + 0.68x3 + 0.575x4 + 1.45x5 + 2.235x6 + 1.37x7

+2.29x8 + 0.99x9 + 1.19x10 ≤ 0.6,

0.083x1 + 0.116x2 + 0.066x3 + 0.083x4 + 0.166x5 + 0.216x6

+0.083x7 + 0.033x8 + 0.033x9 + 0.033x10 ≥ 0.08,

x1 + x2 + ...+ x10 = 1,

xi ≥ 0, i = 1, 2, ..., 10.

The optimal solution of model (46) is x∗3 = 0.06976744, x∗6 = 0.9302326 and x∗i =

0, i = 1, 2, 4, 5, 7, 8, 9, 10, so the optimal value of objective function is 2.126512.

This means that for minimizing the risk with the expected value rather than 2.5 and

expected entropy in order to portfolio diversification more than 0.08, the investor

must allocate his capital according to x∗.
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The optimal solution of model (47) is x∗3 = 0.1968709, and x∗4 = 0.8005215, x∗6 =

0.002607562 and x∗i = 0, i = 1, 2, 5, 7, 8, 9, 10, so the optimal value of objective

function is 0.385528. This means that for maximizing the expected return with

given constraints, the investor must allocate his capital according to x∗.

Example 5.2. Suppose that there are 10 stocks which their monthly return rates are

estimated by experienced experts and they are Zigzag uncertain variables. Table

2 represents the simulated expected values of these stocks. An investor would like

to create an optimal portfolio, and he wishes to minimize The Average Value at

Risk, so solving model (44) to obtain the optimal portfolio is the main concern.

Consider that in investor’s mind, the minimum expected return that can accept

Table 2: data of securities which are zigzag uncertain variables for example 2.

stocks x1 x2 x3 x4 x5

Z(−0.3, 2, 2.5) Z(−0.3, 2.8, 3.2) Z(−0.4, 2.5, 4) Z(−0.2, 3, 3.5) Z(−0.2, 2.5, 3)

stocks x6 x7 x8 x9 x10

Z(−0.6, 3, 4) Z(−0.1, 2, 2.5) Z(−0.4, 3, 4) Z(−0.1, 1.9, 3) Z(−0.2, 2.1, 2.5)

is 2.6, and the Average Value at Risk not allowed to exceed 4.2, λ = 0.2 and

and minimum expected entropy that can accept be 0.6, which shows the level of

portfolio diversification. then the model (38) will be as follows:

minimize 3.84x1 + 5.28x2 + 4.82x3 + 5.56x4 + 4.66x5 (48)

+5.88x6 + 3.68x7 + 5.72x8 + 3.5x9 + 3.94x10

subject to



1.55x1 + 2.125x2 + 2.15x3 + 2.325x4 + 1.95x5 + 2.35x6 + 1.6x7 + 2.4x8

+1.675x9 + 1.625x10 ≥ 2.6,

0.467x1 + 0.583x2 + 0.733x3 + 0.617x4 + 0.533x5

+0.767x6 + 0.433x7 + 0.733x8 + 0.517x9 + 0.45x10 ≥ 0.6

x1 + x2 + ...+ x10 = 1,

xi ≥ 0, i = 1, 2, ..., 10.

and the model (39) will be as follows:

maximize 1.55x1 + 2.125x2 + 2.15x3 + 2.325x4 + 1.95x5 + 2.35x6 (49)

+1.6x7 + 2.4x8 + 1.675x9 + 1.625x10

subject to



3.84x1 + 5.28x2 + 4.82x3 + 5.56x4 + 4.66x5 + 5.88x6

+3.68x7 + 5.72x8 + 3.5x9 + 3.94x10 ≤ 4.2,

0.467x1 + 0.583x2 + 0.733x3 + 0.617x4 + 0.533x5

+0.767x6 + 0.433x7 + 0.733x8 + 0.517x9 + 0.45x10 ≥ 0.6

x1 + x2 + ...+ x10 = 1,

xi ≥ 0, i = 1, 2, ..., 10.
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The optimal solution of model (48) is x∗3 = 0.3842593, x∗9 = 0.6157407 and

x∗i = 0, i = 1, 2, 4, 5, 6, 7, 8, 10, so the optimal value of objective function is 3.5.

This means that for minimizing the risk with the expected value rather than 2.6 and

expected entropy in order to portfolio diversification more than 0.6, the investor

must allocate his capital according to x∗. The minimum relevant risk is 3.5.

The optimal solution of model (49)is x∗3 = 0.5303030, and x∗9 = 0.4696970, and

x∗i = 0, i = 1, 2, 4, 5, 6, 7, 8, 10, so the optimal value of objective function is 1.682.

This means that for maximizing the expected return with given constraints, the

investor must allocate his capital according to x∗. The maximum relevant return

is 1.682.

6 Conclusion

This study calculates the Average Value at Risk (AVaR) and quadratic entropy of

uncertain variables by the use of theorems and proofing techniques. Additionally, it

describes uncertain models in relation to the mean-AVaR-quadratic entropy frame-

work, which is used for optimal portfolio selection.

Portfolios are constructed according on investor preferences in an uncertain envi-

ronment and considering the use of Average Value at Risk (AVaR) as a measure

of investment risk and quadratic entropy as portfolio diversification. The models

that have been acquired have been converted into linear programming problems

in certain instances involving uncertain variables. The outcomes derived from the

developed models for addressing portfolio selection challenges including uncertain

returns are expected to hold significant value in the fields of economics and financial

mathematics, encompassing both theoretical and practical applications.
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