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Abstract:
This study compares the performance of the classic Black-Scholes model
and the generalized Liu and Young model in pricing European options and
calculating derivatives sensitivities in high volatile illiquid markets. The
generalized Liu and Young model is a more accurate option pricing model
that incorporates both the efficacy of the number of invested stocks and
the abnormal increase of volatility during a financial crisis for hedging pur-
poses and the financial risk management. To evaluate the performance of
these models, we use numerical methods such as finite difference schemes
and Monte-Carlo simulation with antithetic variate variance reduction tech-
nique. Our results show that the generalized Liu and Young model outper-
forms the classic Black-Scholes model in terms of accuracy, especially in
high volatile illiquid markets. Additionally, we find that the finite differ-
ence schemes are more efficient and faster than the Monte-Carlo simulation
in this model. Based on these findings, we recommend using the general-
ized Liu and Young model with finite difference schemes for the European
options and Greeks valuing in high volatile illiquid markets.
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1 Introduction

In recent years, options have become one of the most widely traded financial deriva-

tives. These contracts give the holder the right to buy (call option) or sell (put

option) an underlying asset at a predetermined price (exercise price) at a specified

maturity time (European and Asian options) or at any time until the maturity date

(American options). In 1973, Fischer Black, Myron Scholes, and Robert Merton in-

troduced the Black-Scholes (B-S) model, a linear framework for option pricing [3,17].

However, this classic B-S model does not consider important factors such as liquid-
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ity, transaction costs, large investor performance, and high volatility during finan-

cial crises. As a result, numerous extended B-S models have been developed to in-

corporate these parameters and provide more accurate option prices [1,2,9,10,12,14].

While the classic B-S model has a closed-form solution, the nonlinear B-S models do

not, making them more challenging to solve. Therefore, numerical methods must

be employed to obtain solutions for these models. Various numerical methods have

been applied to address different nonlinear B-S models, including Alternative direc-

tion implicit (ADI) scheme [7], alternative direction explicit (ADE) scheme [4, 16],

fourth-order semi-discretization [5, 8], standard and nonstandard finite difference

methods [15], the Upwind finite difference method [13] and a positivity-preserving

scheme [11]. In this article, we consider the following partial differential equation

(PDE) that extends the Liu and Young illiquid market model [14] to a market with

financial crunch [9]:

∂tV (S, t) + (σS+g(t))2

2(1−λ(S,t)S∂2
SSV (S,t))

2 ∂2SSV (S, t) + rS∂SV (S, t)− rV (S, t) = 0, (1)

with following terminal and boundary conditions:

V (S, T ) =

{
max{S −K, 0} , call option

max{K − S, 0} , put option

V (0, t) =

{
0 , call option

Ke−r(T−t) , put option

V (Smax, t) ≃

{
Smaxe

−δ(T−t) −Ke−r(T−t) , call option

0 , put option

where V (S, t) is the option price for a value S of the risky asset at time t. d, σ

and r are the dividend yield, volatility (on the underlying risky asset) and market

interest rate (on the riskfree asset) respectively, λ(S, t) is the price impact function

of the trader, g(t) implicates a function that is deterministic and demonstrates the

impact of increased volatility during a financial crisis, K is the strike price and

Smax >> K the upper bound on the computational domain in the S variable.

The option prices in illiquid market during the financial crisis has been com-

puted with the numerical simulations precisely, the antithetic variate technique is

utilized to reduce the variance and to decrease the amount of time required for

computational processes in Monte Carlo simulations (AMC) [9]. Furthermore to

evaluate these kind of options, the corresponding nonlinear PDE 1 has been solved

by Crank-Nicolson (CN) method, which to the best of our knowledge this model

has not been solved with the finite difference methods.

The main purpose of this study is comparison among the European options

pricing in the liquid and illiquid markets with and without high volatility with

two different numerical methods (AMC and CN). It will be demonstrated that the

option price in the illiquid market is higher than the liquid one with more oscillation
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around the strike price in Greeks. Furthermore, CN is extremely faster than AMC

with almost similar accuary.

In the next section, we explain the underlying asset model in high volatile illiquid

markets in details. In Section 3 we describe the numerical methods including the

Monte-Carlo simulation with a variance reduction technique and the finite difference

method. In Section 4, the classic linear and the nonlinear Black-Scholes model in

illiquid market during a financial crisis have been solved with Crank-Nicolson and

Monte-Carlo simulation with antithetic variance reduction technique and compared

to each other. The option prices and the Greeks (∆(S, t) = ∂V
∂S (S, t), and Γ(S, t) =

∂2V
∂S2 (S, t)) have been computed with these numerical schemes in various numerical

examples. Some conclusion remarks and possible future works are discussed in

Section 5.

2 Options Pricing Model in High Volatile Illiquid Mar-

kets

Assume that θ is the number of shares that the broker has in the stock at time t.

The underlying asset price is therefore assumed to evolve by the following stochastic

differential equation:

dS = rSdt+ (σS + g(t))dW̃t + λ(S, t)Sdθ . (2)

And the value of a European option can be obtained as

V (S, 0) = EQ[e
−rTV (S, T )] , (3)

where Q is the risk-neutral measure. g(t) signifies a deterministic function that

effectively captures the impact of increased volatility during a financial crisis. It

represents the stock market price index during a crunch as follows [6, 18]:

g(t) = c1 + c2e
c3t sin(c4t) , (4)

where ci, i = 1, 2, 3, 4 are real constants and W̃t is a Brownian motion. We take

the price impact factor of the trader λ(S, t) as in the work of Liu and Young [14]

as follows

λ(S, t) =

{
γ
S

(
1− e−β(T−t)

)
, if S ≤ S ≤ S̄

0 , otherwise ,
(5)

where β is a real constant and the constant price impact coefficient γ > 0 measures

the price impact per traded shares. S and S̄ represent respectively, the lower

and upper limits of the stock price within which there is a price impact. Finally,

θ demonstrates the number of shares of the asset St that satisfies the following

process:

dθt = ηtdt+ ζtdWt , t ∈ [0, T ]. (6)

Here we take ηt = t and ζt = sin(πt/4) as in the work of El-Khatib and Hatemi [9].
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3 Numerical Methods

In this section, we described Monte-Carlo simulation, utilizing the antithetic variate

technique to reduce variance and computational time, resulting in more accurate

results. Additionally, the finite difference methods (FDMs) have been implemented

to numerically solve the nonlinear PDE 1, as these types of equations lack closed-

form solutions.

3.1 Monte-Carlo Simulation

At first we discretize the time interval into N equidistance interval with the step size

∆t = T
N , then SDE 2 will be discretized as follows by utilizing the Euler-Maruyama

scheme

∆Stn = rStn∆t+ (σStn + g(tn))∆W̃tn + λ(Stn , tn)stn∆θtn . (7)

The Brownian motion {W̃tn} will be simulated as

W̃t0 = 0 (8)

W̃tn+1
= W̃tn +

√
∆tZn, n = 0, . . . , N, (9)

where Zn follows the standard normal distribution N(0, 1).

In the Monte-Carlo simulation with variance reduction technique, for every nodal

point tn ∈ [0, T ], two values for the underlying asset price S+
tn and S−

tn are computed,

the first value using Zn and the second value using −Zn. In total, there are 2N

values for S with only N trials. These simulations are repeated M times. Thus,

we obtain M simulation paths:

S+
m,t1 , . . . , S

+
m,tN , S

−
m,t1 , . . . , S

−
m,tN , m = 1, . . . ,M. (10)

Therefore for each simulation path, the payoff will be the average of two payoffs for

two underlying asset price S+
tN and S−

tN as follows:

V (Sm,tN , T ) =
V (S+

m,tN , T ) + V (S−
m,tN , T )

2
, m = 1, . . . ,M. (11)

Eventually, the option price is obtained by

VAMC(S, 0) =
e−rT

M

M∑
m=1

V (Sm,tN , T ) (12)

3.2 Finite Difference Methods

Here the PDE (1) have been solved by the Crank-Nicolson method. In the finite

difference methods, the derivatives will be estimated by the differences in values
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over intervals of finite size. Hence the PDE 1 will be reduced by the Crank-Nicolson

method to the following discretized equation:

V n+1
j − V n

j

δt
+

1

2
(σSj + g(tn))

2

 V n+1
j+1 −2V n+1

j +V n+1
j−1

2(δS)2 +
V n
j+1−2V n

j +V n
j−1

2(δS)2(
1− λ(Sj , tn)

(
V n
j+1−2V n

j +V n
j−1

(δS)2

))2
+

(r − d)Sj

2

(
V n+1
j+1 − V n+1

j−1

2δS
+
V n
j+1 − V n

j−1

2δS

)
− r

2

(
V n+1
j + V n

j

)
= 0. (13)

The above equation leads to the following system of equations:

AV n+1 = BV n (14)

where both A and B are the tridiagonals matrices for j = 1, . . . , J − 1 in S and

n = 0, . . . , N − 1 in t discretization with the following elements.

A[j − 1, j] =
−(σSj + g(tn))

2δt

4(δS)2
[
1− λ(Sj , tn)

(
V n
j+1−2V n

j +V n
j−1

(δS)2

)]2 +
δt(r − d)j

4
,

A[j, j] = 1 +
−(σSj + g(tn))

2δt

2(δS)2
[
1− λ(Sj , tn)

(
V n
j+1−2V n

j +V n
j−1

(δS)2

)]2 +
rδt

2
, (15)

A[j, j + 1] =
−(σSj + g(tn))

2δt

4(δS)2
[
1− λ(Sj , tn)

(
V n
j+1−2V n

j +V n
j−1

(δS)2

)]2 − δt(r − d)j

4
,

B[j − 1, j] =
(σSj + g(tn))

2δt

4(δS)2
[
1− λ(Sj , tn)

(
V n
j+1−2V n

j +V n
j−1

(δS)2

)]2 − δt(r − d)j

4
,

B[j, j] = 1− −(σSj + g(tn))
2δt

2(δS)2
[
1− λ(Sj , tn)

(
V n
j+1−2V n

j +V n
j−1

(δS)2

)]2 − rδt

2
, (16)

B[j, j + 1] =
(σSj + g(tn))

2δt

4(δS)2
[
1− λ(Sj , tn)

(
V n
j+1−2V n

j +V n
j−1

(δS)2

)]2 +
δt(r − d)j

4
,

4 Numerical Computations and Simulations

Here the European call option prices for the liquid and illiquid with and with-

out high volatility cases have been investigated in Table 1 with the same pa-

rameters in [9]: S0 = 10, S = 2, S̄ = 40, r = 0.06, T = 1, N = 10, 000, ηt =

t, ζt = sin(πt/4), g(t) = {0, sin(πt/4), sin(πt/2), 10+5e−2t sin(πt/18)}, σ = 1.5, γ =

0.04, β = 100, δS = 0.5, δt = 0.02 and the number of simulations in AMC:

M = {100, 200} (demonstrated as AMC100 and AMC200 in Table 1). More

precisely, the first row of this table indicates the call option price in the linear clas-

sic Black-Scholes model, the second row corresponds to the call option price in the
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Liu and Young model and the last three rows illustrate the call option price in the

generalized Liu and Young model with high volatility.

Figure 1 shows AMC simulation of the asset price in the standard Black-Scholes

model, in illiquid constant price impact without high volatility (Liu & Young model)

and also AMC simulation of the asset price in illiquid varying price impact with

high volatility (generalized Liu & Young model). Furthermore Figures 2, 3 and 4

demonstrate the call option, Delta and Gamma of the call option in the classical

Black-Scholes model with σ = 0.4, the Liu and Young illiquid and the high volatile

illiquid market with σ = 1.5 respactively which all obtained by CN method. All

tests are performed on an Intel Core i5 CPU 2.9 GHz with 8 GB RAM using Maple

2018 software.

5 Conclusion

In this study, option prices in both liquid and illiquid markets during a crisis have

been investigated and computed using the Crank-Nicolson method, which is then

compared with Monte Carlo simulations along antithetic variate reduction tech-

nique. Additionally, the Call option, Delta, and Gamma in the classic Black-Scholes

model are compared to those in the illiquid market with a high volatility model.

The results reveal that higher volatility leads to increased option prices and more

oscillation around the strike price in Delta and Gamma. Findings suggest that the

generalized Liu and Young model outperforms the classic Black-Scholes model in

terms of accuracy, particularly in high-volatile illiquid markets. Furthermore, finite

difference schemes are observed to be more efficient and faster than Monte Carlo

simulations in this model. Consequently, it is recommended to utilize the gener-

alized Liu and Young model with finite difference schemes for pricing European

options in high-volatile illiquid markets.

This study contributes to existing literature by providing empirical evidence

on the effectiveness of the generalized Liu and Young model in pricing options

under challenging market conditions, offering valuable insights for investors and

risk managers to make informed decisions.
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Figure 1: The last run of the simulation and 10 random realizations of the asset price in the

classic B-S model (top row), in illiquid market without high volatility (middle row), in illiquid

market with high volatility (last row) with these parameters: S0 = 10, S = 2, S ≤ S̄ = 40, N =

10000,M = 100, r = 0.06, σ = 0.4(1st row) σ = 1.5(2nd and 3rd row)
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Figure 2: Call option (first row), Delta of the call option (midle row) and Gamma of the
call option (last row) in the classical Black-Scholes model with parameters σ = 0.4,K = 20,
Smax = 60, δS = 0.5, T = 1, δt = 0.02
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Figure 3: Call option (first row), Delta of the call option (midle row) and Gamma of the call
option (last row) in the Liu and Young model with parameters λ(S, t) =(5), σ = 1.5,K = 20,
Smax = 60, δS = 0.5, T = 1, δt = 0.02
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Figure 4: Call option (first row), Delta of the call option (midle row) and Gamma of the call
option (last row) in the high volatile illiquid market with parameters λ(S, t) =(5) ,g(t) = sin(πt/2),
σ = 1.5,K = 20, Smax = 60, δS = 0.5, T = 1, δt = 0.02
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Table 1: European call option in an illiquid market with and without high volatility
with AMC and CN

λ(S, t) g(t) AMC100 AMC200 CN AMC100 time AMC200 time CN Time

0 0 3.54544 3.32807 3.80609 147.164 224.749 5.294

(5) 0 3.54493 3.32838 3.81358 208.95 279.673 4.011

(5) sin(πt/4) 3.64951 3.40646 3.91276 247.329 356.674 3.159

(5) sin(πt/2) 3.72952 3.47135 3.98774 270.633 408.272 2.901

(5) 10 + 5 sin(πt/18)e−2t 6.68363 6.14072 6.04179 346.665 402.576 4.602
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