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Abstract:
Modeling and pricing European options are crucial tasks for financial com-
panies seeking to determine the fair value of these instruments. Conven-
tional methods, such as using Black-Scholes partial differential equations
(PDEs), face challenges due to the high complexity involved and lack of
data. To address these challenges, PINNs have recently emerged as a
promising approach to solving the Black-Scholes PDEs for European op-
tions. In this paper, we tackle the two-dimensional Black-Scholes model
to determine the price of a European exchange option. We employ a kind
of ANNs (PINN) that is specifically designed to learn the option’s value
by minimizing an appropriately defined loss function. The data for our
study were generated through simulations conducted in Python. Our re-
sults demonstrate the efficacy of the PINN approach by comparing the
computed fair value of a European exchange option with the traditional
solutions. The findings underscore the potential of PINNs in providing
accurate and efficient pricing for complex financial derivatives.
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1 Introduction

Options are crucial financial instruments that have gained prominence over the

years. Originating in the 19th century in the United States and Europe, their pop-

ularity led to the establishment of the Chicago Options Exchange by the Chicago
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Board of Trade in April 1973, now a central global trading hub [16]. Develop a

robust mathematical framework to model and price challenges, attracting diverse

researchers in recent decades. Using the Black-Scholes partial differential equation

(PDE) is a standard mathematical method for pricing and modeling financial instru-

ments [5]. In this study, we expand the Black-Scholes framework to incorporate two

assets, resulting in a two-dimensional parabolic partial differential equation (PDE)

corresponding to the price dynamics of a European exchange option involving these

two assets. However, applying it to real-world data can pose challenges due to un-

certainties in data values and high complexity.

Various mathematical techniques, including numerical methods, have been devel-

oped to price the financial options. Numerical methods for option pricing, such as

the Binomial Tree Model, Finite Difference Method, and Monte Carlo simulations,

are essential tools in financial mathematics for valuing derivatives. These methods

handle complex stochastic processes by simplifying them into manageable calcula-

tions, like discretizing stock price movements or solving the Black-Scholes equation

numerically [11]. However, these methods face several drawbacks in real-world ap-

plications. Assumptions like constant volatility do not hold in volatile markets,

leading to inaccuracies. High-dimensional problems, such as those involving bas-

ket or exotic options, introduce computational challenges and inefficiencies, often

described as the ”curse of dimensionality.” Additionally, Monte Carlo simulations

require extensive computational resources, complicating their use for real-time pric-

ing [7]. More complex models have been developed to mitigate these issues, but at

the cost of increased computational demands.

To address these challenges, This research specifically addresses the valuation of

European exchange options. This derivative allows the holder to swap one asset for

another on a specific future date, with the valuation dependent on two underlying

assets, such as stocks [4]. Our novel contribution is the application of Physics-

Informed Neural Networks (PINNs) to solve these complex two-dimensional Black-

Scholes PDEs. PINNs employ a neural network architecture that learns to solve

tasks through its structure rather than through rule-based programming. This

network includes multiple layers from the input to the output, passing through

several hidden layers that process the initial parameters and ultimately provide

solutions [22]. This work builds on previous research that has successfully used

artificial neural networks to tackle various financial derivative problems by inte-

grating mathematical models with neural network technologies. For instance, neu-

ral network approaches have been preferred over traditional numerical methods for

solving differential equations in financial applications, as outlined in ”Neural Net-

work Methods for Solving Differential Equations” [28]. Artificial neural networks

are particularly adept at identifying patterns in economic data, including price fore-

casting for stocks and bond ratings [22].

Unlike traditional analytical-numerical methods, artificial neural networks offer a

more practical alternative for approximating solutions to the Black-Scholes and
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other differential equations prevalent in various scientific fields [2, 8, 10]. One of

the key aspect of using neural networks in financial problem-solving is the formu-

lation of an appropriate loss function [27]. Here we mentioned some advantages of

Physics-Informed Neural Networks (PINNs) compared to traditional Artificial Neu-

ral Networks (ANNs). PINNs integrate physical laws and mathematical equations

into the training process, allowing them to model complex physical phenomena. By

leveraging the underlying physics, probably PINNs can achieve higher accuracy in

solving differential equations and other mathematical problems compared to tradi-

tional ANNs. On the other hand PINNs can effectively utilize incomplete or limited

datasets, as they rely on physical laws to guide the learning process, making them

more robust in scenarios with sparse data. The use of PINNs often leads to more

stable solutions, especially in dynamic systems. In contrast, traditional ANNs pri-

marily rely on input-output mappings without considering the underlying physical

principles, which can limit their effectiveness in solving complex problems.

In this paper, we structure our discussion: Section 2 outlines the formulation of

financial PDE problems, including the necessary initial and boundary conditions.

Section 3 discusses the structure of the loss function for training the PINN and

the design of the network itself. Finally, Section 4 presents our results, showcasing

the application of PINNs in financial mathematics and parameter estimation for

options trading [14].

2 Methodology

2.1 Mathematical modeling

The reference option pricing PDE for the valuation of an European, put or call

option is the BlackScholes equation. In this section, the pricing models for an

European option with one underlying asset and European exchange option are

presented. Then, all the initial and boundary conditions are considered.

European Options, One Underlying Asset

When it comes to options with one underlying asset, this means that the option is

based on only one specific asset, such as a stock, commodity, or currency pair. This

is in contrast to options with multiple underlying assets. Assume the underlying

asset S follows the geometric Brownian motion:

dS = (µ− δ)Sdt+ σSdWt, (1)

Wt represents Weiner process, µ is the drift term, σ is the volatility, and the un-

derlying asset S is assumed to pay a constant dividend yield δ, Assuming there are

no arbitrage opportunities [3].
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In the BlackScholes framework, the one-asset European option price, v(S, t) sat-

isfies the following PDE [22]:L(v) = ∂tv +Av − rv = 0, S ∈ Ω∼, t ∈ [0, T ),

v(S, T ) = H(S),
(2)

where the operator A is defined as follows:

Av ≡ 1

2
σ2S2 ∂

2v

∂S2
+ (r − δ)S

∂v

∂S
, (3)

And the function H represents the payoff of the option at maturity. In other words:(K − S)+ for a put option,

(S −K)+ for a call option,
(4)

Here, K denotes the strike price agreed upon in the contract.

Boundary Conditions

European put option:

BC :

v(S1∞, t) = 0, 0 < t < T

v(0, t) = Ke−r(T−t), 0 < t < T.
(5)

European call option:

BC :

v(0, t) = 0, 0 < t < T

v(S1∞, t) = S −Ke−r(T−t), 0 < t < T.
(6)

The analytic solution for 2 is equal to [16]:

vc(S, t) = Se(−δ(T−t))N0,1(d1)−Ke(−r(T−t))N0,1(d2), (7)

vp(S, t) = Ke(−r(T−t))N0,1(−d2)− Se(−δ(T−t))N0,1(−d1), (8)

N0,1 denotes cumulative distribution function for the standard normal. The first

index 0 indicates the mean of the normal distribution, the second index 1 indicates

the variance of the normal distribution. The parameters d1 , d2 are equal to:

d1 =
log( S

K ) + (r − δ + σ2

2 )(T − t)

σ
√
(T − t)

, d2 =
log( S

K ) + (r − δ − σ2

2 )(T − t)

σ
√

(T − t)
. (9)
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European exchange option, Two Underlying Assets

One of the simplest multi-asset options, is exchange option. Multi-asset options are

a group of options whose pay-off depends on more than one underlying assets. In

this sense, a two-asset option is a special case of multi-asset option, where the num-

ber of underlying assets is two. In this case, we say this option is two-dimensional

and we use two-dimensional Black-Scholes framework. As it was mentioned, this

type of option allows the holder to exchange one underlying asset to another. Let

S1 and S2 be the asset price of the two underlying assets; the payoff the European

exchange option on maturity date T is equal to:

v(S1, S2, T ) = (S1 − S2)
+, (10)

So by extending the dynamic for one underlying asset 1, suppose each asset price

follows the following dynamics:

dS1 = (µ1 − δ1)S1dt+ σ1S1dW1, (11)

dS2 = (µ2 − δ2)S2dt+ σ2S2dW2, (12)

Let v = v(S1, S2, t) be an infinitely differentiable function. By using Ito’s lemma

[18]:

dv =
∂v

∂t
dt+

∂v

∂S1
dS1 +

∂v

∂S2
dS2 +

∂2v

∂S1∂S2
dS1dS2 +

1

2

∂2v

∂S2
1

(dS1)
2 +

1

2

∂2v

∂S2
2

(dS2)
2,

(13)

We know, (dW1)
2 = dt, (dW2)

2 = dt, dtdW1 = 0, dtdW2 = 0, (dt)2 = 0 and

dW1dW2 = ρdt [18], then
(dS1)

2 = ((µ1 − δ1)S1dt+ σ1S1dW1)
2 = σ2

1S
2
1dt,

(dS2)
2 = ((µ2 − δ2)S2dt+ σ2S2dW2)

2 = σ2
2S

2
2dt,

(dS1dS2) = σ1σ2ρS1S2dt.

(14)

Therefore, by substitution all these three equations in 13:

dv = (
∂v

∂t
+ρσ1σ2S1S2

∂2v

∂S1∂S2
+

1

2
σ2
1S

2
1

∂2v

∂S2
1

+
1

2
σ2
2S

2
2

∂2v

∂S2
2

)dt+
∂v

∂S1
dS1+

∂v

∂S2
dS2,

(15)

Now, we will form a risk hedging portfolio like Π, including an option, ∆1 share of

S1 and ∆2 share of S2. The value of this basket is equal to

Π = v(S1, S2, t)−∆1S1 −∆2S2, (16)

Therefore, the change in the value of the basket will be in the following:

dΠ = dv −∆1(dS1 + δ1S1dt)−∆2(dS2 + δ2S2dt), (17)
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Thus,

dΠ = (
∂v

∂t
+ ρσ1σ2S1S2

∂2v

∂S1∂S2
+

1

2
σ2
1S

2
1

∂2v

∂S2
1

+
1

2
σ2
2S

2
2

∂2v

∂S2
2

−∆1δ1S1 −∆2δ2S2)dt

+ (
∂v

∂S1
−∆1)dS1 + (

∂v

∂S2
−∆2)dS2, (18)

To have a risk-free portfolio, it should be:∆1 = ∂v
∂S1

,

∆2 = ∂v
∂S2

,
(19)

We assume the market is arbitrage-free. If arbitrage opportunities were present,

market participants could take advantage of these price discrepancies to secure

risk-free profits, resulting in pricing that is inconsistent and unsustainable. The

absence of arbitrage guarantees that assets are priced equitably in relation to one

another. The no-arbitrage condition plays a crucial role in the financial mathemat-

ical framework, as it ensures that discounted price processes behave as martingales,

which is a fundamental concept in stochastic calculus and financial modeling [11].

In the absence of arbitrage, only one risk-free interest rate should be determined.

Thus:

rΠdt = dΠ, (20)

Then

∂v

∂t
+

1

2
σ2
1S

2
1

∂2v

∂S2
1

+
1

2
σ2
2S

2
2

∂2v

∂S2
2

+ ρσ1σ2S1S2
∂2v

∂S1∂S2
+(r− δ1)S1

∂v

∂S1
+(r− δ2)S2

∂v

∂S2
− rv = 0.

(21)

This equation represents the two-dimensional Black-Scholes equation for European

exchange options with two underlying assets, which can be briefly written as follows

[22]: L(v) = ∂tv + βv − rv = 0 0 < S1, S2 < ∞, 0 < t < T,

v(S1, S2, T ) = H1(S1, S2),
(22)

Where the operator β is equal to:

βv ≡ 1

2
σ2
1S

2
1

∂2v

∂S2
1

+
1

2
σ2
2S

2
2

∂2v

∂S2
2

+ρσ1σ2S1S2
∂2v

∂S1∂S2
+(r−δ1)S1

∂v

∂S1
+(r−δ2)S2

∂v

∂S2
.

(23)

In the following, all the initial and boundary conditions are presented.

Initial and Boundary Conditions

Initial conditions for t=0:

IC : v(S1, S2, 0) = max(S1 − S2, 0) = (S1 − S2)
+, 0 < S1, S2 < ∞. (24)
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Boundary conditions [3]:
BC : v(S10b

, S2, t) = 0, 0 < t < T,

BC : v(S1, S20b
, t) = S1, 0 < t < T,

BC : v(S1mb
, S2, t) = max(S1mb

− S2, 0), 0 < t < T,

BC : v(S1, S2mb
, t) = max(S1 − S2mb

, 0), 0 < t < T.

(25)

Considering the above conditions from solving the two-dimensional Black-Scholes

partial differential equation according to the Margrabes formula, the fair value of

a European exchange option at time t is given by [15]:

v(S1, S2, t) = e−δ1(T−t)S1(t)N0,1(d1)− e−δ2(T−t)S2(t)N0,1(d2). (26)

again N0,1 denotes cumulative distribution function for the standard normal and

parameters d1 , d2, and σ are equal to:

σ =
√
σ2
1 + σ2

2 − 2σ1σ2ρ, (27)

d1 =
log(S1

S2
) + (δ2 − δ1 +

σ2

2 )(T − t)

σ
√
(T − t)

, (28)

d2 = d1 − σ
√

(T − t). (29)

3 physics-informed neural networks

Physics-Informed Neural Networks (PINNs) are a type of networks model that in-

corporates physical laws and constraints into the neural network architecture to

solve forward and inverse problems involving partial differential equations (PDEs).

The general idea of physics-informed neural networks (PINNs) is to solve problems

where only limited data are available, e.g. noisy measurements from an experiment.

The closed-form equation introduced in this study is the Margrabe formula [15].

Since the partial differential equation in this research is a second-order heat equa-

tion, its solution is faced with high complexity. To address this issue, we propose

introducing Physics-Informed Neural Networks (PINNs). To compensate for the

data scarcity, the algorithm is enriched with physical laws governing the problem

at hand. Typically, those laws are described by parameterized non-linear partial

differential equations of the form [12]:

∂v

∂t
+N [v, λ] = 0, x ∈ Ω, t ∈ T, (30)

There are two different use-cases for physics-informed neural networks, namely data-

driven inference and data-driven identification of partial differential equations. The

first case addresses forward problems where the coefficients λ are known and the
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hidden solution v(x, t) is computed based on initial and boundary data. The second

one solves an inverse problem. The values of v(x, t) are given, the goal is to identify

the coefficients λ. In equation 30 N [v, λ] represents a nonlinear differential operator

with λ coefficients. This type of neural network is applicable to a wide range of

problems, including reaction-diffusion equations of chemical systems to equations

based on continuous mechanics.

In this section, we briefly introduce Physics-Informed Neural Networks for solving

data-driven inference partial differential equations. A PINN consists of two main

parts. The first part is a classical feedforward neural network approximating the

value of v(x, t). The second part, the physics-enriched part, presents the partial

derivatives of the differential equation. In artificial neural networks, the goal is to

find an appropriate answer that satisfies the corresponding partial differential equa-

tion. The output of the network depends on the set of weight and bias parameters.

These weights and biases are learned by minimizing a loss function that includes

several mean square error terms. The loss function can be written in general form

as:

C = MSEv +MSEf . (31)

The first term, denoted by MSEv computes the error of the approximation v(x, t)

at known data points. This term entails data representing the boundary and ini-

tial conditions. The other term in the loss function, MSEf , enforces the partial

differential equation on a large set of randomly chosen collocation points inside

the domain. Since the introduced mathematical model is the same as the two-

dimensional heat equation, to better understand the problem, we first explain the

PINN for the two-dimensional heat equation problem.

Suppose the rod is 1 meter long and has a thermal conductivity coefficient of k = 1.

Initially, the temperature of the rod is 0řC throughout its length. Suddenly, the

temperature at one end of the rod increases to 100řC. The goal is to calculate the

temperature of the rod at any point and at any time. To solve this problem, a

Physics-Informed Neural Network can be used. This network is trained using train-

ing data that provides the rod’s temperature at specific points along the rod and

at different times. After training, it can predict the rod’s temperature at any point

and at any time. A two-dimensional heat equation in general form is written as

follows:

ut = k × (uxx + uyy), (32)

where u is temperature at (x, y) at time t, uxx and uyy are second-order derivatives

of temperature with respect to x and y, and k is the thermal conductivity coefficient.

To solve this equation using a Physics-Informed Neural Network (PINN), we encode

the equation into a neural network. In figure 1 a PINN for heat equation is represent:

This artificial neural network consists of two main parts. The first part is a classical

neural network that approximates the solution u(x, y, t). The second part is the

physics-informed component, where the differential operators appear. This artificial
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Figure 1: Diagram of a Physics-Informed Neural Network (PINN) for the 2D heat
equation with 2 hidden layers

neural network has one input layer, two hidden layers, and one output layer. One of

the goals of these artificial neural networks is to minimize the loss function, which

is based on the boundary and initial conditions. Considering the 2D heat equation,

we find out that it has 4 boundary conditions and one initial condition as follows:

Boundary conditions: 
u(x0b , y, t) = 0, 0 ⩽ t ⩽ T,

u(xmb
, y, t) = 0, 0 ⩽ t ⩽ T,

u(x, y0b , t) = 0, 0 ⩽ t ⩽ T,

u(x, ymb
, t) = 0, 0 ⩽ t ⩽ T,

(33)

Initial condition:

u(x, y, t) = f(x, y), 0 ⩽ x ⩽ xm, 0 ⩽ y ⩽ ym, (34)

Considering the above conditions, the loss function can be written as:

Losstotal = ωIMSEI + ωBMSEB + ωpdeMSEpde, (35)

where

MSEI is mean squared Error of the initial condition, which is equal to:

MSEI =
1

NI

NI∑
i=1

|uANN (xi
0, y

i
0, 0)− u(xi

0, y
i
0, 0)|2, (36)

MSEB is mean squared error of the boundary conditions, which is equal to:

MSEB =
1

Nb
[(

Nb∑
i=1

|uANN (x0b , y
i
b, t

i
b)|2 +

Nb∑
i=1

|uANN (xmb
, yib, t

i
b)|2
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+

Nb∑
i=1

|uANN (xi
b, y0b , t

i
b)|2 +

Nb∑
i=1

|uANN (xi
b, ymb

, tib)|2], (37)

MSEpde is is mean squared error of the collocation points of pde, which is equal

to:

MSEpde =
1

N

N∑
i=1

|pdeANN (xi
pde, y

i
pde, t

i
pde)|2, (38)

By substituting MSEI , MSEB and MSEpde in 35 the total loss function is equal

to:

Losstotal =
1

NI

NI∑
i=1

|uANN (xi
0, y

i
0, 0)− u(xi

0, y
i
0, 0)|2

+
1

Nb
[(

Nb∑
i=1

|uANN (x0b , y
i
b, t

i
b)|2 +

Nb∑
i=1

|uANN (xmb
, yib, t

i
b)|2

+

Nb∑
i=1

|uANN (xi
b, y0b , t

i
b)|2 +

Nb∑
i=1

|uANN (xi
b, ymb

, tib)|2]

+
1

N

N∑
i=1

|pdeANN (xi
pde, y

i
pde, t

i
pde)|2, (39)

To find the solution of the partial differential equation, we need to find the optimal

u so:

argminLosstotal(u) = û, (40)

This is the optimal solution that satisfies the 2D heat equation. So far, we have

become familiar with the concepts of a physics-based neural network and how to

construct the loss function based on the initial and boundary conditions. With

attention to definitions related to the initial and boundary conditions, the total

loss function for training this PINN in the 2D Black-Scholes framework is equal to:

Losstotal = ωIMSEI+ωBMSEB+ωpdeMSEpde =
1

NI

NI∑
i=1

|vANN (Si
1,0, S

i
2,0, 0)−v(Si

1,0, S
i
2,0, 0)|2

+
1

Nb
(

Nb∑
i=1

|vANN (S10b
, Si

2b, t
i
b)− v(S10b

, Si
2, t

i)|2 +

Nb∑
i=1

|vANN (S1mb
, Si

2b, t
i
b)− v(S1mb

, Si
2, t

i)|2

+

Nb∑
i=1

|vANN (Si
1b, S20b

, tib)− v(Si
1, S20b

, ti)|2 +

Nb∑
i=1

|vANN (Si
1b, S2mb

, tib)− v(Si
1, S2mb

, ti)|2)

+
1

N

N∑
i=1

|pdeANN (Si
1pde, S

i
2pde, t

i
pde)|

2, (41)

To reach a solution that satisfies the 2D Black-Scholes model, the total loss function

must be optimized, so

arg min Losstotal(vANN ) = v̂, (42)
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4 Results

As mentioned earlier, based on minimizing the total loss function, the artificial

neural network is capable of finding the solution to the partial differential equation.

The implemented ANN has a 3-layer architecture. The first layer has 3 inputs, S1,

S2 and t. The hidden layer has 105 neurons and the activation function used is

tanh. It is obvious that ∂v
∂t ,

∂2v
∂S2

1
, ∂2v
∂S2

2
, ∂2v
∂S1∂S2

, ∂v
∂S1

, ∂v
∂S2

are derivatives used to form

the partial differential equation component. More specific details for setting up the

design of this physics-informed neural network are available in table 1. Figure 2

presents a general overview of the design of this physics-informed neural network.

Table 1: Elements of PINN

Description and Configuration PINNs Architecture

Inputs 3

Hidden Layers 1

Output Layers 1

Neurons in hidden layer 105

Activation Function Hyperbolic Tangent (tanh)

Optimization Algorithm Adam

Derivative Operators ∂v
∂t
, ∂2v

∂S2
1
, ∂2v

∂S2
2
, ∂2v

∂S1∂S2

∂v
∂S1

Epochs 7000

Finally, after 7000 epochs, the final value of the loss function is equal to 5 × 10−3

Figure 2: A physics-informed neural network for the two-dimensional Black-Scholes
equation
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Table 2: Comparison of the results between physics-informed neural network and
Margarabe’s formula related to the European exchange option

Input Values Physics-informed Neural Network Margarabe formula

(36, 30, 3) 5.4371 5.9095

(42, 34, 3) 7.4401 7.6511

(29, 24, 3) 4.2586 4.8840

(53, 13, 3) 39.0658 39.0091

(49, 40, 3) 8.4164 8.6693

(53, 40, 3) 12.3112 12.0392

(20, 12, 3) 7.1626 7.5068

(50, 41, 3) 8.4162 8.7063

(27, 10, 3) 16.6805 16.5387

(31, 22, 3) 8.2164 8.2922

(53, 41, 3) 11.3346 11.1901

(43, 8, 3) 34.4086 34.1357

(24, 5, 3) 18.0927 18.5306

and in figure 4, all the loss functions related to boundary and initial conditions,

callocation points and the total loss function are displayed. In this section, a com-

parison is made between the solutions obtained from the physics-informed artificial

neural network and the closed-form Margrabe formula. As shown in table 2, the

network is capable of predicting the option price with high accuracy at given points.

Here the evaluation metrics to calculate accuracy is R2 score. So

R2 = 1− RSS

TSS
= 99.68% (43)

where

RSS =
∑

(v − v∗)
2
, (44)

TSS =
∑

(v − v∼)
2
, (45)

In 44 v is the actual value, v∗ is the predicted value and in 45 v∼ is the mean value

of the variable /feature. In figure 3 , the equivalence between the price of European

exchange option and the price obtained from PINN is shown.

5 Conclusions

This research explores the use of Physics-Informed Neural Networks (PINNs) to

solve the complex two-dimensional Black-Scholes partial differential equation (PDE)

for pricing European exchange options. Traditional methods for pricing options face

challenges due to complex computations and uncertainties in real-world data. The
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Figure 3: 3D scatter plotting for comparing the PINN solution and the analytic
solution. Real data (blue points) means the values which obtained from Margrabe
formula and the red points show the PINN solution. In both cases t is constant
and its equal to 3.(t = 3).

Figure 4: The process of minimizing the initial and boundary conditions, callocation
points and the total loss functions for the 2D Black-Scholes model.

study’s findings show the effectiveness of PINNs for addressing these challenges:

• PINNs offer an efficient and accurate approach for pricing complex financial

derivatives like European exchange options.
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• The PINN method, unlike conventional numerical methods, can handle complex

models and high-dimensional problems without the ”curse of dimensionality”.

• PINNs demonstrate the potential to enhance the accuracy and efficiency of finan-

cial modeling and pricing, offering a practical alternative to traditional analytical-

numerical methods.

Also the findings highlight that PINNs not only streamline the process of pricing

complex financial derivatives (such as European exchange options) but also achieve

high accuracy in their results, marking them as a robust alternative to traditional

methodologies. As financial markets continue to evolve, the application of PINNs

shows significant potential in enhancing the efficiency and reliability of financial

modeling and option pricing, paving the way for more accurate evaluations in in-

creasingly complex market environments.

For future work,

1) As said, the price of the European option with two underlying assets in this

thesis has been obtained by Physics-informed Neural Network. You can use this

method to find the price of American or Asian option.

2) Because artificial neural networks are used in a wide range of problems, the

models of other artificial neural networks, such as RNN networks, can be used to

solve different types of partial differential equations.

3) Considering the mathematical model used in this thesis, the model’s parameters

can be estimated instead of using artificial neural networks to find the option price.

4) The underlying asset dynamics were assumed to follow a geometric Brownian

motion, which implies a continuous path without jumps. However, a potential di-

rection for future research is to incorporate jumps into this model and explore the

resulting implications.
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