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Abstract:
Abstract:
In recent years, there has been growing interest in the application of stochastic
processes to model financial markets, particularly in the pricing and prediction of
derivative instruments such as options. One of the more advanced models that has
emerged for capturing the dynamics of financial time series is the Lévy process,
which generalizes the traditional Brownian motion by incorporating jumps and
heavy tails, features often observed in real financial data. This paper investigates
the applicability of Lévy processes in predicting the evolution of financial series,
with a specific focus on vanilla option pricing. In our methodology,By reviewing
the theoretical underpinnings of Lévy processes, highlighting key aspects such as
the characteristic function and the variance-gamma process, we calibrate a Lévy-
based model to 77 mid-prices of a set of European call options on the S&P 500
Index at the close of the market on 11 April 2022. We employ maximum likelihood
estimation (MLE) and the expectation-maximization (EM) algorithm to fit the
parameters of the Lévy process. Our results indicate that the Lévy process model
provides a significantly better fit to market data than the Black-Scholes model,
particularly in capturing the heavy tails and jump behavior observed in option
price movements. Additionally, the Lévy model demonstrates superior predictive
performance in out-of-sample testing, improving the accuracy of option pricing and
hedging strategies. These findings suggest that Lévy processes hold substantial
promise for enhancing financial series prediction and derivative pricing in markets
characterized by volatility clustering and sudden jumps.
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1 Introduction

In the realm of financial markets, the precise modeling of asset price behavior is

crucial for the valuation of derivative instruments, especially vanilla options. The

Black-Scholes-Merton (BSM) model, developed by Black and Scholes (1973) along-

side Merton (1973), posits that asset prices adhere to a geometric Brownian mo-

tion (GBM) characterized by continuous trajectories and constant volatility [7].Al-

though this model is mathematically sophisticated and serves as a cornerstone of

contemporary financial theory, it exhibits notable deficiencies when applied to ac-
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tual market scenarios. Research conducted by Fama (1965) and Mandelbrot (1963)

has repeatedly demonstrated that asset returns diverge from the normal distribu-

tion assumed by the BSM model, displaying traits such as fat tails, skewness, and

abrupt jumps [15]. These deviations become particularly evident during periods of

market turbulence, where abrupt and significant price fluctuations can lead to con-

siderable mispricing of derivative instruments, especially out-of-the-money (OTM)

options. To address these empirical limitations, there has been an increasing fo-

cus on enhancing the BSM framework to incorporate more realistic price dynam-

ics.A particularly promising solution involves the application of Lévy processes. In

contrast to Brownian motion, Lévy processes accommodate both continuous price

changes and discrete jumps, thereby offering a more adaptable framework for mod-

eling financial asset behavior. Introduced by Lévy (1937), these processes represent

a category of stochastic models defined by independent and stationary increments,

capable of capturing the heavy tails and asymmetry frequently observed in finan-

cial returns [4]. While Brownian motion is a specific instance of a Lévy process,

the broader category permits a more complex dynamic structure, including the

potential for jumps, which aligns more closely with the empirical characteristics of

financial time series [3]. The initial notable utilization of Lévy processes within the

realm of finance emerged with Mertons (1976) jump-diffusion model. This model en-

hanced the Black-Scholes-Merton (BSM) framework by integrating a Poisson jump

process, thereby accommodating abrupt and infrequent fluctuations in asset prices.

Mertons innovation was pivotal as it effectively represented discrete occurrences,

such as market crashes or corporate announcements, which continuous models fail

to adequately address. Nevertheless, despite its advancements over the BSM model

by permitting jumps, the jump-diffusion model still operates under the premise that

these jumps follow a Poisson process, implying that they are relatively uncommon

and occur at a constant intensity. This premise constrains the model’s capacity to

accurately depict the heavy tails and frequent minor jumps that are characteristic

of high-frequency financial data [9]. The constraints inherent in the jump-diffusion

model prompted the creation of more advanced pure-jump Lévy models, which

eliminate the continuous diffusion aspect entirely. A prominent example of such

models is the Variance Gamma (VG) process, first proposed by Madan and Seneta

(1990) and subsequently refined by Madan, Carr, and Chang (1998) [2]. The VG

process is characterized as a pure jump model that accommodates a wide range of

skewness and kurtosis, thus providing significant flexibility in modeling the empir-

ical distribution of asset returns. In contrast to the BSM model, which presumes

constant volatility, the VG model effectively captures the volatility smile observed

in options markets, where implied volatility fluctuates with variations in strike price

and maturity.

Expanding upon the VG process, Carr, Geman, Madan, and Yor (2002) intro-

duced the CGMY model, which broadens the VG framework by accommodating

both minor and significant jumps [1]. The CGMY model is classified within the
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category of infinite activity Lévy processes. While Lévy models have been exten-

sively studied over the past few decades, several challenges remain, particularly in

terms of calibration and computational efficiency. Estimating the parameters of

Lévy models from market data is not straightforward, especially due to the non-

linearity of jumps and the infinite divisibility of Lévy processes. Recent research

has focused on Fourier transform methods (Fang & Oosterlee, 2008) and machine

learning techniques (Hernández et al., 2023) to improve the calibration process.

However, there is still a need for further exploration into how these models per-

form in financial series prediction and their practical applications in vanilla option

pricing [10] [5]. This study introduces novel contributions by investigating the per-

formance of Lévy models in predicting asset price dynamics and their implications

for the Black-Scholes model in predicting pricing of vanilla options. Specifically,

we aim to compare the predictive accuracy of different Lévy models, including the

Merton jump-diffusion, VG, and CGMY models, and assess their ability to price

vanilla options under real market conditions. We also explore novel calibration

techniques that leverage Fourier transform methods and optimization algorithms

to improve the computational feasibility of using Lévy models in practice.

2 literature Review

The Black-Scholes Market Model

Investors are allowed to trade continuously up to some fixed finite planning hori-

zon T . The uncertainty is modelled by a filtered probability space (Ω,F , P ). A

frictionless market with two assets is assumed. The first asset is one without risk

(e.g:the bank account). Its price process is given by B = {Bt = exp(rt), 0 ⩽ t ⩽ T}.
The second asset is a risky asset, usually referred to as a stock, which pays a con-

tinuous dividend yield q ⩾ 0. The price process of this stock, S = {St, 0 ⩽ t ⩽ T},
is modelled by 1, the geometric Brownian motion,

Bt = exp(rt), St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
(1)

where W = {Wt, t ⩾ 0} is a standard Brownian motion.

Note that, under P,Wt has a Normal(0, t) and that S = {St, t ⩾ 0} satisfies the

stochastic differential equation. The parameter µ reflects the drift and σ models

the volatility; µ and σ are assumed to be constant over time.

Generalities on Stochastic Processes

A family (Xt)t∈R+of random variables on a probability space (Ω,P,F) is consid-

ered. A stochastic process can either be seen as a collection of distributions (FXt
)t

of the random variables (Xt)t or as a mapping t 7→ Xt(ω) for fixed ω ∈ Ω. In

the latter case X.(ω) is called a path. In further investigating stochastic processes,
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particularly with respect to the index set of time, we will be concerned with the

information content in the market and the evolution of this information. To cap-

ture the revelation of information in a mathematically rigorous way we require

the concept of filtration. A filtration (Ft)t is a collection of σ-algebras such that

Fs ⊂ Ft ⊂ F , s ≤ t.

The sigma algebra Ft can be seen as the information available up to time t. A

probability space obeying this property is called filtered probability space. We can

then distinguish information currently available in the market form those which is

still a possible scenario and therefore random. All this leads to study non antici-

pating processes. For a given filtration (Ft)t, i.e. an information structure, such

a process is called adapted to the filtration if Xt is Ft-measurable. An important

property of this concepts a stochastic process is the martingale property. If the

process (Xt) possesses this property, the best prediction of the future value of Xt

at time s < t,E [Xt | Xs] is the present value Xs. The significance of this property

in finance is manifold, as the No-Arbitrage Theory is based on this property and

can allow computational probabilities calculated prior to investments in derivatives,

and thus one could rely on Monte Carlo simulation methods to compute prices [21].

Brownian Motion

To treat Brownian motion mathematically, the mapping is considerd

W : R+ × Ω → R; (t, ω) 7→ Wt(ω)

and (Wt)t is a Brownian motion if

(B1) starts at zero, i.e. W0 = 0 for almost all ω ∈ Ω

(B2) has stationary independent increments

(B3) the distribution of W (t) is Gaussian, Wt ∼ N (0, t)

(B4) the mapping t 7→ Wt(ω) is continuous for almost all ω ∈ Ω.

Let shortly comment on the property (B2). Take arbitrary time points T :=

{t0, t1, . . . , tn} such that 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn < ∞. Then (B2) and (B3)

state that
(
Wti −Wti−1

)
i=1,...,n

are independent Gaussian random variables and

Wt+h − Wt does not depend on h. The growth of Brownian motion therefore in

each time interval [S, T ],W (T ) − W (S) ∼ N (0, T − S), only depends on the dif-

ference T − S. Adding a volatility σ changes the distribution to N (0, σ(T − S)).

This corresponds to the growth condition of a linear function in real analysis. Lin-

ear functions can be characterized by equal growth over time intervals with the

same length. The expectation and the variance for this process are 0 and σ2dt2

respectively. Furthermore, the volatility represented by the parameter σ can also

be interpreted as a property of the path. It represents the quadratic variation, a

measure of roughness of the path [17]. Figure1 shows the distribution as well as

typical paths of Brownian motion.
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Figure 1: Illustration of a Brownian motion; distributions and paths

Poisson Process

By examining the Poisson process, an entirely distinct stochastic behavior is re-

vealed. In contrast to Brownian motion it has discontinuous sample paths. It takes

values in N.
by considering a sequence of independent exponentially distributed random vari-

ables (τn) , τn ∼ E(λ), λ > 0 and taking the sum Tn :=
∑n

i=1 τi and by consider the

following mapping

N : R+ × Ω → N; N(t) 7→
∑
n≥1

1{t≥Tn} (2)

(N(t))t is called Poisson process with intensity λ. This process is also known as

counting process. It counts the random times Tn which occur between 0 and t.

(P1) starts at zero, N(0) = 0

(P2) has stationary, independent increments

(P3) the distribution of N(T ) is Poisson, i.e. N(t) ∼ P(λt).

(P4) the mapping t 7→ N(t) is piecewise constant and increases by jumps of size λ.

The Poisson process does not obey the martingale property but it is easy to make

it into a martingale by substracting the mean. The mean and variance are those

of a Poisson distributed random variable and are both equal to λt. This leads to

the compensated Poisson process which is given by Ñ(t) = N(t)−λt. The classical

Poisson process can be obtained by setting λ = 1. A Compound Poisson process

with intensity λ and jump size distribution J is a stochastic process given by 5

X(t) =

N(t)∑
i=1

Yi(t) (3)

where Yi are independent and Yi ∼ J and N(t) being a Poisson process indepen-

dent of Yi, i ∈ N
Similar to Brownian motion, the variance is of order dt. But this time the

process jumps large distances only with small probability in time [19].In Figure 2

the distribution and some typical path of the Poisson process is shown .
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Figure 2: Illustration of a Poisson process; distributions and pathstext

Fourier transform

Indeed, each distribution is uniquely characterized by its characteristic function,

which is the Fourier transform, and conversely. The sole requirement is the defini-

tion of the Fourier transform. For a given distribution FXt it is 6

F(x) := EFxt
[exp(iux)] (4)

If the distribution has a density f with respect to the Lebesgue measure the

Fourier transform can be written as 7

F(x) =

∫
Rd

exp(iux)f(u)du (5)

Using that, the sum of independent identically distributed random variables is

the product of the corresponding characteristic functions together with the inde-

pendent increment property for a stochastic process and a time interval divided

into n pieces of length dt gives (7)

F̂Xt
(x) :=

n∏
i=1

F̂Xdt
(x) (6)

Thus, to compute the Fourier transform of Xt it suffices to compute it for a

small time interval of length dt [20].

By using the distribution of a Brownian motion to derive its characteristic func-

tion. We observe that the variance of Wdt is of order dt. Let P be a probability

measure with characteristic function P̂ For P being the distribution of X(t)√
dt

then

X̂dt(u) = P̂(u
√
dt). Since the expectation of X(t) is 0 we have

∫
x
P(dx) = 0. Using

that P̂ is the Fourier transform of a probability measure and expanding it into a

Taylor series we obtain

This corresponds to a small movement over small time intervals with high prob-

ability which is illustrated in Figure 3.
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Figure 3: Computing Fourier Transform for a Brownian motion

There is yet another way for a stochastic movement represented by a Poisson

process. This is a big move over small time intervals with low probability. To study

this movement, the characteristic function of a Poisson process is derived. To this

end, consider a process which jumps from its current state on the interval dt to

a level x with probability λ and stays at its current state with probability 1 − λ.
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Figure 4: Computing Fourier transform for a Poisson process

Therefore, the characteristic function can be easily computed and is [13]

X̂dt(u) = λdteiux + (1− λ)e0 = 1 +
(
eiux − 1

)
λdt ≈ exp

((
eiux − 1

)
λdt
)

(7)

X̂t(u) = X̂dt(u)
t/dt holds by multiplication using (P2) and leads to

X̂t(u) = exp
(
exp

(
eiux − 1

)
λt
)

(8)

Thus, the characteristic function of the Poisson process by setting x = 1 and

λ = 1 is recovered, hence

E
[
eiuN(t)

]
= exp

(
λt
(
eiu − 1

))
. (9)

Figure 4 illustrates the calculation and the stochastic movement of the Poisson

process.

It is now easy to construct a process having jump size x and jump probability λ.

This corresponds to multiplication of the Poisson process N(t) by x and exchange

t by λt.

It is possible to derive distributional properties as well. The moments of the

distribution can, for instance, be computed through differentiation.
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Lèvy Processes

A closer look at the properties of Brownian motion and Poisson motion reveals that

they obey the following similarities:

(L1) starts at 0

(L2) has stationary, independent increments

(L3) has stationary increments, i.e. the distribution of X(t + h) − X(t) does not

depend of h

(L4) is stochastically continuous, i.e. for all ϵ, limh→0 P (|Xt+h −Xt| ≥ ϵ) = 0

The processes only differ in the distribution, Gauss and Poisson, and the path

properties, continuous and piece-wise constant. If we take the properties (L1) to

(L4) as the definition of a class of stochastic processes, called Levy processes. Brow-

nian and Poisson processes are members of that class. In fact, we can interpret this

class as a stochastic analogue of a linear function. The property (L2) can be seen

as the stochastic analogue of the equal growth condition. Different linear functions

are governed by different constant growth rates. Their stochastic counterparts obey

the different distributions [18]. The stochastic counterpart has numerous proper-

ties which can all be studied by examining the characteristic function. We have

already seen that the processes considered above are fundamental building blocks

of a general class, as the next section will show.

The Lèvy Khinchtine Theorem

In fact, the characteristic function of a general Lèvy process can be derived. This

is the Lèvy Khinchtine Theorem. For a fixed Lèvy measure F we denote h(x) :=

x1{|x|≤1} and bFh := b +
∫
h(x)F (x). Then we have the Fourier transform of the

Lèvy process (Xt)t∈R+ [16]

X̂t(u) = exp((iubFh︸ ︷︷ ︸
drift

− 1/2u2σ︸ ︷︷ ︸
diffusion

+

∫ (
eiux − 1− iuh(x)

)
F (dx)

)
t︸ ︷︷ ︸

jump

) (10)

What does the formula tell and how does a Lèvy process actually move? First

of all, we see that the Lèvy process is determined by fixing the function b, the

measure F and the parameter σ. A triple (bF F, σ, F ) is called Lèvy triplet. To

further shed light on the above question we have to study all the components

which constitute the characteristic function given in the Lèvy Khinchtine Theorem.

Firstly, we interpret the Lèvy measure F as a generalization of the measure P used

for illustrating the stochastic movements from above. By the usual convention, we

will consider jumps of height bigger than 1 as big jumps. Let us further examine

the movement of a general Lèvy process. The drift and diffusion parts of (10) are

the characteristic functions of a linear function and a Brownian motion respectively.

Let us have a closer look at the jump component [14]
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u 7→ (exp(−iux)− 1− iuh(x))F (dx)t (11)

Processes with such characteristic function are pure jump processes. The param-

eter x is the jump height and F (dx) is the jump intensity. We already considered a

pure jump process, the Poisson process. We examine how this process fits in here

and what does happen if the jumps occur too frequently or the jump size is too

big?

Why is the function chosen as in (10)? If we had chosen h(x) = 0 in the general

setting and F as the measure P from the beginning, we would see that the simple

Poisson process fits into the above framework. The compensated Poisson process

can also be considered by setting h(x) = x. For a general function h we also get a

process which is x times a Poisson process compensation by a linear function. But

it is only partially compensated if 0 < h(x) < x.

But there are processes which would not lead to definite integrals in (10). These

are processes with too big or too many jumps. The jump size too big means

mathematically that [11] ∫
{|x|>1}

|x|F (dx) = ∞ (12)

The (12) indicates that the jump sizes that are larger than 1 have a significant

impact on the stochastic process being considered. Specifically, the integral diverg-

ing to infinity means that there are sufficiently large jumps in the process that

occur frequently enough to have a substantial effect. In other words, if you sum

up the sizes of all the jumps greater than 1 (weighted by their likelihood according

to the distribution F), you end up with an infinite value. This suggests that the

process experiences ”big jumps” that can dominate its behavior.

Too many small jumps means mathematically that∫
{|x|≤1}

x2dF (x) = ∞ (13)

The (4) indicates that the cumulative contribution of all jump sizes within the

range of -1 to 1 is infinite when weighted by the square of the jump sizes x2 . This

scenario represents a condition of ”too many small jumps.” It suggests that while

the individual jumps are small (within the absolute bounds of 1), their frequency

and the way they accumulate (given that we’re using x2 , which accentuates the

effect of larger small jumps) result in an infinite aggregate impact on the process.

Therefore, for such processes we have to cut-off with h. If we now consider the

general setting with a function h then the corresponding jump process could also

be seen as a compensated Poisson process perturbed by a linear function, but the

expectation will only be compensated for a value between 0 and 1 .

With the general formula at hand, we can find out about the behavior of sample

paths. It is differentiable if and only if σ = 0 and F = 0. Continuity is a property
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of a diffusion and can only be achieved if F = 0 otherwise there are jumps leading

to discontinuities. If we have a jump part then there occur finitely many jumps in

finite intervals if F ([−1, 1]) < ∞. Otherwise there are infinitely many. We only

have a path of finite variation if
∫
|x|≤1

|x|F (dx) < ∞
Distributional properties like the moments of the distribution of Xt, t ∈ R+, can

be computed by differentiation and are given by 8 [12]

mk := E
[
Xk
]
=

1

ik
∂kF(x)

∂xk
(0) (14)

Thus,

E[X(t)] = t ·

(
b+

∫
{|x|≥1}

xF (dx)

)
;V[X(t)] = t ·

(
σ +

∫
x2F (dx)

)
S[X(t)] =

t
∫
x3F (dx)(

t
∫
x2F (dx)

) 3
2

;K[X(t)] =
t
∫
x4F (dx)(

t
∫
x2F (dx)

)2 (15)

Notice that the distributional properties are determined by the shape of the Lèvy

measure for big |x| whereas the path properties are determined by the small |x|.
Thus, a Lèvy process can be constructed using three components. The stochastic

components correspond to two ways of stochastic movement discussed above.

Methodology

The dataset consists of 77 mid-prices of a set of European call options on the S&P

500 Index at the close of the market on 11 April 2022. On this day the S&P 500

closed at 4412.53 . Since, by the put-call parity , the price of a put option can be

calculated from the price of the call option with the same strike and maturity, and

vice versa, we include in our set only call option prices. The data was collected

from the Yahoo finance site and the analysis was done with Python software along

with financial packages.

The option prices can be visualized as in Figure 5, which shows several series of

call options. The upper series consists of options with the highest time to maturity

corresponding to options expiring in December 2023. The inner series consists of

options expiring in May 2022, June 2022, September 2022, December 2022, March

2023 and finally in June 2023. We will calibrate different models to this set. The

market prices are always denoted by a circle and later on the model prices will be

denoted by a plus sign. It is the goal to calibrate the model such that plus signs

shoot right through the middle of the corresponding circles.

The parameters coming out of the calibration procedure resemble the current

market view on the asset. Here we do not explicitly take into account any historical

data. All the necessary information is contained in today’s option prices, which we
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Figure 5: S&P 500 market option prices

observe in the market. Using the available pricing techniques , this method is useful

for pricing derivatives, such as OTC options, whose prices are not available in the

market and for finding mispricings in a set of European vanilla options.

APE, AAE, RMSE and ARPE

For comparative purposes, we compute the average absolute error as a percentage of

the mean price. This statistic, which we will denote by APE, is an overall measure

of the quality of fit

APE =
1

mean option price

∑
options

| market price − model price |
number of options

(16)

Other measures which also give an estimate of the goodness of fit are the average

absolute error (AAE), the average relative percentage error (ARPE) and the root

mean-square error (RMSE)
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AAE =
∑

options

| market price − model price |
number of options

ARPE =
1

number of options

∑
options

| market price − model price |
market price

RMSE =

√√√√ ∑
options

( market price − model price )2

number of options

(17)

As a general rule, we estimate the model parameters by minimizing the root-

mean-square error between model prices and market prices. We will attempt to

model stock-price behavior using a more sophisticated stochastic process than the

Brownian motion of the BlackScholes model. The stock-price dynamics are now

represented by a Lévy process, allowing us to model stock prices as the exponential

of this Lévy process. We can incorporate skewness and excess kurtosis, and we will

demonstrate that we can fit our underlying distributions to historical data quite

accurately. Next, we will price European options under our model. Finally, we will

calibrate our model to a set of available market option prices. We should observe

a significant improvement compared to the BlackScholes model.

Statistical Testing

We fit the Meixner distribution to several datasets, which we have already encoun-

tered of daily log returns of S&P index. By this, we illustrate that the more flexible

distributions, such as the Meixner, are more suitable than the normal distribution.

We assume that we have n independent observations x1, . . . , xn of a random vari-

able X. Typically, these observations will be the log returns of our financial asset.

From these observations, we would like to deduce reasonable estimators for the

parameter set θ. Note that under a Lévy process setting, the log returns over

non overlapping intervals of fixed length (typically, one day) will be independent

and identically distributed [9]. Sometimes, adhoc methods can also deliver reason-

able estimators. However, we give an overview of the classical maximum-likelihood

estimation method.

The maximum-likelihood estimator (MLE) θ̂MLE is the parameter set that max-

imizes the likelihood function

L(θ) =

n∏
i=1

f (xi; θ) (18)

Thus, we choose values for the parameters that maximize the chance (or likeli-

hood) of the data occurring.

Maximizing an expression is equivalent to maximizing the logarithm of the ex-

pression, and this is sometimes easier. So, we sometimes maximize the log likelihood
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function,

logL(θ) =

n∑
i=1

log f (xi; θ) (19)

To maximize the (log)-likelihood function, we often have to rely on numerical

procedures; however, in a few cases these estimators can be calculated explicitly.

The MLE estimators for the mean and variance of the Normal distribution are

given by the sample mean and sample variance

µ̂MLE =
1

n

n∑
i=1

xi, σ̂2
MLE =

1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2

(20)

3 Main results

Density and Log Density Fits

Figure6 shows the Gaussian kernel density estimator based on the daily log returns

of the S&P 500 Index over the period from 2001 until the end of 2021, together

with the fitted Meixner distribution, with parameters from Table 1. Compared

with the normal counterpart , we see a significant improvement. Note also that the

Meixner distribution has semi-heavy tails and as such is capable of also fitting the

tail behavior quite well. This can be seen from the log density plot in Figure 6.

Table 1: Meixner χ2-test: MLE parameters and P -values

Index a b d m PMeixner -value

S&P 500 (2001-2021) 0.0204 -0.0829 0.4140 0.0006 0.4754

χ2-Tests

For the χ2-tests we take the same intervals as when the normal distribution . Pa-

rameters are estimated by the MLE method. In the Meixner case, four parameters

have to be estimated, so we take n − 5 degrees of freedom ( n is the number of

observations).

Table1 shows the values of the P -values of the χ2-test statistic with equal width

for the Meixner null hypothesis. Recall that we reject the hypothesis if the P -

value is less than our level of significance, which we take to be 0.05 , and accept it

otherwise.

We see that the Meixner hypothesis is accepted and yields a very high P -value.
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Figure 6: (a) Meixner density and Gaussian kernel density estimators and (b) log
densities of the daily log returns of the S&P 500 Index

Pricing Formulas for European Options

Given our market model, we focus now on the pricing of European options for which

the payoff function is only a function of the terminal stock price, i.e. the stock price

ST at maturity T : G(ST ) denotes the payoff of the derivative at its time of expiry

T ie. F (XT ) = G(S0 exp(XT )). In the case of the European call with a strike price

K, we have G(ST ) = (ST −K)+ and F (XT ) = (S0 exp(XT )−K)+ [6].

Pricing through the Lévy Characteristics

In all cases where the underlying process is a Lévy process (for simplicity without a

Brownian component) in the risk-neutral world and the price Vt = V (t,Xt) at time

t of a given derivative satisfies some regularity conditions (i.e. V (t, x) ∈ C(1,2)),

the function V (t, x) can also be obtained by solving a partial differential integral
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equation (PDIE) with boundary condition, all in the Lévy characteristics [8]

rV (t, x) = γ
∂

∂x
V (t, x) +

∂

∂t
V (t, x) +

∫ +∞

−∞

(
V (t, x+ y)− V (t, x)− y

∂

∂x
V (t, x)

)
νQ(dy)

V (T, x) = F (x)

(21)

where [γ, 0, νQ(dy)] is the triplet of Lévy characteristics of the Lévy process under

the risk-neutral measure Q. This PDIE is the analogue of the famous BlackScholes

PDE and follows from the FeynmanKac formula for Lévy processes. It was derived

from Nualart and Schoutens (2001) and Raible (2000).

3.1 Calibration of Market Option Prices

The parameters which should resemble the markets view on the asset can be found

through a calibration procedure on the markets option prices themselves. Here we

do not explicitly take into account any historical data. All necessary information is

contained in todays option prices, which we observe in the market. We estimate the

model parameters by minimizing the root-mean-square error between the markets

and the models prices.

If we choose the mean-correcting equivalent martingale measure, we obtain a

calibration for the Meixner model in Figures 7 . In Table 2 the parameters coming

from the calibration procedure are given.

Table 2: Lt’evy models (mean correcting): parameter estimation

Model parameters

Mexiner α β γ

.455 -1.552 .45

In Table 3 the relevant values of APE, AAE, RMSE and ARPE are given. Ba-

sically, the four-parameter models perform better than the less-parameter models.

Based on this calibration. This calibration is momentary and we typically see that

calibrations to other datasets (of different underlies or on different times in history)

can favor the model that performs better.

Table 3: Levy models (mean-correcting): APE, AAE, RMSE, ARPE.

Model APE(%) AAE RMSE ARPE(%)

Mexiner 4.23 2.654 3.345 6.92



Paper 5: Investigating Levy’s model in financial series prediction 81

Figure 7: Meixner (mean-correcting) calibration of S&P 500 options (circles are
market prices, pluses are model prices).

4 results and recomendatiom

For the model considered, closed form expressions for the characteristic function

of the log price process were given. The models involved were calibrated to mar-

ket option prices and were capable of adequately fitting option prices over a wide

range of strikes and maturities. We see an improvement over the BlackScholes

prices. However, we still observe a significant difference from real market prices. It

is typical that Lévy model incorporates a smile effect, although the effect does not

completely correspond with the market. Moreover, there is evidence that the Lévy

mexiner model is much more reliable; it gives a much better indication of the true

price than the pure BlackScholes model. These almost perfect representations of

the vanilla option surface lead to interesting applications for the pricing of exotic

options. Then in In future studies, it is suggested to use other derivatives such as

exotic and American options or interest rate models for testing. Also, other pro-

cesses like The Generalized Hyperbolic Process and The Variance Gamma Process

could be used to estimate the model and compare the results.
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