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Abstract:
Abstract:
The aim of this paper is to propose a new method for solving a calss of stochas-
ticfractional optimal control problems. To this end, we introduce an equivalent
form for the presented stochastic-fractional optimal control problem and prove
that these problems have the same solution. Therefore, the corresponding Hamil-
ton JacobiBellman (HJB) equation to the equivalent stochastic-fractional optimal
control problem is presented and then the Hamiltonian of the system is obtained.
Finally, by considering Sharpe ratio as a performance index, Mertons portfolio
selection problem is solved by the presented stochastic-fractional optimal control
method. Moreover, for indicating the advantages of the proposed method, optimal
pairs trading problem is simulated.
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1 Introduction

There are two main approaches for solving a stochastic optimal control problem, us-

ing Hamilton-Jacobi-Bellman (HJB) equation and using the Pontryagin Maximum

Principle (PMP) which are based on the dynamic programming method and the

calculus of variations, respectively [6]. In the dynamic programming method, first

a value function is defined by considering sumation of the objective function values

on a horizon. Then the corresponding HJB equation is defined. The value function

have to be smooth that is not established in practical problems, necessarily. For

avoiding this drawback, a suitable formulation in viscosity solutions for dynamic

programming equations was introduced [7]. Solving the HJB equation for the dy-

namic programming method is difficult. In this case, although LQR approach is

considered as a common approach but the path integral methods can solve a class

of non-linear and non-quadratic control problems [8]. The path integral leads us to
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some methods such as non-linear Kalman filters method [9].

In finance, risk refers to the degree of uncertainty in an investment decision. The

risk of a financial asset investment is one of the factors determining the rate of return

considered by investors. Also, pricing is determined based on the rate of return [12]

. For a portfolio that is comprised of financial assets, there are two types of risk,

systematic and unsystematic risk [10]. The systematic risk is related to market

risk that is inflexible and inevitable. The systematic risk is caused by economic

factors [11]. Even, a variable portfolio has systematic risk. The unsystematic risk

is related to assets of portfolio that is caused by condition of the asset firm. Unlike

systematic risk, unsystematic risk can be adjusted. Indeed, the unsystematic risk

can be decreased by selecting a variable portfolio [10]. Therefore, for obtaining

total risk, the market risk must be estimated. Additionally, the market risk can

be adjusted by considering some adequate financial indexes in formulating optimal

portfolio allocation problems [12].

The Sharpe ratio is one of the financial indexes that provides adjusting the

market risk to maximize the performance of an investment. Indeed, by using of

the Sharpe ratio, investors can understand the return of an investment while it is

compared to it’s risk [13]. If the value of the Sharpe ratio be maximum then the

risk-adjusted return will be minimum [14,15]. Thereby, by considering the Sharpe

ratio as the objective function, a stochastic optimization problem or a stochastic

optimal control problem with fractional objective function is formulated.

In a fractional programming, the objective function is a ratio of two functions.

The ratio to be optimized often describes some kind of efficiency of a system [18].

In this paper, we attempt to optimize of portfolio with respect to Sharpe ratio

leads. For this purpose, we formulate a new stochastic-fractional optimal con-

trol(SFOC) problem and propose a new approach for solving SFOC problem. In

this new approach, first, an equivalent form is introduced for the SFOC problem.

It is proved that the mentioned problem and it’s equivalent form have the same

optimal solution. Then, the corresponding HJB equation to the equivalent prob-

lem is presented. Thereby, according to optimality conditions, the optimal strategy

can be obtained. Finally, as an application, Merton’s portfolio selection problem is

solved by the presented SFOC method. Moreover, for indicating the advantages of

the proposed method, optimal pairs trading problem is simulated.

The paper is organized as follows; the SFOC problem is stated in Section.2.

The stochastic-fractional optimal control method and it’s algorithm is presented in

Section.3. Finally, solving Merton’s portfolio selection problem and pairs trading

problem are presented as the applications in Section.4. Also, the conclusion is

presented in Section.5.
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2 Statement of the problem

Consider a stochastic control system where dynamics of the state variable is the fol-

lowing stochastic differential equation(SDE) with control-dependent diffusion and

drift coefficients:

dXs = b(Xs, us)dt+ σ(Xs, us)dWs, (1)

whereW is a d-dimensional Brownian motion on a filtered probability space (Ω,F ,F =

(Fs)s≥0, P ). The control u = {us}s≥0 is an adapted-F process in admissible control

set A ⊆ Rm. The functions b : Rn × A → Rn and σ : Rn × A → Rn×d satisfy a

uniform Lipschitz condition in A :

∃K > 0,∀X,Y ∈ Rn,∀u ∈ A,

|b(X,u)− b(Y, u)|+ |σ(X,u)− σ(Y, u)| ≤ K|X − Y |. (2)

Also, for a finite horizon 0 < t < T < ∞, A is a set of control processes u satisfying

the following condition:

E
[ ∫ T

0

(|b(0, ut)|2 + |σ(0, ut)|2)dt
]
< ∞. (3)

The conditions (2) and (3) ensure the existence and uniqueness of the solution of

SDE (1) for all u ∈ A and for any initial condition (t, x) ∈ [0, T ] × Rn, starting

from x at s = t. This solution is denoted by {Xt,x
s , 0 ≤ t ≤ s ≤ T}.

Now, Consider the following fractional objective function on time interval [0, tf ]

where tf is final time :

J(us) =
E[f(Xt,x

s , us)]√
V ar(f(Xt,x

s , us))
(4)

where f(., .) is an integrable function on Rm × [0, tf ]. The objective is to find

a stochastic control u = {us}s≥0 that satisfies the SDE (1) and maximizes the

objective fractional function (4). To this end, the following Mayer type stochastic-

fractional optimal control problem with initial condition is to be solved [18].

maxutf
∈A J(us) =

E[f(Xt,x
s , us)]√

V ar(f(Xt,x
s , us))

subject to :

dXs = b(Xs, us)dt+ σ(Xs, us)dWs,

X(0) = X0,

(5)
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3 Solving stochastic-fractional optimal control prob-
lems

In this section, first an equivalent form of the Mayer type stochastic-fractional

optimal control problem(5) is introduced and then by considering the corresponding

(HJB) equation, the equivalent problem is solved.

Theorem 3.1. Consider the stochastic-fractional optimal control problem(5). Then

there exists optimal value Ĵ for which the optimal solution of problem(5) is the same

as the optimal solution of the following stochastic-fractional optimal control prob-

lem:

maxutf
∈A Z(utf ) = E[f(Xt,x

tf
, utf )]− ĴV ar(f(Xt,x

tf
, utf )),

subject to :

dXs = b(Xs, us)dt+ σ(Xs, us)dWs,

X(0) = X0,

(6)

where Ĵ is optimal value of the functional J(.).

Proof. According to the constraints of the problem(5), for s ∈ [0, tf ] define the

function H : Rn −→ Rn:

H(Xs) = Xs −X0 −
∫ s

0

b(Xt, ut)dt−
∫ s

0

σ(Xt, ut)dWt, (7)

differentiating, we observe that H(Xt) = 0. Therefore, the two problems (5) and

(6) are converted to the following optimization problems, respectively:
maxutf

∈A J(utf ) =
E[f(Xt,x

tf
, utf )]√

V ar(f(Xt,x
tf

, utf ))

subject to :

H(Xs) = 0

(8)

and, 
maxutf

∈A Z(utf ) = E[f(Xt,x
tf

, utf )]− ĴV ar(f(Xt,x
tf

, utf )),

subject to :

H(Xs) = 0.

(9)

Let, X∗
tf

be an optimal solution of the problem (8). According to Karush-Kuhn-

Tucker (KKT) necessary and sufficiency conditions [17], for the optimal solution

X∗
tf

, there exists a Lagrange multiplier λ ∈ R such that :

d

dX

( E(f(X∗
tf
, u∗

tf
)√

V ar(f(X∗
tf
, u∗

tf
))

)
+ λ

d

dX
H(X∗

tf
) = 0. (10)
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Therefore, we have:

1√
V ar(f(X∗

tf
, u∗

tf
))

[dE[f(X∗
tf
, u∗

tf
)]

dX
− 1

2

dV ar(f(X∗
tf
, u∗

tf
))

dX

E(f(X∗
tf
, u∗

tf
))

V ar(f(X∗
tf
, u∗

tf
))

]
+

λ
d

dX
H(X∗

tf
) = 0.

(11)

Now, let a =
1√

V ar(f(X∗
tf
, u∗

tf
))

and b =
1

2
a

E(f(X∗
tf
, u∗

tf
))

V ar(f(X∗
tf
, u∗

tf
))
. Thus, we have:

a
dE[f(X∗

tf
, u∗

tf
)]

dX
− b

dV ar(f(X∗
tf
, u∗

tf
))

dX
+ λ

d

dX
H(X∗

tf
) = 0. (12)

By taking Λ =
λ

a
and Ĵ =

b

a
, we obtain:

dE[f(X∗
tf
, u∗

tf
)]

dX
− Ĵ

dV ar(f(X∗
tf
, u∗

tf
))

dX
+ Λ

d

dX
H(X∗

tf
) = 0. (13)

Therefore, X∗
tf

satisfies the KKT necessary and sufficienct conditions for the equiv-

alent stochastic-fractional optimal control problem(9), this completes proof.

According to theorem (3.1), the problems (5) and (6) have the same optimal so-

lution. Therefore, by solving the problem(6), the optimal solution of the problem(5)

is obtained, as well. For this purpose, consider the value function:

v(t, x) = max
u∈A

[
E[f(Xt,x

tf
, utf )]− ĴV ar(f(Xt,x

tf
, utf ))

]
(14)

In the following theorem, the corresponding HJB equation to function (14) is pre-

sented.

Theorem 3.2. Consider the stochastic-fractional optimal control problem(6), the

corresponding HJB equation to function (14) is:

∂v(t, x)

∂t
+maxu∈A

{
F (Xt,x

s , us) + b(xt, ut)
∂v(t, x)

∂x

+
1

2
tr(σ(xt, ut)σ(xt, ut)

†)
∂2v(t, x)

∂x2

}
= 0,

(15)

where F (Xt,x
s , us) =

df(Xt,x
s , us)

ds
− Ĵ

d(f − E(f))2(Xt,x
s , us)

ds
.

Proof. The Mayer type stochastic-fractional optimal control problem(6) is con-

verted to a Lagrange one, as follows:

Let,

max
u∈A

Φ(tf ) = E[f(Xt,x
tf

, utf )]− ĴV ar(f(Xt,x
tf

, utf )),



104 Journal of Mathematics and Modeling in Finance

where Φ(t) = 0 for t < tf . One can obtain,

dE[f(Xt,x
t , ut)]

dt
− Ĵ

dV ar(f(Xt,x
tf

, utf ))

dt
=

dΦ

dt
, (16)

since V ar(f) = (f − E(f))2 so, according to the linearity of E(.), by integrating

the second equality in (16) on interval [0, tf ], we have:

Φ(tf ) = E
[ ∫ tf

t

F (Xt,x
s , us)ds

]
. (17)

where,

F (Xt,x
s , us) =

df(Xt,x
s , us)

ds
− Ĵ

d(f − E(f))2(Xt,x
s , us)

ds
. (18)

Therefore, by considering the objective function (17), a Lagrange type equivalent

stochastic-fractional optimal control problem is obtained whose the corresponding

value function is:

v(t, x) = max
u∈A

E
[ ∫ tf

t

F (Xt,x
s , us)ds

]
. (19)

Now, suppose 0 ≤ t ≤ t+ h ≤ tf , for a fixed control {ut}t≥0 = u we have:

v(t, x) ≥ E
[ ∫ t+h

t

F (Xt,x
s , us)ds

]
+ E

[ ∫ tf

t+h

F (Xt,x
s , us)ds

]
, (20)

According to the definition of the value function(19), we have:

v(t, x) ≥ E
[ ∫ t+h

t

F (Xt,x
s , us)ds

]
+ v(t+ h,Xt,x

t+h). (21)

By applying Ito’s formula for function v on [t, t+ h], we have:

v(t+ h,Xt,x
t+h) = v(t, x) +

∫ t+h

t

∂v(s,Xt,x
s )

∂s
ds+

∫ t+h

t

∂v(s,Xt,x
s )

∂x
dXs

+
1

2

∫ t+h

t

∂2v(s,Xt,x
s )

∂x2
d⟨Xs⟩.

(22)

where d⟨Xs⟩ = (dXs)
2 . According to (1), by substituting dX in (22) and the

fact that the stochastic process W is a Standard Brownian Motion so, d⟨Wt⟩ =

(dWt)
2 = dt, we have:

v(t+ h,Xt,x
t+h) ≥ v(t, x) +

∫ t+h

t

∂v(s,Xt,x
s )

∂s
ds+

∫ t+h

t

∂v(s,Xt,x
s )

∂x
b(x, u)ds

+
1

2

∫ t+h

t
tr(σ(x, u)σ†(x, u))

∂2v(s,Xt,x
s )

∂x2
ds.

(23)

According to inequality (23), by substituting value of v(t + h,Xt,x
t+h) in (21), we

have:

0 ≥ E
[ ∫ t+h

t
F (Xt,x

s , us)ds
]
+
∫ t+h

t

(∂v(s,Xt,x
s )

∂s
+ b(x, u)

∂v(s,Xt,x
s )

∂x

+
1

2
tr(σ(x, u)σ†(x, u))

∂2v(s,Xt,x
s )

∂x2

)
ds

(24)
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According to the mean-value theorem, one can infer:

0 ≥ limh→0
1

h
E
[ ∫ t+h

t
F (Xt,x

s , us)ds
]
+ limh→0

1

h

∫ t+h

t

(∂v
∂s

+b(x, u)
∂v

∂x
+

1

2
tr(σ(Xs, us)σ

†(x, u))
∂2v

∂x2

)
ds.

(25)

Since, the inequality (25) holds for any fixed u ∈ A , for all (t, x) ∈ [0, tf )× Rn,

∂v(t, x)

∂t
+maxu∈A

{
F (Xt,x

s , us) + b(xt, ut)
∂v(t, x)

∂x

+
1

2
tr(σ(xt, ut)σ(xt, ut)

†)
∂2v(t, x)

∂x2

}
= 0.

(26)

This completes proof □.

According to theorem(3.2), the following stochastic control process maximizes

the objective function of the equivalent stochastic-fractional optimal control prob-

lem(6):

u∗
t ∈ arg

(
maxu∈A

{
F (Xt,x

s , us) + b(xt, ut)
∂v(t, x)

∂x

+
1

2
tr(σ(xt, ut)σ(xt, ut)

†)
∂2v(t, x)

∂x2

})
.

(27)

Algorithm of Solving SFOC problems

In the application section of this paper, this algorithm is programmed and imple-

mented with MATLAB software.

Input : Stochastic-fractional optimal control problem(5).

Output : Stochastic optimal pair (X∗, u∗).

Step 1: Convert the stochastic-fractional optimal control problem to the

equivalent form(6).

Step 2: Describe HJB equation(15) corresponding to the equivalent SFOC

problem

Step 3: Compute stochastic process {ut} by solving the HJB equation.

Step 4: Compute the response of the control process, i.e compute the solution

F-adapted process {Xt} of the SDE (1).

4 Applications

In this section, two examples, Merton portfolio allocation problem and pairs trad-

ing problem are considered for indicating the advantages and applicable capacity

of the presented method.
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4.1 Sharp Ratio

Sharp Ratio measures return per unit of deviation (risk) in an investment asset or

a trading strategy. For better understanding of how this ratio works, its formula is

presented as follows [2]

S(X) =
E(X)

StdD(X)
(28)

where:

• E(X) is the return of a portfolio.

• StdD(X) is the standard deviation of X.

The formula (28) is compatible with the definition Sharp ratio in page 3, completely.

Because, E(X) denotes return and StdD(X) denotes risk. If the value of the

Sharpe ratio be maximum then the risk-adjusted return will be minimum.This index

expresses the return of investing in a portfolio for a level of market risk(systematic

risk). The higher Sharp Ratio, the lower risk of portfolio [2].

4.2 Merton portfolio allocation problem

Suppose that a portfolio is constructed on time interval [0, T ] such that for any

t ∈ [0, T ] a fraction of wealth u(t) is invested in stock with interest rate µ and fixed

volatility σ whereas the remaining fraction 1−u(t) invested in a bond with interest

rate r. According to Black-Scholes model, if the dynamics of the rate of return of

bond and stock are respectively expressed as follows:

dS0(t)

S0
= rdt,

dS(t)

S
= µdt+ σdωt, (29)

where r, µ and σ are positive real numbers and also, ω is Brownian motion then the

dynamics of variable of wealth obtained from investing in the portfolio, is expressed

as follows:
dWt

Wt
= ut

dS(t)

S
+ (1− ut)

dS0(t)

S0

= ut(µdt+ σdωt) + (1− ut)rdt

=
[
ut(µ− r) + r

]
dt+ utσdωt.

(30)

Let, dXt =
dWt

Wt
then Xt is the rate of return of the portfolio.

The objective is that the return of the investing in this portfolio be maximized in

a finite horizon T < ∞. According to the modern portfolio theory: for a given level

of market risk, portfolios can be constructed to maximize expected return. The

relationship between risk level and return can be shown by a curve called efficient

frontier [1]. Every efficient portfolio corresponds to a point on curve.



Paper 7: Solving SFOCP and application in PM 107

Note that the optimal portfolios have maximum return for a given level of market

risk. Therefore, in this paper Merton portfolio allocation problem is solved by the

proposed method such that the resulting portfolio on the efficient frontier.

According to section 4.1 and assumptions mentioned above, the aim of solving

the investing problem in portfolio constructed based on Merton portfolio allocation

is to design an optimal strategy such that Sharp Ratio of portfolio maximizes.

Therefore, the following stochastic-fractional optimal control must be solved:

maxu∈A J(utf ) =
E(Xuf

)√
V ar(Xuf

)
,

subject to :

dXt =
[
ut(µ− r) + r

]
dt+ utσdωt,

X(0) = X0,

(31)

where r, σ, µ are as (29).

According to algorithm of solving stochastic-fractional optimal control problems

and specially theorem(3.1), the problem(31) is converted to a Lagrange type equiv-

alent SFOC problem and then the following value function considered:

v(t, x) = max
u∈A

[
E(Xuf

)− ĴV ar(Xuf
)
]

(32)

According to theorem(3.2), the corresponding HJB equation to the value func-

tion(32) is:

∂v(t, x)

∂t
+maxu∈A{F (Xt,x

s , us) + xt(ut(µ− r) + r)
∂v

∂x

+
1

2
σ2u2x2

t

∂2v(t, x)

∂x2
} = 0,

(33)

where

F (Xt,x
s , us) =

dX

ds
− Ĵ

d(X − E(X))2

ds
.

Now, suppose that (x∗, u∗) is the stochastic optimal solution of the equivalent form

of the problem (31). Therefore we have:

∂v

∂t
(t, x∗) = 0,

F (Xt,x
s , us) = 0

r
∂v

∂x
(x∗, t) = 0

x∗
t (u

∗
t (µ− r))

∂v

∂x
+

1

2
σ2u∗2x∗

t
2 ∂

2v

∂x2
= 0

(34)

From fourth equation in (34):

u∗ =
−2(µ− r)

x∗
tσ

2

∂v

∂x
∂2v

∂x2

(35)
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where,

∂v

∂x
=

∂E
[ ∫ tf

t
F (Xt,x

s , us)ds
]

∂x
,

=
∂E
[ ∫ tf

t

(df(Xt,x
s , us)

ds
− Ĵ

d(f − E(f))2(Xt,x
s , us)

ds

)
ds
]

∂x
,

(36)

here, f(Xt,x
s , us) = Xt,x

s . Therefore, we have:

∂v

∂x
=

∂E
[ ∫ tf

t

(
dXt,x

s − Ĵd(Xt,x
s − E(X))2

)]
∂x

,

=
∂E
[(

Xt,x
tf

−Xt,x
t − Ĵ(Xt,x

tf
− E(X))2 + Ĵ(Xt,x

t − E(X))2
)]

∂x
,

=
∂E
(
− x+ Ĵ(x− E(X))2

)
∂x

,

= −1 + 2ĴE(x− X̄)

(37)

where X̄ = E(X). Also
∂2v

∂x2
=

∂

∂x

(∂v
∂x

)
= 2Ĵ . (38)

4.3 Optimal pairs trading by using SFOC approach

Now, the optimal pair-trading problem is formulated as a SFOC Problem. Accord-

ing to section 4.1 and dynamics of paired stock prices, spread and wealth value [5],

the objective of investing in portfolio constructed based on pair-trading strategy

is to design an optimal strategy such that Sharp Ratio of portfolio be maximized.

Therefore, the following stochastic-fractional optimal control is to solved:

maxu∈A J(utf ) =
E(Xuf

)√
V ar(Xuf

)

subject to :

dXt = u(t)
(
k(θ − Spr(t)) +

1

2
λ2 + ρσλ+ r

)
dt+ λu(t)dω(t)

dSprt = k(θ − Spr(t))dt+ λdω(t)

X(0) = X0, Spr(0) = Spr0,

, (39)

where, the first and second constraints describe the wealth and spread dynamics,

respectively. The third constraint specifies the initial wealth of the portfolio and

the spread.

Solving Optimal Pairs Trading Problem by SFOC Method

Consequently, the optimal pairs trading problem (39) is solved by the proposed

stochastic-fractional optimal control method.
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According to algorithm of solving stochastic-fractional optimal control problems

and specially theorem(3.1), the problem(39) is converted to a Lagrange type equiv-

alent SFOC problem and then according to (19), the following value function con-

sidered:

v(t, x) = max
u∈A

E
[ ∫ tf

t

F (Xt,x
s , us)ds

]
. (40)

where F (., .) is as (18). According to theorem(3.2), the corresponding HJB equation

to the value function(40) is:

∂v(t, x)

∂t
+maxu∈A{F (Xt,x

s , us)

+xtut

(
k(θ − Spr(t)) +

1

2
λ2 + ρσλ+ r

)∂v
∂x

+
1

2
λ2u2

tx
2
t

∂2v

∂x2
} = 0.

(41)

in which optimal control Hamiltonian is

H(u) = maxu∈A{F (Xt,x
s , us) + xtut

(
k(θ − Spr(t)) +

1

2
λ2 + ρσλ+ r

)∂v
∂x

+
1

2
λ2u2

tx
2
t

∂2v

∂x2
}.

Since, the optimal pairs-trading strategy u∗ satisfies the equation
∂H

∂u
(u∗) = 0

therefore, according to the theorem(3.2):

u∗
t =

2
(
k(θ − Spr(t)) +

1

2
λ2 + ρσλ+ r

)
x∗
tλ

2

∂v

∂x
∂2v

∂x2

(42)

where
∂v

∂x
and

∂2v

∂x2
are determined by Eqs (37) and (38), respectively.

Simulation Results

In this section, a stochastic-fractional optimal pairs-trading strategy for a given

pair stocks price, S1 and S2, is obtained. Also, all of the parameters of this simu-

lation are chosen same as [5] such that the results of this paper can be compared

with the presented results of method in [5].

According to [5], the price process of stock 2, S2(t) is simulated by taking a series

of 1-day time period. We have assumed 251 trading days in a year. So, stock 2 is

simulated where, µ = 0.3 and σ = 0.1. Moreover, since the price variable of stock

2 and the spread are correlated by ρ, the processes B = {B(t)} and ω = {ω(t)} are

set to be two standard normal random processes such that ρ = 0.19 .

Additionally, according to [5], the stock price of stock 1 can be obtained as:

S1(t) = S2(t)e
Spr(t). (43)
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For obtaining the stock price paths for stock 1 and 2, the above simulations are

implemented for one trading year(251 days). The results has been shown in the

Figure 1.

Figure 1: Time series of stock 1 and 2 by SFOC method.

Figure 1 depicts the time series of stock 1 and 2. Therefore, we can identify the

path dynamics of the two stocks and adopt it for describing the wealth value dy-

namics.

Now, according to Equation (42), the optimal pairs-trading strategy can be

computed via the above identified data for stock 1, stock 2, the spread between the

pair of stocks and the corresponding parameter values. The optimal pairs-trading

strategy is simulated in Figure (2).

Figure 2: optimal pairs-trading strategy by SFOC method.

Figure.2 shows the obtained stochastic-fractional Optimal control signal. Accord-



Paper 7: Solving SFOCP and application in PM 111

ing to the control curve, the proportion of portfolio that is allocated to investing in

stock is determined at any time. Since an optimal strategy maximizes Sharp Ratio

of a portfolio and consequently, the resulting optimal portfolio is on the efficient

frontier curve, therefore by adopting the optimal pairs-trading strategy shown in

figure.2 , we can obtain an efficient portfolio.

Now, according to the above simulated data and [5] the wealth values simula-

tion is illustrated in the Figure 3. Figure.3 shows that, the value of the portfolio

Figure 3: Wealth evolution by SFOC method.

increases from 1000 to 1432 in one year. Indeed, this represents a yearly return of

over 42% for the portfolio based on SFOC pairs-trading strategy. Figure.3 shows

increasing behaviour of the wealth value of the portfolio at any time. For the given

level of market risk, the obtained portfolio have maximum return at any time.

Now, the stochastic control approach [5] is implemented for two stocks 1 and 2

and results are compared with the proposed SFOC method results. For this pur-

pose, the simulation of the stock price paths for stocks 1 and 2 are run in the one

year (251 trading days) for corresponding parameters values which are mentioned

above. Figure 4 shows the logarithm values of data for stock 1 and 2.

Additionally, the optimal pairs-trading strategy can be computed by using the

above identified data. The simulated values of the optimal pairs-trading are shown

in Figure 5.

Additionally, according to [5] and pairs-trading strategies, the wealth values are

obtained and the results of simulation are shown in Figure 6.

Figure 6 shows that value of the portfolio increases from 1000$ to 1380$ in one

year. Figure 6 shows that the wealth value of the portfolio deviates from increas-

ing procedure. Also, since the risk index is not considered therefore the obtained

portfolio is not efficient one, necessarily.
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Figure 4: Time series of stock 1 and 2 by [5] .

Figure 5: Optimal Stochastic Pairs-Trading by [5].

5 Conclusion

In this paper, the stochastic–fractional optimal control problem was formulated

and a new algorithm was proposed for solving it. According to the proposed al-

gorithm, first, the equivalent form of the problem was introduced. It was proved

that optimal solutions of the two problems are the same. Therefore, by solving

the equivalent stochastic–fractional optimal control problem based on (HJB) equa-

tion method, the optimal control was obtained. Indeed, the corresponding value

function to the equivalent stochastic–fractional optimal control problem allowed to

calculate the optimal control rule based on applying the optimality conditions to

the Hamiltonian system. For facilitating the stochastic–fractional optimal control

method, two theorems were proved. For highlighting the application of proposed
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Figure 6: Wealth evolution by [5].

method, by considering Sharpe ratio as performance index, Merton’s portfolio se-

lection problem was solved and optimal pairs trading problem was simulated.
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