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Abstract:
Abstract:
This paper estimates systematic risk in Irans foreign exchange market using a
stochastic volatility model, analyzing five distinct episodes shaped by varying eco-
nomic and political conditions. By tracing the evolution of volatility dynamics
across these episodes, we reveal critical shifts in market behavior under different
risk regimes. Our results show that during low-risk episodes, volatility shocks
exhibit high persistence, causing market disturbances to linger. In contrast, as
systematic risk intensifies, volatility shocks dissipate more rapidlyyet this reduced
persistence coincides with a marked rise in average volatility. We identify three
particularly turbulent episodes in the past seven years, each characterized by ex-
ceptionally high levels of systematic risk. Strikingly, both the mean and variance
of volatility increased during these high-risk periods, signaling not only heightened
instability but also deeper Knightian uncertainty. These findings carry significant
policy implications: when direct reduction of volatility proves challenging, policy-
makers should prioritize reducing the volatility of volatility to mitigate uncertainty
and stabilize expectations. Notably, our analysis indicates that a 1% reduction in
volatility corresponds to a 1.7% decline in the variance of daily exchange rate
returns, underscoring the leverage policymakers have over market uncertainty.
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1 Introduction

The exchange rate is a key and important variable in understanding the macroeco-

nomic situation. In an economy where a large part of its exports is oil revenues, the

exchange rate can experience very large fluctuations. Exchange rate fluctuations

have the ability to be transmitted to the economy and, as a result, can affect many

economic variables. On the other hand, many shocks that enter the economy show

their effect on the exchange rate. For example, high inflation ultimately affects

foreign goods and causes an increase in the exchange rate. Therefore, it can be

claimed that the exchange rate is one of the most important economic variables to
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explain macroeconomic risks.

Systematic risk refers to the risk that the entire economy is exposed to and there-

fore cannot be diversified. The role of the policymaker in reducing systematic risk

is very key. The aim of this research is to measure systematic risk through exchange

rate fluctuations for Iran in different cycles. We show that external shocks strongly

affect systematic risks and play a serious role in shaping the systematic risks of the

Iranian economy. Despite the fact that the policymaker faces serious limitations, he

still has tools through which he can manage systematic risk. We define the concept

of volatility and show that if the central bank targets this variable, it will be able

to control part of the exchange rate risk. From a statistical perspective, we use

a new method for performing Monte Carlo simulations, called Hamiltonian Monte

Carlo. This method has several advantages, which will be explained below.

With this assumption, we try to extract systematic risk from the exchange rate

using stochastic volatility models. In such models, volatility is assumed to be

a hidden variable that must be estimated with the help of the model. Stochastic

volatility models - as their name suggests - are used to estimate stochastic volatility.

These models are visually appealing because they estimate volatility over time.

However, since the likelihood function is difficult to evaluate, it is complicated to

estimate. These models are usually applied to stock indices or currency pairs and

estimate the volatility of that index.

We first divide the exchange rate situation into five episodes based on the ex-

change rate distribution. In fact, each episode has its own dynamics. Next, we

try to estimate the parameters related to each episode using stochastic volatility

models. Finally, we analyze each section and examine the volatility of each episode,

which indicates the systematic risk that the country has incurred in that period.

We express the stochasticity of volatility in terms of a class of stochastic differ-

ential equations. Stochastic differential equations are suitable for high-frequency

data, and we also use daily data in our estimation.

The continuation of the path is as follows: In Section 2, a review of the literature

on stochastic volatility models will be provided, and empirical work related to Iran

will also be reviewed. Section 3 will be related to the explanation of the model.

Section 4 is dedicated to describing the estimation method. In Section 5, the

division of different exchange rate periods in Iran will be explained, and in Section

6, the results will be analyzed.

2 Literature Review

A major application of stochastic volatility models is in financial modeling, and

in particular asset pricing (see Barndorff-Nielsen et al. [2] for an example). Tay-

lor [31] first proposed that the logarithm of volatility can be modeled as a first-order

autoregressive process (AR(1)). The details of the model will be discussed later.

Nelson [26] has introduced three fundamental drawbacks to the Generalized Au-
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toRegressive Conditional Heteroskedasticity (GARCH) family of models in the field

of asset pricing: (1) Researchers, starting with Black [27], have found a negative

correlation between current returns and future return volatility. GARCH models

reject this hypothesis. (2) GARCH models impose parameter constraints that are

often violated by the estimated coefficients and may inappropriately constrain the

dynamics of the conditional variance process. (3) It is difficult to interpret whether

conditional variance shocks are persistent in GARCH models because the usual

norms for measuring persistence often do not match. Stochastic volatility models

have overcome these drawbacks.

Various methods have been proposed to estimate the parameters of this model.

Melino and Turnbull [24] used the GMMmethod. Duffie and Singleton [7] estimated

the parameters using the method of moment simulation, using the moments of a

simulated process. A new method was developed by Jacquier et al. [16]. They

estimated the parameters using Markov Chain Monte Carlo (MCMC). For more

details and other methods, see Broto and Ruiz [5].

The logarithmic volatility model is a very common model, but it has its own

problems. First, volatility is constant, which is not compatible with the real world.

Second, numerical computation of option prices is very expensive. To address these

concerns, alternative models have been developed. Heston introduced the square

root stochastic volatility model. In this model, volatility includes the square root of

volatility. After him, Bates [3,4], Pan [28], and Duffie et al. [8] extended this model

and added jumps to returns and volatility. Eraker et al. [10] estimated stochastic

volatility models with jumps in returns and volatility using MCMC, and Eraker [9]

extended it by including option prices.

The research conducted on Iran is divided into two main categories. The first

category is research that has used stochastic volatility models to estimate the pa-

rameters of the Iranian stock market returns. Heybati et al. [13] have shown that

the uncertainty estimate is strongly influenced by the predictive regression equa-

tions and finally concludes that the autoclastic volatility model and asymmetric

GARCH have better forecasting in and out of the sample. Amiri [1] has fitted

five types of volatility models, namely ARCH, GARCH, SV-AR, SV-STAR, and

SV-MSAR, to the Iranian stock market data set in a Bayesian framework using

MCMC methods. The results of his studies show that SV models perform better

than ARCH and GARCH models. Momenzadeh et al. [25], using two stochastic

volatility and stochastic volatility models, reject the hypothesis of the existence of a

unit root in the Iranian stock market between 2019-2021. Of course, they conclude

that the stability of volatility in the Iranian stock market is very high.

The second category is research conducted on exchange rates. Dargahi and

Ansari [6] have improved the neural network model for forecasting exchange rates

based on the variance volatility index. For this purpose, they have considered the

two variance indices and GARCH as exchange rate volatility indices separately

and have used them in the model in two ways. First, they added its lag to the
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exchange rate lags, and second, they leveled the volatility index and, by classifying

observations based on the level of volatility, used a specific forecasting model for

each category of observations. The results show that models with high levels of

volatility, compared to the baseline model, improve the forecasting power of future

exchange rates. Tayebi et al. [30], in a study based on neural networks, investigated

the hypothesis that the neural network model performed better than other models,

and the results indicated the correctness of this hypothesis. Bafandeh Imandoust

et al. [15], in a study on exchange rate forecasting based on ARIMA, fuzzy neural

network, and autoregressive neural network models, dealt with the results. The

results of comparing the three models mentioned based on different forecasting

criteria show that in exchange rate forecasting, the fuzzy neural network model

is superior to competing models. The first study that used stochastic differential

equations to forecast exchange rates is the article by Khodavaisi and Molabahrami

[20], who showed that the geometric Brownian motion model has better forecasting

power than the ARIMA model.

Therefore, this research is noteworthy in several ways. First, the Iranian for-

eign exchange market has not been analyzed and studied within the framework of

stochastic volatility models. Second, our analysis tool is the Hamiltonian Monte

Carlo method, which has high accuracy in estimation and will be discussed below.

The third point is that in our analysis, we divide the foreign exchange market in

Iran into five episodes and assume that the dynamics of each episode are different

from the rest, which allows us to extract very interesting intuitions.

3 Model

We use a widely used stochastic volatility model in which volatility follows an AR(1)

form. According to Johannes and Polson [18],

log(St) = µdt+
√
Vt W

s
t

log(Vt) = κv (θv − log(Vt)) t+ σv W
v
t

In our model, there are two stochastic differential equations, one describing the dy-

namics of the asset price (here the exchange rate) and one describing the dynamics

of the asset price volatility. In this model, St is the exchange rate and Vt is the

squared volatility of the exchange rate, and κv, θv, σv, and µ are the parameters of

the problem. For simplicity, we assume that the Brownian motions of the exchange

rate and volatility are independent, although Jacquier et al. [17] have relaxed this

assumption and introduced the leverage effect into the model.Using Euler’s method,

the above differential equations can be written in discrete form

Yt = µ+
√
Vt−1 ε

s
t

log(Vt) = αv + βv log(Vt−1) + σvε
v
t ,
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that εst and εvt are two independent shocks with εst , ε
v
t ∼ N (0, 1). Also, according

to the daily exchange rate return data in Iran, the µ can be considered zero and

eliminated.

αv = κvθv, βv = 1− κv.

If we assume the priors for the parameters of the conjugate model as αv, βv ∼ N
and σ2

v ∼ IG, we will have

p(αv, βv|σv, V, Y ) ∝
T∏

t=1

p(Vt|Vt−1, αv, βv, σv) p(αv, βv) ∼ N

p(σ2
v |αv, βv, V, Y ) ∝

T∏
t=1

p(Vt|Vt−1, αv, βv, σv) p(σ
2
v) ∼ IG,

that N and IG refer to Normal and Inverse-Gamma distributions. It can also be

shown using Bayes’ rule that

p (Vt|Vt−1, Vt+1,Θ, Y ) ∝ p (Vt, Vt−1, Vt+1|Θ, Y )

∝ p (Yt|Vt,Θ) p (Vt−1, Vt, Vt+1|Θ)

∝ p (Yt|Vt,Θ) p (Vt|Vt−1,Θ) p (Vt+1|Vt,Θ))

Therefore, the model parameters can be estimated using the Gibbs sampling method,

as well as the latent variable using the Metropolis-Hasting algorithm, which is de-

scribed in more detail in Johannes and Polson [18].

4 Estimation Method

In this section, the Markov Chain Monte Carlo implementation method is intro-

duced and its theoretical basis will be explained. The method we use to estimate

the model is much more efficient, albeit computationally intensive, than traditional

methods. The Hamiltonian Monte Carlo (HMC) algorithm, also called hybrid

Monte Carlo and have been developed recently, was developed by Duane in physics

first. It moves more quickly towards the target distribution by suppressing the

random walk behavior of the Metropolis-Hastings algorithm. For each component

θj in the target space, the Hamiltonian Monte Carlo adds a momentum variable ϕj .

Both θ and ϕ are then updated together in a new Metropolis algorithm, in which

the jump distribution for θ is largely determined by ϕ.

According to Gelman et al. [12], HMC proceeds by a series of iterations (as in

any Metropolis algorithm), with each iteration having three parts:

(i) The iteration begins by updating ϕ with a random draw from its posterior

distribution which, as specified, is the same as its prior distribution, ϕ ∼
N (0,M).
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(ii) The main part of the Hamiltonian Monte Carlo iteration is a simultaneous

update of (θ, ϕ), conducted in an elaborate but effective fashion via a discrete

mimicking of physical dynamics. This update involves L leapfrog steps (to be

defined in a moment), each scaled by a factor ϵ. In a leapfrog step, both θ and

ϕ are changed, each in relation to the other. The L leapfrog steps proceed as

follows:

Repeat the following steps L times:

(a) Use the gradient (the vector derivative) of the log-posterior density of θ

to make a half-step of ϕ:

ϕ← ϕ+
1

2
ϵ
log p(θ|y)

θ

(b) Use the momentum vector ϕ to update the position vector θ:

θ ← θ + ϵM−1ϕ

(c) Again use the gradient of θ to half-update ϕ:

ϕ← ϕ+
1

2
ϵ
log p(θ|y)

θ

(iii) Label θt−1, ϕt−1 as the value of the parameter and momentum vectors at the

start of the leapfrog process and θ∗, ϕ∗ as the value after the L steps. In the

accept-reject step, we compute

r =
p (θ∗|y) p (ϕ∗)

p (θt−1p (ϕt−1))

(iv) Set

θt =

θ∗ with probability min(r, 1)

θt−1 otherwise.

Probabilistic programming (PP) allows flexible specification of Bayesian statistical

models in code. PyMC is a PP framework with an intuitive and readable, yet

powerful, syntax that is close to the natural syntax statisticians use to describe

models. It features next-generation Markov chain Monte Carlo (MCMC) sampling

algorithms such as the No-U-Turn Sampler (NUTS; see Hoffman et al. [14]), a self-

tuning variant of Hamiltonian Monte Carlo. We use the PyMC package in Python,

which allows us to achieve high accuracy in Bayesian estimation. For more details

about this package, see Salvatier et al. [29].
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5 Data Preparation

We use daily data on the Iranian exchange rate between 09/07/2008 and 10/04/2025.

If we examine the histogram of this data (Figure 1), it is observed that there are ap-

proximately 5 peaks in it. In other words, the exchange rate has fluctuated around

5 peaks, which indicates that the exchange rate has been in 5 different regimes, and

naturally, each regime has its own dynamics.
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Figure 1: Histogram of Logarithm of Exchange Rate

Now, if we combine the time series with the histogram and find the time period

of each episode, we get 5 time periods that correspond in an interesting way to

political events and major systemic risks in Iran. The first episode is related to the

abundance of oil revenues and the first period of sanctions. In the second episode,

with the JCPOA agreement, systemic risks have decreased and more calm prevails.

The third episode shows the second round of sanctions, which was also the most

severe period of sanctions. In the fourth episode, pressures and also systemic risks

decrease, and the fifth episode coincides with the second term of Trumps presidency.

A summary of this division is given in Table 1.

Figure 2: Histogram with Time series of Logarithm of Exchange Rate

Table 2 presents the descriptive statistics of the daily returns of the episodes. Col-

umn (1) indicates that the research encompasses a total of observations. Columns

(2) to (3) present the mean and standard deviation, respectively, for the entire

episode. Moving on to Columns (4) to (8), they provide information on the mini-

mum value, the 25th percentile, the 75th percentile, and the maximum value of the

returns. The difference in standard deviation is quite evident in episodes 3 and 4.

Results are in percentages.
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Episode Description Period

1 High oil income and first period od sanction 2008/07/09− 2012/09/02

2 JCPOA agreement and low systematic risk 2012/09/03− 2018/06/19

3 Most severe period of sanction 2018/06/20− 2020/06/22

4 Decreasing pressure and systematic risk 2020/06/23− 2023/02/18

5 Second term of Trumps presidency 2023/02/19− 2025/04/10

Table 1: Episodes of Exchange Rate Regimes

Variable N Mean Std Min P25 P75 Max

Episode 1 1069 0.085 1.120 -10.53 -0.190 0.296 10.53

Episode 2 1654 0.080 1.215 -9.91 -0.192 0.285 17.09

Episode 3 584 0.1978 2.665 -20.27 -0.648 0.933 16.12

Episode 4 785 0.1265 1.627 -10.86 -0.411 0.731 12.76

Episode 5 729 0.1063 1.200 -7.97 -0.400 0.586 7.69

Total 4825 0.1086 1.516 -20.27 -0.278 0.428 17.09

Table 2: Descriptive Statistics

To further confirm the differences between the periods, we looked at the distribu-

tion of daily exchange rate returns in each episode (Figure 3). Although the mean

returns are almost the same, the variances are quite different. Episodes 1 and 2

have similar distributions, but the variances of the distributions for episodes 3 to

5 are much higher. In particular, episode 3, which was the most difficult economic

situation, has a distribution with very fat tails, indicating that there were many

days with high volatility. Therefore, we can conclude that there were 5 different

periods in the Iranian economy.

6 Result

We used four chains for sampling, each chain containing 5000 samples for tuning

and 10000 samples for estimation. Tables 3 to 7 show the estimation of the problem

parameters. We will use the mean of the distribution to estimate the point param-

eters of the model. The αv parameter or intercept is negative in all episodes. As

is clear from Table 8, the negative value is larger in periods with higher systematic

risk. This means that the system tries to change its dynamics in a way that controls

volatility.

Table 9 shows the estimate of the βv parameter. This coefficient shows the

persistence of a shock to volatility. In periods when the economy is in a calm state,

this value is very high. This means that a shock to volatility remains for a long

time (its half-life is more than 100 periods), but in periods with high systematic risk
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Figure 3: Distribution of Daily Return of Episode

βv is decreased. However, since αv is negative, a lower βv means higher volatility

because the average logarithm of volatility in the stationary state follows equation

1. So, it is true that with the lower βv, shocks are damped faster, but the average

volatility will also increase. Of course, each shock still has a half-life of about 25

periods, which is relatively high.

[log Vt] =
αv

1− βv
(1)

However, the last variable, which is very important, is σv, which indicates the

standard deviation of volatility shocks. In fact, its large size means an increase in

systematic risk to the economy. In the third episode, which is the most difficult

economic period, its value is almost three times that of the previous period. How-

ever, after that, the economy has been able to reduce it over time. Of course, its

value is still far from the first and second episodes.

6.1 Convergence Diagnosis

In the MCMC method, an important issue that must be addressed is the conver-

gence of estimates. To achieve this goal, we will use three indicators: the effective

sample size, the Gelman-Rubin statistic, and the Monte Carlo standard error.

Effective Sample Size

When using MCMC sampling methods, it is reasonable to ask whether a particular

sample is large enough to reliably calculate the values of interest, such as the mean.

This is something we cannot answer directly by just looking at the number of sam-

ples, because the samples from MCMC methods will be somewhat autocorrelated,
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param mean sd hdi 3% hdi 97% mcse mean mcse sd ess bulk ess tail r hat

αv -0.041 0.030 -0.098 0.016 0.0 0.0 19672.0 21144.0 1.0

βv 0.996 0.003 0.991 1.001 0.0 0.0 19715.0 20820.0 1.0

σv 0.157 0.013 0.134 0.183 0.0 0.0 1421.0 3087.0 1.0

Table 3: Parameters of Episode 1

param mean sd hdi 3% hdi 97% mcse mean mcse sd ess bulk ess tail r hat

αv -0.047 0.021 -0.087 -0.008 0.000 0.000 45238.0 27259.0 1.0

βv 0.996 0.002 0.992 0.999 0.000 0.000 46206.0 26919.0 1.0

σv 0.132 0.006 0.120 0.144 0.000 0.000 2274.0 5389.0 1.0

Table 4: Parameters of Episode 2

param mean sd hdi 3% hdi 97% mcse mean mcse sd ess bulk ess tail r hat

αv -0.208 0.076 -0.353 -0.067 0.000 0.0 37699.0 30035.0 1.0

βv 0.975 0.009 0.959 0.992 0.000 0.0 34869.0 30314.0 1.0

σv 0.533 0.050 0.440 0.627 0.001 0.0 2464.0 4501.0 1.0

Table 5: Parameters of Episode 3

param mean sd hdi 3% hdi 97% mcse mean mcse sd ess bulk ess tail r hat

αv -0.233 0.072 -0.368 -0.098 0.000 0.0 38859.0 28232.0 1.0

βv 0.974 0.008 0.959 0.989 0.000 0.0 38147.0 28734.0 1.0

σv 0.359 0.029 0.305 0.414 0.001 0.0 2467.0 4997.0 1.0

Table 6: Parameters of Episode 4

param mean sd hdi 3% hdi 97% mcse mean mcse sd ess bulk ess tail r hat

αv -0.173 0.065 -0.294 -0.049 0.000 0.0 25577.0 26028.0 1.0

βv 0.982 0.007 0.969 0.995 0.000 0.0 25705.0 27794.0 1.0

σv 0.247 0.025 0.202 0.294 0.001 0.0 1602.0 3246.0 1.0

Table 7: Parameters of Episode 5

param Episode 1 Episode 2 Episode 3 Episode 4 Episode 5

αv -0.041 -0.047 -0.208 -0.233 -0.173

standard deviation 0.030 0.021 0.076 0.072 0.065

Table 8: Intercept in Episodes

param Episode 1 Episode 2 Episode 3 Episode 4 Episode 5

βv 0.996 0.996 0.975 0.974 0.982

standard deviation 0.003 0.002 0.009 0.008 0.007

Table 9: Persistence in Episodes

so the actual amount of information contained in that sample will be less than the

information we would get from an iid sample of the same size. We say that a series

of values is autocorrelated when we can observe a similarity between them as a
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param Episode 1 Episode 2 Episode 3 Episode 4 Episode 5

σv 0.157 0.132 0.533 0.359 0.247

standard deviation 0.013 0.006 0.050 0.029 0.025

Table 10: Volatility in Episodes

function of the time interval between them.

According to Kass et al. [19] and Liu and Liu [22], the effective sample size (ESS)

index is defined as follows

ESS =
n

1 + 2
∑∞

k=1 ρk(θ)
,

where n is the total sample size and ρk(θ) is the lag-k autocorrelation for θ. In

Tables 3 to 7, two indicators for ESS are reported. One of them is bulk-ESS

which mainly assesses how well the center of the distribution was resolved. If you

also want to report posterior intervals or you are interested in rare events, you

should check the value of tail-ESS, which corresponds to the minimum ESS at the

percentiles 5 and 95 (see Martin et al. [23]).

According Vehtari et al. [32], as a general rule of thumb we recommend a value of

ESS greater than 400, otherwise, the estimation of the ESS itself and the estimation

of other quantities will be basically unreliable. In all parameters and in all episodes,

this value is at least 1400, indicating that the estimate is acceptable.

Gelman-Rubin Statistic

Under very general conditions, Markov chain Monte Carlo methods have theoretical

guarantees that they will arrive at the correct answer regardless of the starting point.

Unfortunately, as explained, these guarantees are only valid for infinite samples. So

in practice we need methods to estimate convergence for finite samples. A general

idea is to run more than one chain, starting from very different points, and then

examine the resulting chains to see how similar they are. This intuitive concept

can be formulated as a numerical test called Gelman-Rubin statistic (R̂).

There are many versions of this estimator, as it has been refined over the years.

According to Gelman and Rubin [11], J Monte Carlo simulations (chains) are

started with different initial values. The samples from the respective burn-in phases

are discarded. The mean of the means of all chains is

x̄∗ =
1

J

J∑
j=1

x̄j ,

where x̄j is mean value of chain j

x̄j =
1

L

L∑
i=1

x
(j)
i .
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The variance of the means of the chains

B =
L

J − 1

J∑
j=1

(x̄j − x̄∗)
2,

and averaged variances of the individual chains across all chains is

W =
1

J

J∑
j=1

(
1

L− 1

L∑
i=1

(x
(j)
i − x̄j)

2

)

An estimate of the Gelman-Rubin statistic then results as

R̂ =
L−1
L W + 1

LB

W

Ideally we should get a value of 1, as the variance between chains should be the

same as the variance within-chain. From a practical point of view values of R̂ < 1.01

are considered safe. According to the reported results, this condition also holds and

the values of R̂ are very close to one.

Monte Carlo Standard Error

When using MCMC methods, we introduce an additional layer of uncertainty be-

cause we are approximating the posterior with a finite number of samples. We can

estimate the amount of error introduced using the Monte Carlo Standard Error

(MCSE), which is based on the Markov Chain Central Limit Theorem. MCSE

assumes that the samples are not truly independent of each other and is actually

calculated from the ESS. While the ESS and R̂ values are independent of the scale

of the parameters, interpreting whether the MCSE is small enough requires exper-

tise in the relevant field. If we want to report the value of an estimated parameter

to the second decimal place, we need to ensure that the MCSE is below the sec-

ond decimal place, otherwise we will mistakenly report a higher precision than we

actually have. We should only check the MCSE when we are sure that the ESS is

high enough and R̂ is low enough. Otherwise, the MCSE is useless. Fortunately,

our estimate gets a passing grade on this measure as well. Because its values are

around 0.001.

6.2 Systematic Risk

Now, we come to the most interesting part: the analysis of the volatility variable.

Figure 4 gives an overview of the exchange rate in Iran. The blue graph is the

logarithm of volatility, and the red graph is the logarithm of the exchange rate. In

the first episode, Iran faced increased volatility or systematic risk. In the second

period, this problem was controlled, but with the implementation of the most severe

round of sanctions, the risk reached its highest level. Not only did the systematic
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risk increase, but the volatility of the systematic risk also increased sharply. In

the next two periods, the economy tried to recover, but it was unsuccessful in this

matter, and the systematic risk was still at a high level. Extreme fluctuations in

volatility are a new feature that has been added to the Iranian economy in the last

three episodes. In the past, Iran faced rare currency jumps, but most of the time,

the situation was calm. However, upon entering the third episode, the story changes

completely. The fluctuations increase in both their mean and variance, which we

also observed in the σν parameter. Increased volatility of volatility shows us a high

level of uncertainty. In other words, economic agents do not know exactly what

risk they are facing, which means the same as Knightian uncertainty (see Knight

[21]). This uncertainty disrupts almost all decisions because economic agents have

very little information about the future. In such an environment, decisions by the

government and other economic policymakers will not lead to an improvement in

the situation. Therefore, the main priority of economic policymakers in the field of

exchange rates should be to reduce this type of uncertainty.
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Figure 4: Overall Scheme of Systematic Risk
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Figure 5: Distribution of Log of Volatility

Figure 5 looks at the problem from another perspective. In this figure, the

distribution of logarithm volatility in five periods is displayed separately, and each
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color represents an episode. Episodes one and two have very similar distributions,

which indicates the similarity of these two periods. Of course, we should not forget

that in episode one, systematic risk got out of control and reached a high level,

and in episode two, this problem was brought under control. In other words, these

periods are the inverse of each other in terms of time. However, the peak of the

distribution of the other three episodes is completely ahead, meaning that the

average logarithm volatility is higher. The situation becomes more dangerous when

we pay attention to the right tail of the distribution of episode three. This fat tail

indicates a high probability of terrible events occurring in macroeconomics. Unlike

other episodes, the probability of large shocks occurring in episode three is very

high. Of course, after that, the economy recovered slightly, a significant part of

which was due to the reduction of external shocks, but the average volatility is

still very high. It should be noted that the scale of the x-axis is logarithmic, not

volatility itself. In Figure 6, the x-axis is volatility itself, and it is clear how high

the probability of large shocks occurring in the third episode was.
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Figure 6: Distribution of Volatility

6.3 Volatility of Volatility

The Importance of Volatility of Volatility is an excuse to go into the exact calcula-

tion of the σν effect. We start with the expectation of the logarithm of volatility

with stationary measure

(log V ) =
αv

1− βv
.

So, the expectation of V is equal to

[V ] = e
αv

1−βv
+

σ2
v

2(1−β2
v) . (2)
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We have Yt =
√
Vt−1ε

s
t , that

√
Vt−1 and εst are independent. Therefore, the vari-

ance of Yt is equal to

Var (Yt) =
[
Vt−1ε

s
t
2
]
−
[√

Vt−1ε
s
t

]
= [Vt−1]

[
εst

2
]
−
[√

Vt−1

]
[εst ]

According to εst ∼ N (0, 1), then we have

Var (Y ) = [V ] (3)

As a result, a decrease in σν will lead to a decrease in the variance of daily returns.

However, how much is this effect? We showed in the appendix 8 that the elasticity

of the variance of daily returns of the exchange rate with respect to σv is equal to

η =
σ2
v

1− β2
v

This means that under current conditions, assuming that other parameters remain

constant, every 1% decrease in volatility will lead to approximately a 1.7% de-

crease in the variance of daily exchange rate returns, which is a significant number.

Therefore, volatility can be an important variable for policymaking.

The important question that arises here is whether volatility is a policy variable

at all? Volatility is a dynamic parameter of volatility, but unlike the other two

parameters, it can be controlled. We propose that, similar to the idea of the Oil

Stabilization Fund, the Central Bank should assume the role of a risk stabilization

fund. The Central Banks role as a risk stabilization fund is to target a certain

amount of volatility, given the macroeconomic situation and existing systemic risks,

and to intervene in the market at times when the risk temporarily deviates from

the targeted amount, so that the level of volatility returns to its long-term value.

This idea could help reduce volatility if the central bank does not make errors in

estimating the amount of volatility (or systematic risk).

7 Conclusion

The exchange rate in Iran, a pivotal oil country, holds a significant role in decipher-

ing the macroeconomic landscape. Its volatility, a key indicator, is crucial for our

analysis. Stochastic volatility models, a robust framework, aid in understanding the

volatility of a time series. However, the crux lies in estimating volatility, a task for

which several methods have been developed. We employed the Hamiltonian Monte

Carlo method, known for its high estimation accuracy. In light of the political and

economic shifts in Iran, we identified five distinct episodes for the exchange rate.

To estimate the parameters of each episode, we utilized an autoregressive stochastic

volatility model.
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The results indicate that in less risky episodes, the persistence of volatility shocks

is very high. However, in more risky periods, this parameter decreases, and then the

average volatility increases. Another important result is that after the second round

of sanctions, the economy has gone through three risky episodes. The important

feature of exchange rate volatility in these three periods is that not only the mean

but also the variance of volatility has increased. This means that we do not know

exactly what volatility we are facing, which is a high level of uncertainty. The story

of the exchange rate in Iran has many implications for policymakers. The main

priority should be to reduce volatility, but if that is not possible, at least reduce

volatility of volatility so that the pricing process is done correctly, emphasizing

the urgency of the issue. Our estimates using the stochastic volatility model show

that a 1% decrease in volatility will lead to a 1.7% decrease in the variance of

daily exchange rate returns. We suggest that if the central bank is unable to

control inflation due to the government’s financial dominance, it should control the

variance of daily exchange rate returns so that the economy faces fewer fluctuations.

The central bank’s tool for doing this is to target average volatility and attempt to

reduce volatility through intervention in the foreign exchange market.
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8 appendices

Elasticity of Daily Return on σv

According to Equation 2, the derivative of the expectation of V with respect to σv

is
[V ]

σv
=

σv

1− β2
v

e
αv

1−βv
+

σ2
v

2(1−β2
v)

Therefore, the elasticity of daily return on σv is equal to

η =
[V ]

σv

σv

[V ]
=

σ2
v

1− β2
v
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