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Abstract:
Abstract:
Predicting the price of Ethereum remains a significant challenge due to the ex-
treme volatility and nonlinear dynamics inherent in the cryptocurrency market.
This study proposes a novel hybrid model that integrates a Gated Recurrent Unit
(GRU) with a Transformer Encoder to effectively capture both short-term and
long-term temporal dependencies for enhanced Ethereum price forecasting. The
model was trained on daily historical data from 2017 to 2023. The dataset, sourced
from Yahoo Finance, includes Ethereums open, high, and low prices, along with its
trading volume. Additionally, Bitcoins closing price and two technical indicators,
On-Balance Volume (OBV) and Average True Range (ATR), were incorporated.
Pearson and Spearman correlation analyses confirmed strong interdependencies
among the selected features. The model underwent training for 90 epochs, uti-
lizing the Mean Squared Error (MSE) as the loss function and the Adam opti-
mizer. Under identical experimental conditions, the proposed hybrid model sig-
nificantly outperformed several baseline architectures, including standalone GRU,
Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), Trans-
former Encoder, and CNN–GRU hybrid models. Specifically, the model achieved
a Mean Absolute Error (MAE) of 0.007199 (equivalent to $34.03), which is con-
siderably lower than Ethereums average daily price fluctuation of $74.73. These
findings demonstrate that the GRU–Transformer Encoder hybrid model is highly
effective in extracting intricate patterns from volatile financial time series. Conse-
quently, it can serve as a practical and robust tool for market trend analysis and
risk management.

Keywords: Ethereum price prediction; cryptocurrency volatility; gated recurrent
unit; Transformer encoder; financial time series; machine learning.
Classification: 97M30; 35R11; 35R02; 92B20.

1 Introduction

Ethereum stands as the worlds second-largest cryptocurrency by market capitaliza-

tion, trailing only Bitcoin. However, unlike Bitcoin, which primarily functions as a
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store of value, Ethereum offers a robust infrastructure for executing smart contracts

and hosting decentralized applications. These unique capabilities have propelled

Ethereums widespread adoption across diverse domains, including decentralized

finance, blockchain-based gaming, and the non-fungible token market.

The cryptocurrency market, and Ethereum in particular, is notoriously volatile.

These significant price fluctuations are influenced by a multitude of factors, such

as international economic and geopolitical news, shifting market sentiment, and

network-specific changes like system upgrades. Consequently, accurate prediction

of Ethereums price is of paramount importance, not only for individual traders

but also for major corporations and exchanges seeking effective risk management

strategies.

The inherent volatility of Ethereums price often renders traditional statistical mod-

els, such as ARIMA and GARCH, inadequate for accurate forecasting. Conse-

quently, deep learning models, particularly GRU and LSTM, have gained widespread

application in this field. Nevertheless, these models are not without their limita-

tions, struggling to effectively capture long-term dependencies and possessing a

constrained capacity for learning complex nonlinear patterns.

In recent years, numerous studies have focused on enhancing the accuracy of cryp-

tocurrency price forecasting, with a specific emphasis on Ethereum. For instance,

Saputra et al. in [12] found that their GRU model surpassed LSTM in perfor-

mance, yielding a Root Mean Squared Error (RMSE) of 0.0234 and an MAE of

0.0168. Although the study by Saputra et al. (2025) compared basic recurrent

models (LSTM and GRU) and concluded that GRU achieves superior performance,

their research is limited by the use of standalone architectures. Standalone mod-

els, even with carefully tuned hyperparameters, struggle to simultaneously capture

complex long-term dependencies and the highly nonlinear volatility characteristic

of cryptocurrency markets, leaving room for improvement in prediction accuracy.

Furthermore, their study relied solely on closing prices as the input feature for

forecasting—an approach that overlooks critical market information, such as trad-

ing volume or correlations with Bitcoin, which strongly influence price dynamics.

Similarly, Esam Mahdi et al. (2025) [8] demonstrated that a hybrid Transformer

+ GRU model significantly outperformed both BiLSTM (MAE = 675.427) and Bi-

GRU (MAE = 608.416), achieving an MAE of 78.809. While an MAE of 78.809

might not be considered optimal, it underscores the considerable potential of hybrid

architectures in substantially reducing forecasting errors. Their approach, however,

restricts inputs largely to historical price, trading volume, and the Fear and Greed

Index, and leaves open the possibility of using more informative technical indicators

and a more carefully optimized hybrid architecture.

Auliyah et al. in [1] employed a hybrid model integrating LSTM and GRU for

Ethereum price prediction, reporting an RMSE of 0.1922. These findings collec-

tively suggest that GRU models are effective in forecasting highly volatile time

series, such as that of Ethereum. Moreover, several studies have confirmed that
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combining GRU with other architectures can lead to a significant reduction in fore-

casting errors. However, the architecture in [1] is limited to recurrent units (LSTM

and GRU) and does not incorporate attention-based mechanisms or a Transformer

encoder, which can better capture long-range dependencies and complex global

patterns in highly volatile time series.

In a related study, Ming Che Lee (2025) introduced the Temporal Fusion Trans-

former (TFT), a Transformer-based model optimized for time series, which demon-

strated superior performance compared to both LSTM and GRU [7]. Their study

reported MAE values of 242.8 for TFT, 255.4 for LSTM, and 258.6 for GRU. Dis-

tinct from recurrent neural networks, the Transformer architecture can directly

model long-term dependencies without relying on sequential order. However, di-

rectly applying Transformer models to high-volatility financial data like Ethereums

might impede the effective learning of short-term temporal dynamics.

To address this challenge, the present study proposes a hybrid model that syner-

gistically leverages two complementary architectures: GRU, to capture short-term

temporal dependencies via its recurrent structure, and the Transformer Encoder,

to effectively extract long-term dependencies.

Regarding feature design, the proposed model integrates key features that cap-

ture the multifaceted dynamics of Ethereums price movements. These include

Ethereums open, high, low, and close prices, along with its trading volume. To

account for external influences, Bitcoins closing price is incorporated as a signifi-

cant external indicator. Additionally, two widely recognized technical indicators,

OBV and ATR, are included. This comprehensive feature set allows the model to

thoroughly consider the factors affecting Ethereum price fluctuations.

For the training and evaluation phases, historical Ethereum price data were em-

ployed. Following data normalization, input sequences were meticulously generated

using a sliding window technique. The model was trained utilizing the MSE loss

function and optimized via the Adam optimizer. Performance was rigorously evalu-

ated on test data using RMSE, MAE, and normalized MAE. Experimental results

showcase the proposed models efficacy, achieving an MAE of 0.007199 (equivalent

to $34.03), which signifies robust predictive performance and superiority over nu-

merous baseline models.

The paper proceeds as follows. Section 2, Related Work and Motivation, reviews

the technical background and identifies existing literature gaps. Section 3, Data,

details the dataset and preprocessing pipeline, including the primary and auxiliary

features of the task (Bitcoin price, OBV, and ATR indicators), scaling procedures,

and the train/test partitioning. Section 4, Proposed Model, describes the hybrid

GRU–Transformer Encoder architecture and its design rationale, along with train-

ing specifics such as the sliding window setup, MSE loss, and the Adam optimizer.

Section 5, Model Evaluation, reports the experimental protocol, evaluation metrics

(MAE, MSE, RMSE), and comparisons against baseline models. Section 6, Dis-

cussion and Interpretation of Results, analyzes the empirical evidence, notes data
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limitations, and outlines avenues for future research. Finally, the last section lists

the bibliographic sources.

2 Related Work and Motivation

In a study by Saputra et al. (2025), a comparative analysis of LSTM and GRU mod-

els for Ethereum price prediction revealed that the GRU model achieved superior

performance, with an MAE of 0.0168 and an RMSE of 0.0234. This demonstrated

effectiveness of GRU in forecasting Ethereum prices is a primary motivation for its

integration into the hybrid model proposed herein.

Similarly, Esam Mahdi et al. (2025) introduced a hybrid Transformer–GRU model

that significantly outperformed BiLSTM and BiGRU in Ethereum price predic-

tion. Their comparative analysis reported an MAE of 78.809 for their hybrid

Transformer–GRU model, whereas BiLSTM and BiGRU yielded MAEs of 675.427

and 608.416, respectively. While Mahdi et al.’s model achieved a substantial error

reduction compared to baselines, the observed MAE of 78.809 still presents room

for improvement. Consequently, the present research was inspired to adopt a more

optimized hybrid architecture, combining GRU with a Transformer Encoder, which

achieves a considerably lower MAE of 34.03, thereby demonstrating a substantial

advancement over Mahdi et al.’s approach.

Kaur et al. (2025) [5] also compared LSTM and GRU models for Ethereum price

prediction. Their findings revealed that the GRU model achieved an MAE of

0.02131, outperforming the LSTM model, which recorded an MAE of 0.02471. This

further underscores the relative advantage of GRU in Ethereum forecasting tasks.

In another study published in Fractal and Fractional, Tanwar et al. in [14] compared

the performance of LSTM, BiLSTM, and GRU models in predicting the prices

of three cryptocurrencies. For Ethereum prediction, the results based on RMSE

were 148.52 for LSTM, 98.31 for GRU, and 83.95 for BiLSTM. Although GRU

outperformed LSTM, the BiLSTM model achieved the lowest error among the

three.

Collectively, these findings suggest that baseline models such as GRU and LSTM,

even in their bidirectional forms (BiLSTM and BiGRU), struggle to adequately

address the complexities of Ethereum price prediction and tend to exhibit relatively

high error rates. Given the highly volatile nature of Ethereum and its propensity

for sudden, sharp price movements, these fundamental models often fail to perform

reliably under unstable market conditions. Consequently, this research focuses on

hybrid model architectures to enhance prediction performance.

Murray et al. in [11] conducted a comparative analysis of traditional statistical mod-

els, machine learning methods, and deep learning techniques such as LSTM, GRU,

and hybrid architectures for cryptocurrency price prediction, including Ethereum.

Their study demonstrated that deep learning models consistently outperformed tra-

ditional and statistical approaches. Specifically, the LSTM model achieved the best
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performance for Ethereum, with an RMSE of 0.0300, closely followed by GRU and

a hybrid LSTM–GRU architecture, both yielding an RMSE of 0.0309. In contrast,

conventional models like ARIMA and Random Forest exhibited notably higher er-

ror rates (RMSEs of 0.0320 and 0.0332, respectively). These findings reinforce

the superiority of deep learning approaches in managing the inherent volatility of

Ethereum, further motivating the adoption of advanced hybrid architectures in the

present research.

Furthermore, the study by Siami-Namini and Siami Namin in [13] reported that

the LSTM model achieved an average RMSE reduction of 84% to 87% compared

to the ARIMA model. Although their dataset incorporated macroeconomic indica-

tors like inflation rates and Gross Domestic Product (GDP), their findings provide

compelling evidence against the use of traditional models in complex forecasting

tasks such as cryptocurrency price prediction.

In conclusion, a comprehensive review of existing studies indicates that baseline

models like LSTM and GRU, when used in isolation, face significant limitations un-

der unstable market conditions. Furthermore, traditional models such as ARIMA

and GARCH have proven inadequate for accurately forecasting Ethereum prices.

Consequently, hybrid architectures, such as the integration of GRU with a Trans-

former encoder, clearly lead to higher prediction accuracy and lower error rates.

3 Data

Selecting appropriate features in time series forecasting models plays a crucial role

in their performance. In this study, in addition to primary Ethereum data, other

relevant data, such as the price of Bitcoin and related indicators, were also utilized.

These features, used as input variables, have enabled effective modeling of both the

short-term and long-term behavior of Ethereum.

1) Primary Ethereum features. Five features—open (the price at which the

Ethereum market opened at the beginning of the trading day), close (the price at

which the market closed at the end of the trading day), high (the highest price of

Ethereum during the trading day), low (the lowest price of Ethereum during the

trading day), and volume (the total value of assets traded within a specified time

frame, i.e. one day)—were extracted from Ethereums daily trading data. In total,

the dataset comprises 2,243 daily records, encompassing historical information on

Ethereum from November 9, 2017, to December 31, 2023. These data were retrieved

from the Yahoo Finance database.

2) Auxiliary features. In addition to the primary Ethereum features, three

other auxiliary features—Bitcoins closing price, the OBV technical indicator, and

the ATR technical indicator—were selected for training the model. Among the

eight aforementioned features, seven were used as input features, and one of them

(ETH close) was selected as the target feature (label).
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OBV indicator

This indicator was introduced in 1963 by Joseph E. Granville in his book [4],

Granvilles New Key to Stock Market Profits. It posits that if trading volume in-

creases significantly without a corresponding price change, it is likely that the price

will soon move in the direction of the volume. It is also assumed that informed or

intelligent investors enter the market before others, and this action is first reflected

in trading volume rather than price.

The general formula for its calculation is as follows:

OBVt = OBVt−1 +


Vt, if Ct > Ct−1,

0, if Ct = Ct−1,

−Vt, if Ct < Ct−1,

where

• OBVt is the current On–Balance Volume level at period t,

• OBVt−1 is the previous On–Balance Volume level at period t− 1,

• Vt is the trading volume during period t,

• Ct is the closing price at period t,

• Ct−1 is the closing price at period t− 1.

In the present study, the OBV value for each day was calculated using Ethereums

daily close price and volume and was added to the model as a feature. This indicator

is useful for identifying the direction of capital accumulation in the market and for

determining whether the market is in an upward or downward trend.

ATR indicator

This indicator was first introduced by J. Welles Wilder Jr. in his book [16], New

Concepts in Technical Trading Systems. The purpose of this indicator is to measure

market volatility regardless of trend direction. Its focus is on the magnitude of

actual price movements, rather than their trend.

To compute this indicator, the True Range (TR) is first calculated using the follow-

ing formula:

TRt = max
(
Hight,Closet−1

)
−min

(
Lowt,Closet−1

)
,

ATR =
1

n

n∑
i=1

TRi,

ATRt =
ATRt−1 (n− 1) + TRt

n
,

where
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• TRi is the True Range in period i (see Wilders definition),

• ATR is the n-period simple average of the True Range,

• ATRt is the smoothed ATR at the current period t,

• ATRt−1 is the smoothed ATR from the previous period (t− 1),

• TRt is the True Range for the current period t,

• n is the look-back length (e.g. 14 by Wilders original work).

In this study, the ATR indicator for each day was extracted using Ethereums daily

low, high, and close data. This indicator assists the model in learning different

behaviors during periods of high or low volatility.

After discarding the first 13 days required to initialize the ATR indicator, the final

dataset used for modeling comprises 2,230 daily records of Ethereum (ETH) prices,

spanning from 2017 to the end of 2023. Within this dataset, the average closing

price for Ethereum is approximately $1,243. The average highest daily price (High)

stands at $1,278, while the average lowest daily price (Low) is $1,203.

Among these data, the maximum closing price is $4,812, and the minimum is around

$84, indicating high volatility in this cryptocurrency during the examined period.

Additionally, the daily trading volume (Volume) averaged around $12 billion, with

the highest recorded daily volume reaching approximately $84 billion.

In terms of calculated technical indicators, the OBV indicator has a wide range,

from approximately −40 billion to over 1.7 trillion, with an average of around 719

billion. The ATR indicator, which measures price volatility, has an average value

of $74.8 and a maximum of $599, reflecting significant volatility in the Ethereum

market.

Collectively, these statistics reveal that Ethereums price data are characterized by

high variance, fluctuating behavior, and instability. These attributes underscore

the necessity for precise modeling and justify the application of hybrid deep learn-

ing methods. Furthermore, an examination of the correlation between the input

features and the target feature (ETH close) indicates a significant impact of the

selected features on Ethereums price dynamics.

4 Proposed Model

The proposed hybrid model is architected to sequentially process data: initially em-

ploying a Gated Recurrent Unit (GRU) to capture short-term temporal dependen-

cies, followed by feeding its output into a Transformer encoder to identify long-term

dependencies and nonlinear relationships within the data. This study utilizes an

encoder-only structure, omitting a decoder, to mitigate computational complexity

and accelerate training speed.
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Table 1: Spearman vs. Pearson correlation coefficients.

Feature Spearman Pearson

High 0.999174 0.998841

Low 0.999196 0.998843

Open 0.998298 0.997747

Volume 0.475014 0.469278

BTC Close 0.928829 0.923916

OBV 0.892801 0.898152

ATR 0.913860 0.809232

Figure 1: Heatmap of Pearson and Spearman correlation coefficients for Ethereum
close price.
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Figure 2: Bar chart comparing Pearson vs. Spearman correlations across features.

While the GRU possesses a simpler architecture than LSTM networks, it has been

evaluated as performing comparably for analyzing highly volatile financial markets

[3]. Furthermore, Mohammadjafari (2024) demonstrated in a recent study that

the GRU achieves higher accuracy than LSTM in predicting cryptocurrency values,

using Bitcoin as a case study [10]. Conversely, Vaswani et al. (2017) established that

the Transformer encoder, equipped with a multi-head attention mechanism, excels

at modeling long-term dependencies between data points—a task that recurrent

models often find challenging [15].

This hybrid model is engineered to capitalize on the complementary strengths of

both the GRU and Transformer architectures, thereby mitigating their individual

limitations. Specifically, the integration of a GRU with a Transformer encoder not

only preserves predictive accuracy but also offers reduced computational complexity

and accelerated training times relative to a full Transformer model.

Introduced by Cho et al. in 2014 [2], the Gated Recurrent Unit (GRU) represents a

streamlined variant of the LSTM network. Its architecture is characterized by two

principal gates: the reset gate and the update gate. Despite its simpler structure

and the consequent reduction in computational demands, the GRU demonstrates

competitive performance and has found widespread application in natural language

processing and time series analysis tasks.

In Figure 3, σ(·) represents the logistic sigmoid function, tanh(·) denotes the hyper-
bolic tangent function, ⊙ signifies element-wise multiplication, and [·, ·] indicates
vector concatenation.

The Transformer model traditionally comprises two primary components: an en-

coder and a decoder. While originally designed for machine translation tasks, its

application in time series forecasting, such as cryptocurrency price prediction, ne-
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zt = σ
(
Wz [ht−1, xt]

)
, (1)

rt = σ
(
Wr [ht−1, xt]

)
, (2)

h̃t = tanh
(
W [ rt ⊙ ht−1, xt]

)
, (3)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t. (4)

Figure 3: GRU cell: schematic (left) and governing update equations (right).

Figure 4: Encoder–decoder architecture of the Transformer model (Vaswani et al.,
2017).
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cessitates a different approach. In these forecasting scenarios, the objective is to

interpret historical sequences and generate a singular numerical output, rather than

producing a new sequence from a source to a target as in translation. Consequently,

the decoder, which is responsible for generating output sequences, becomes super-

fluous.

An encoder-only architecture provides a simplified structure that enables the model

to focus on extracting long-term and nonlinear patterns directly from the input

sequence. Thus, our proposed model uses a Transformer encoder. Typically, Trans-

former models begin with an embedding layer to convert input tokens into numerical

vectors. However, as the input data in this study consist of pre-existing numerical

features, an embedding layer is not required and has therefore been omitted.

Within our proposed architecture, the Transformer encoder is strategically posi-

tioned subsequent to the GRU layer. The encoder itself is composed of multiple

stacked layers, each featuring two fundamental modules: multi-head self-attention

and a position-wise feedforward neural network.

To effectively incorporate positional information for each time step, learnable po-

sitional encoding is employed. In [9], the authors have demonstrated that this

technique, which utilizes trainable vectors instead of fixed sinusoidal patterns, of-

fers superior adaptability to the complexities inherent in financial data.

Furthermore, the inherent simplicity of the GRU architecture translates to a re-

duced number of parameters and, consequently, faster training times.

The process commences with the addition of the input sequence X ∈ RT×dmodel to

the positional encoding matrix:

X′ = X+P.

Subsequently, this combined input is processed by the multi-head attention layer.

Within this layer, three distinct linear projections—Key (K), Query (Q), and Value

(V)—are computed from the input data:

V = XWV , K = XWK , Q = XWQ,

where WQ, WK , WV ∈ Rdmodel×dk represent learnable weight matrices. The atten-

tion mechanism, which computes the relationships between each time step and all

other time steps within the sequence, is calculated as follows:

Attention(Q,K,V) = softmax
(

QK⊤
√
dk

)
V.

To increase the models learning capacity, the self-attention mechanism is imple-

mented in parallel across multiple attention heads. Each head focuses on different

aspects of temporal relationships in the data. The concatenated outputs of all

attention heads are then projected through a linear transformation using the learn-

able weight matrix WO, resulting in the final output of the multi-head attention

module.



78 Journal of Mathematics and Modeling in Finance

In the next stage, the attention output is passed through a two-layer fully connected

neural network:

FFN(x) = max
(
0, xW1 + b1

)
W2 + b2.

For enhanced stability and to preserve the integrity of original information through-

out the network, residual connections and layer normalization are applied within

each layer:

xout = LayerNorm
(
x+ SubLayer(x)

)
.

This process is iterated across all encoder layers; in our proposed model, this repe-

tition occurs three times. Upon completion, the final sequence output is condensed

into a compact vector via global average pooling:

z =
1

T

T∑
t=1

ht,

where T is the number of time steps, ht is the encoder output at time step t, and z

is the final aggregated vector representing the entire sequence. Finally, z is passed

through a fully connected layer to produce the final price prediction.

Figure 5: Overall architecture of the proposed hybrid GRU–Transformer network.

4.1 Scaling

The presence of input variables with varying magnitudes, such as close price and

volume, can lead to models overemphasizing features with larger scales. To mit-

igate this issue, all data are normalized before training. In this study, Min–Max

normalization was employed, transforming each data point into a value within the

range [0, 1]. This scaling method was applied to both input features and the target
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variable (Ethereum close price). Following the prediction, the output was rescaled

to its original range:

x′ =
x− xmin

xmax − xmin
,

where x is the original (raw) input value, x′ is the normalized (scaled) value, and

xmin and xmax denote the minimum and maximum values of the feature, respec-

tively.

4.2 Input sequences

To predict the price for a given day, the proposed model requires a sequence of

preceding prices. For this purpose, the sliding window technique was employed.

The window size was configured to 30, signifying that the model predicts the price

of day 31 based on the data from the preceding 30 consecutive days. This approach

is particularly effective in enabling the model to capture short-term patterns.

The training dataset comprises 80% of the data, spanning from November 2017 to

September 2022, while the test dataset includes the remaining 20%, from September

2022 to December 2023. To prevent data leakage, the data split was executed in

chronological order. Initially, all input sequences were constructed using a 30-day

sliding window, where each input sample consists of data from the last 30 days, and

the corresponding target (label) is the actual price on day 31. It was ensured that

each sequence exclusively utilizes past data to predict the subsequent days price.

Following the generation of sequences, the dataset was split into training and testing

sets with an 80/20 ratio, respectively. Meticulous care was taken to ensure that no

test sequence contained information from the training period.

Since normalization can potentially lead to information leakage from future data,

Min–Max scaling was performed exclusively on the training set. Subsequently, the

derived scaling parameters were applied to the test set. This procedure guarantees

that the model has no access to future data during training or inference, thereby

ensuring an unbiased and realistic evaluation of model performance.

For data input into the model, PyTorchs Dataset and DataLoader structures were

utilized. The batch size employed in this study was 60. To preclude variability

introduced by random weight initialization, a random seed was applied to ensure

reproducibility.

4.3 Loss function

To train the proposed model, the MSE loss function was employed. This function

quantifies the deviation of the models prediction from the actual value:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2,
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where n is the total number of samples, yi is the true (ground truth) value of

the i-th sample, and ŷi is the predicted value of the i-th sample. The MSE is a

widely adopted loss function in neural network modeling. Its squared term inher-

ently penalizes larger errors more significantly, incentivizing the model to reduce

substantial deviations more aggressively and thereby promoting greater accuracy

in predictions.

4.4 Optimizer

For this study, the Adam optimizer (Adaptive Moment Estimation) was employed.

This optimization method is designed to interpret gradient directions more effec-

tively and execute more adaptive steps compared to traditional algorithms such as

standard gradient descent.

Adam was initially introduced in 2014 by Diederik P. Kingma and Jimmy Ba in

their seminal paper, “Adam: A Method for Stochastic Optimization” [6]. It has

since gained widespread adoption across numerous deep learning applications due

to its efficiency and robustness.

Algorithm 1 Adam optimization scheme (schematic form)

Step 1: while wt does not converge
do {
Step 2: Calculate gradient gt = ∂f(x,w)/∂w
Step 3: Calculate pt = m1 · pt−1 + (1−m1) · gt
Step 4: Calculate qt = m2 · qt−1 + (1−m2) · g2t
Step 5: Calculate p̂t = pt/(1−mt

1)
Step 6: Calculate q̂t = qt/(1−mt

2)
Step 7: Update the parameter wt = wt−1 − α · p̂t/(

√
q̂t + ϵ)

}
Step 8: return wt

5 Model Evaluation

To comprehensively evaluate model performance, this study utilized three standard

error metrics: MAE, MSE, and RMSE. Each metric was calculated in both its

normalized form and its raw, non-normalized value.

The table below summarizes the performance of the proposed hybrid GRU–Transformer

Encoder model in forecasting Ethereum prices, presenting results for all three eval-

uation metrics in their normalized form:

It is worth noting that the average daily price fluctuation of Ethereum during

the study period was approximately $74.73. To assess the advantages of the pro-

posed hybrid GRU–Transformer Encoder model, its performance was benchmarked

against four baseline models—GRU, LSTM, CNN, and Transformer Encoder—as
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Table 2: Evaluation metrics for the proposed GRU–Transformer Encoder model
(normalized values).

Model RMSE MSE MAE

GRU–Transformer Encoder 0.010544 0.000111 0.007199

well as another hybrid model, CNN–GRU. All models were evaluated under identi-

cal configurations and datasets.

Table 3: Comparison of models by error metrics (normalized and non-normalized
values).

Model RMSE MSE MAE RMSE ($) MSE ($2) MAE ($)

GRU 0.0256 0.000657 0.0203 121.21 14691.62 95.92

LSTM 0.0296 0.000875 0.0234 139.87 19562.60 110.85

CNN 0.0224 0.000503 0.0168 105.98 11232.40 79.45

Transformer Encoder 0.0243 0.000592 0.0221 114.99 13221.70 104.32

CNN–GRU 0.0294 0.000862 0.0234 138.77 19257.75 110.44

GRU–Transformer Encoder 0.010544 0.000111 0.007199 49.85 2484.82 34.03

To statistically evaluate the models improvement over a naive benchmark method,

the Clark–West test (h = 1) was performed. Using MSE, the mean adjusted dif-

ference dCW was 327.4063, with its positive value indicating that the model out-

performs the benchmark prediction. The CW statistic was 2.459 with a p-value

≈ 0.0139, demonstrating statistical significance at the 5% level. The test was also

conducted using MAE, yielding a mean dCW(MAE) of 15.3655 and a statistic of

12.031 with a p-value ≈ 0.0000. These results indicate that the model significantly

reduces prediction errors compared to the naive method, both in squared and ab-

solute terms.

Regarding price movement direction, the model achieved a directional accuracy of

59.8%, compared to 47.1% for the naive approach. The Pesaran–Timmermann test

for direction independence resulted in z = 4.029, p ≈ 0.0001, indicating a signifi-

cant correlation between the model’s predicted directions and the actual directions.

The Diebold–Mariano test (directional 0.1 loss) further showed a negative mean

difference ddir = −0.1268 and statistic = −3.534 with p ≈ 0.0004, confirming that

the model predicts movement direction better than the naive method. Additionally,

the 95% confidence intervals for directional prediction success rates were estimated

using both binomial and block bootstrap methods: for the model, 54.9%–64.5%; for

the naive benchmark, 42.3%–52.0%, further emphasizing the model’s superiority.

To evaluate the predictive performance of the proposed model and compare it with

classical approaches, an experiment was conducted including GRU+Transformer
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Encoder, ARIMA(5,1,2), and GARCH(1,1). The results, summarized in terms of

RMSE, MAE, and directional accuracy, are presented in Table 4.

Table 4: Comparison with classical forecasting models: error metrics and directional
accuracy (non-normalized values).

Model RMSE ($) MAE ($) Directional Accuracy

GRU+Transformer Encoder 49.85 34.03 62.00%

ARIMA(5,1,2) 291.79 231.27 15.04%

GARCH(1,1) 289.09 230.57 49.88%

As shown, the GRU+Transformer model significantly outperforms the benchmark

models, demonstrating superiority in both prediction error (RMSE and MAE) and

market directional accuracy. These results indicate that the combined GRU and

Transformer architecture not only provides higher numerical precision in short-term

price forecasting but also better captures the direction of market movements.

Figure 6: Training loss progression.

6 Discussion and Interpretation of Results

The integration of the GRU and Transformer Encoder models resulted in a hybrid

architecture that significantly reduces prediction error. The GRU component effec-

tively captures short-term temporal dependencies, while the Transformer Encoder

excels at modeling long-term relationships within the time-series data. Numeri-

cal results underscore the superiority of this hybrid configuration when compared

against individual baseline models.

The model was rigorously evaluated on an entirely unseen portion of the dataset,

specifically the final 20% of the data chronologically following the training period.

The figures comparing the predicted and actual Ethereum prices demonstrate a
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Figure 7: Test RMSE vs. epoch.

Figure 8: Predicted vs. actual Ethereum price.

Figure 9: Predicted vs. actual Ethereum price: Pearson correlation (r = 0.98).
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Figure 10: Analysis of model errors.

Figure 11: Residuals vs. predicted values.

Figure 12: Normalized mean absolute error by model.
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strong alignment with the real market trend. This alignment is maintained even

during periods of heightened volatility within the study timeframe, including signif-

icant real-world events such as the COVID-19 pandemic, the Russia–Ukraine war,

and cryptocurrency transaction bans.

Notably, the model exhibited robust performance on both the training and test

datasets, a characteristic indicative of strong generalization capability and resilience

to overfitting.

A key distinction of the proposed hybrid model, compared to many previous studies,

is the incorporation of two significant technical indicators: OBV and ATR. Both

indicators exhibit a strong correlation with Ethereums closing price, providing valu-

able supplementary information for the prediction task.

One of the primary objectives of this research was to develop a model capable of

simultaneously processing short-term fluctuations and long-term trends—a capabil-

ity that most single-architecture models either lack or struggle to achieve effectively.

Ultimately, the GRU–Transformer Encoder combination successfully fulfilled this

objective.

In this study, a hybrid model combining GRU and Transformer Encoder architec-

tures was developed and rigorously evaluated for predicting the price of Ethereum

cryptocurrency. The models architecture was specifically designed to overcome the

limitations of traditional and standalone deep learning models in highly volatile

markets, such as that of Ethereum.

The proposed hybrid model demonstrated significantly higher prediction accuracy

compared to the baseline models. Specifically, the MAE reached 0.007199, a notably

low value considering the inherent daily price volatility of Ethereum.

Comparative results against CNN, GRU, Transformer Encoder, LSTM, and CNN–

GRU models showed that the proposed hybrid model consistently achieved the

lowest error values across all evaluation metrics, including MAE, MSE, and RMSE.

The incorporation of auxiliary features, specifically Bitcoins price alongside the tech-

nical indicators ATR and OBV, played a significant role in enhancing the models

predictive accuracy.

Among the main advantages and innovations of this research is the selective uti-

lization of the Transformers encoder block, rather than the full Transformer ar-

chitecture, in combination with the GRU. This approach not only reduces model

complexity but also accelerates the training process. Furthermore, the strategic

inclusion of effective technical indicators represents a meaningful contribution to

the models design, enabling a more nuanced understanding of market dynamics.

A primary limitation of this study stems from the data source utilized. Yahoo

Finance does not provide Ethereum data at frequencies shorter than daily intervals,

which may limit the capture of finer-grained market movements.

To analyze feature importance, a feature ablation approach was applied, in which

each feature was individually replaced with a reference value (mean), and the re-

sulting change in the models prediction error was measured. The baseline RMSE
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of the model without any feature removal was 49.85 USD. The results indicate

that the most significant impact comes from the ETH-high and ETH-low features,

where replacing them with the mean increased the RMSE to 237.99 and 244.14

USD, corresponding to ∆RMSE of +188.14 and +194.29 USD, respectively. This

demonstrates that Ethereums daily high and low prices are the most critical for

final price prediction. Other features, such as trading volume (ETH-volume) and

ATR, had smaller effects, with ∆RMSE around +4 USD. OBV, BTC-close, and

open exhibited moderate effects, with ∆RMSE of +44.02, +21.19, and +39.70 USD,

respectively. Overall, this analysis clearly shows that the model is most sensitive

to ETH daily prices, while volume and other indicators provide complementary

information.

Figure 13: Feature ablation analysis.

To evaluate the model’s practical applicability in trading, a simple trading strategy

based on the model’s buy/sell signals was tested over a 419-day period. The model

achieved an average daily return of 0.249%, compared to 0.131% for the Buy &

Hold strategy. Cumulative returns were 157.18% for the model versus 45.79% for

Buy & Hold, highlighting a substantial improvement in performance. The annual

Sharpe ratio was 2.19 for the model and 0.88 for Buy & Hold, indicating higher risk-

adjusted returns for the prediction-based strategy. These results suggest that the

GRU+Transformer model can be practically useful for trading decisions, providing

higher returns than a simple market strategy.

To assess the influence of past information on the model’s predictions, temporal

importance was analyzed using the Integrated Gradients method. The results show

that the importance of time steps increases as they approach the prediction moment.

This finding indicates that the model assigns significantly greater weight to more

recent data, with information from the latest time steps playing a crucial role in
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Figure 14: Practical utility: trading strategy backtesting.

its final decisions. Such behavior aligns well with the dynamic nature of financial

markets, where recent information typically has the strongest impact on future

trends.

It is recommended that future research explore architectures with parallel process-

ing capabilities to more effectively capture both short-term fluctuations and long-

term trends concurrently.

The presented model was developed solely for research and analytical purposes, and

its use for real trading, market intervention, or any direct financial decision-making

is not recommended. To prevent potential misuse or market disruption, appropriate

limitations and security considerations have been incorporated into its implemen-

tation. All evaluations and analyses reported in this study were conducted in a

controlled and simulated environment, and the authors do not endorse deploying

the model in actual trading platforms without proper expert supervision and nec-

essary safeguards. All code and data used in this study have been made openly

available in a GitHub repository to ensure transparency and reproducibility of the

results. The purpose of releasing the project is to enable researchers and prac-

titioners to examine the methods, implement improvements, and pursue further

developments.

https://github.com/aliheidarvand/Ethereum-Predictor

https://github.com/aliheidarvand/Ethereum-Predictor
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Figure 15: Temporal importance analysis.
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