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Abstract:
Abstract:
Precise modeling of financial asset volatility is significant for robust risk manage-
ment and derivative pricing. Recent scholarly investigations have demonstrated a
significant interest in employing stochastic processes with short-term memory for
this purpose. Consequently, rigorous examination of the existence and uniqueness
of solutions for these processes assumes critical importance. This study commences
with the precise definition of a fractional operator forH ∈ (0, 1

2
). Subsequently, the

finiteness of the second-order moment of the Itô-Skorokhod integral is meticulously
investigated, utilizing the aforementioned operator, specifically within the range of
H ∈ (0, 1

2
). Ultimately, leveraging this moment and rigorously applying Lipschitz

and linear growth conditions, and through the application of Gronwall’s inequality,
the existence and uniqueness of solutions for stochastic differential equations with
short-term memory are definitively established.
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1 Introduction

The study of stochastic differential equations (SDEs) driven by fractional Brownian

motion (FBM) has become a prominent area of research in stochastic analysis.

This interest stems from FBM’s capacity to model phenomena exhibiting long-

range and short-range dependence, a characteristic absent in standard Brownian

motion. While early SDE research predominantly focused on Brownian motion as

the driving process, leading to a well-developed theory (e.g. [17]; [20]), the non-

Markovian nature of FBM necessitates specialized techniques due to the inherent

dependence between its increments.

A foundational element in this field is the characterization of the regularity prop-

erties of stochastic integrals driven by FBM. Yan et al. [22] contributed significantly
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by investigating the p-variation of integral functionals, providing crucial insights

into the behavior of solutions to FBM-driven SDEs. A key challenge arises from

the fact that the classical Itô’s formula, a cornerstone of stochastic calculus, is not

directly applicable to FBM (except in the trivial case where the Hurst parame-

ter H = 1
2 , where FBM reduces to standard Brownian motion). This limitation

spurred the development of novel stochastic calculus tools. Hu et al. [11] addressed

the intricacies of singular SDEs driven by FBM, likely contributing to the devel-

opment of specialized solution methodologies for these equations, characterized by

mathematical irregularities requiring careful treatment.

The scope of SDE research has broadened to encompass more complex classes,

including backward stochastic differential equations (BSDEs). Hu and Peng [12]

explored BSDEs driven by FBM, confronting the added complexity of ”backward”

evolution in time within the context of long-range dependence. This work holds

particular relevance for applications in areas such as financial modeling, where

past information significantly influences present behavior. Nualart [19] provides a

comprehensive and influential treatise on FBM, offering a detailed exposition of the

process, developing the necessary stochastic calculus (including various integration

theories), and thoroughly investigating SDEs driven by FBM. The Hurst parameter

(H) plays a critical role in determining the properties of FBM. Deya and Tindel [6]

focused their research on the case where H > 1
2 . This condition often simplifies

the analysis, as FBM exhibits ”less roughness” in this regime. Their work likely

provides refined existence and uniqueness results tailored to this specific range of

H values, leveraging the smoother nature of the driving process.

Further generalizations have considered the inclusion of ”neutral” terms in SDEs.

Boufoussi and Hajji [3] studied neutral stochastic functional differential equations

(NSFDEs) driven by FBM in a Hilbert space. NSFDEs incorporate memory ef-

fects, making them suitable for modeling systems where the past evolution of the

system influences its present state. The use of a Hilbert space framework in this

work indicates a focus on infinite-dimensional systems, where solutions are often

functions.

Beyond the consideration of pure randomness, the literature has also explored

the impact of other forms of uncertainty. Fei [9] examined fuzzy SDEs driven by

local martingales under a non-Lipschitzian condition. SDEs incorporate fuzzy sets,

allowing for the modeling of systems where parameters are not known precisely but

are instead represented by fuzzy sets. The relaxation of the Lipschitz condition

in this work is also noteworthy, as it broadens the class of equations that can be

analyzed.

More recently, research has shifted towards fractional stochastic differential equa-

tions which generalize SDEs by employing fractional derivatives. Ahmadova and

Mahmudov [1] studied certain fractional stochastic neutral differential equations,

introducing the additional complexity of considering derivatives of the unknown

function at both present and past times. Their work contributes to the broader
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understanding of fractional stochastic differential equations by considering the ”neu-

tral”aspect, which involves derivatives of the unknown function at both present and

past times. This added complexity makes the analysis more challenging and rel-

evant for systems where the rate of change depends not only on the current and

past states but also on the history of the derivative itself. Their focus on the

existence and uniqueness provides a rigorous foundation for the applicability of

these equations in modeling real-world phenomena. Complementing this, Zhang

et al. [23] focused on the existence and uniqueness analysis of solutions for frac-

tional stochastic differential equations where the fractional order q is greater than

1. This work specifically addresses a more specialized area within fractional calcu-

lus, where the order of the derivative exceeds one. This is particularly relevant for

modeling processes exhibiting super-diffusion or other anomalous behaviors. The

inclusion of finite delays further acknowledges the importance of memory effects

in these systems. By focusing on the case where q is greater than 1, the authors

contribute to a deeper understanding of a specific class of fractional stochastic

differential equations with significant applications. The detailed analysis of exis-

tence and uniqueness provides essential theoretical guarantees for the validity and

interpretability of solutions obtained from these models.

For the attainment of efficient risk management and the precise valuation of

derivatives instruments, accurate modeling of financial market volatility is of para-

mount significance. Recent research endeavors have increasingly demonstrated the

utilization of stochastic processes with finite memory for this purpose (see [10]; [4];

[13]; [14]; [15]; [16] for more information). Consequently, the rigorous and meticu-

lous examination of the existence and uniqueness of solutions derived from these

processes is deemed essential. In this paper, a fractional operator is initially de-

fined within the range of H ∈ (0, 12 ). Subsequently, employing this operator, the

boundedness of the second-order moment of the Wick-Itô-Skorohod (WIS) inte-

gral is investigated within the same range. Finally, relying on this moment and

through the precise application of Lipschitz and linear growth conditions, as well

as the utilization of Gronwall’s inequality, the existence and uniqueness of solu-

tions for stochastic differential equations with short-term memory are definitively

established. These theoretical findings provide a foundational framework for the

development and application of more sophisticated and reliable financial models.

The subsequent structure of this paper is delineated as follows: Section 2 is de-

voted to the presentation of the RiemannLiouville fractional derivative. In Section

3, the proposed fractional operator for values within the range of H ∈ (0, 12 ) is

introduced. Section 4 undertakes the analysis of the boundedness of the second-

order moment of the WIS integral for H ∈ (0, 12 ). Section 5 addresses the existence

and uniqueness of solutions for fractional stochastic differential equations within

the interval H ∈ (0, 12 ). Finally, Section 6 provides a comprehensive summary and

conclusion.
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2 RiemannLiouville fractional derivative and its
properties

[18] For a function f in the space L1([a, b]) and a fractional order d > 0, the left

RiemannLiouville integral of f of order d on (a, b) is defined almost everywhere by

the following expression

Ida+f(x) =
1

Γ(d)

∫ x

a

(x− y)
d−1

f(y)dy,

with Γ signifying the Euler function, this integral provides an extension of the

conventional n-order iterated integrals of f for d = n ∈ N. Subsequently, we

present the initial composition formula

Ida+(Ika+f) = Id+k
a+ f.

Fractional derivatives can be thought of as the opposite of fractional integrals. We

assume that 0 < d < 1 and p > 1.

We define Ida+(Lp) as the image of Lp([a, b]) under the operator Ida+ . For any

f ∈ Ida+(Lp), there is a unique function ψ within Lp such that f = Ida+ψ. This ψ

is equivalent to the left RiemannLiouville derivative of f of order d, which is given

by

Dd
a+f(x) =

1

Γ(1− d)

d

dx

∫ x

a

f(y)

(x− y)
dy.

The derivative of f has the following Weil representation

Dd
a+f(x) =

1

Γ(1− d)

(
f(x)

(x− a)
d
+ d

∫ x

a

f(x)− f(y)

(x− y)
d+1

dy

)
1(a,b)(x).

The integrals converge at the singularity x = y in the Lp sense. If dp > 1, then any

function in Ida+(Lp) is (d− 1
p )-Holder continuous. Moreover, any Holder continuous

function with order k > d has a fractional derivative of order d, implying that

Ck ([a, b]) is contained within Ida+(Lp) for all p > 1.

Recall that by construction for f ∈ Ida+(Lp)

Ida+(Dd
a+f) = f,

and for general f ∈ L1 ([a, b]) we have

Dd
a+(Ida+f) = f.

If f ∈ Id+k
a+ (L1), d ≥ 0, k ≥ 0, d+ k ≤ 1 we have the second composition formula

Dd
a+(Dk

a+f) = Dd+k
a+ f.
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3 The fractional operator M

This section defines the fractional operator M for the range 0 < H < 1.

Definition 3.1. [8] The FBM BH = {BH(t), t ∈ R}, with Hurst parameter H in

the range (0, 1), is a Gaussian process with the following expected value

E[BH(t)] = 0,

and covariance

E[BH(t)BH(s)] =
1

2

{
|t|2H + |s|2H − |t− s|2H

}
.

We take BH(0) = 0. For H = 1
2 , B

1
2 is the standard Brownian motion.

Define S(R) as the Schwartz space, consisting of smooth functions on the real line

with rapid decay. Suppose Ω := S ′(R), be the topological dual of S(R), representing
the space of tempered distributions. Let B denote the Borel σ-algebra defined on

the set Ω . The white noise probability measure P on B(S ′(R)) is defined by the

following characteristic functional∫
S′(R)

exp (i ⟨ω, f⟩) dP(ω) = exp

(
−1

2
∥f∥2L2(R)

)
, f ∈ S(R),

where i2= −1 and ⟨ω, f⟩=ω(f) is the action of ω ∈ Ω = S ′(R) on f ∈ S(R).
The central idea here is to connect FBM B(H)(t) with Hurst parameterH ∈ (0, 1)

to standard Brownian motion B(t) (which has H = 1
2 ) using a transformation

operator M .

Definition 3.2. Biagini et al. [2] Let 0 < H < 1. The operatorM =MH is defined

on function f ∈ S(R) by

M̂f(β) = |β|
1
2−H

f̂(β), β ∈ R,

where

f̂(β) :=

∫
R

e−iαβf(α)dα,

denotes the Fourier transform.

It is noted that in the subsequent discussion, we generally employ the notationM

in lieu ofMH , except when explicit reference to the corresponding Hurst parameter

H is required. Alternatively, for any Hurst parameter H within the interval (0, 1),

the operator M can be equivalently defined as ( Biagini et al. [2]):

Mf(α) = − d

dα
CH

∫
R

(β − α)|β − α|H−3/2
f(β)dβ,
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where f ∈ S(R), and

CH =

(
2Γ(H − 1

2
) cos(

π

2
(H − 1

2
))

)−1

.

For H = 1
2 we have

Mf(α) = f(α).

For 0 < H < 1
2 we have

Mf(α) = CH

∫
R

f(α− β)− f(β)

|β|3/2−H
dβ,

For 1
2 < H < 1 we have

Mf(α) = CH

∫
R

f(β)

|β − α|3/2−H
dβ.

Definition 3.3. Let g : R → R be a continuous function by bounded growth, and

let x0 ∈ R be a singular point. The principal value (p.v.) of the singular integral

at x0 is defined as follows [5,21]:

p.v.

∫
R

g(y)

y − x0
dy := lim

ϵ→0

(∫ x0−ϵ

−∞

g(y)

y − x0
dy +

∫ ∞

x0+ϵ

g(y)

y − x0
dy

)
.

Definition 3.4. According to Definition 3.3, the fractional kernel |α−β|( 3
2−H) has

a singularity at x = 0 for 0 < H < 1
2 . Hence, the operator M for 0 < H < 1

2 can

be defined as follows:

Mf(α) = CHp.v.

∫
R

f(β)

|α− β| 32−H
dβ := CH lim

ϵ→0

∫
|α−β|>ϵ

f(β)

|α− β| 32−H
dβ.

Lemma 3.5. Let H ∈ (0, 12 ). Then the following attribute is true for operator M

M2f(x) = C2
Hp.v.

∫
R

∫
R

|βγ|
H−3/2

f(α− β − γ)dβdγ.

Proof. According to Definition 3.4 and by employing a suitable change of variables

(β = α− β), we obtain

Mf(α) = CHp.v.

∫
R

|β|H−3/2
f(α− β)dβ.
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Then

M2f(α) =M(Mf)(α) = CHp.v.

∫
R

|γ|H−3/2
Mf(α− γ)dγ

= CHp.v.

∫
R

|γ|H−3/2
CHp.v.

∫
R

|β|H−3/2
f(α− γ − β)dβdγ

= C2
Hp.v.

∫
R

∫
R

|βγ|H−3/2
f(α− β − γ)dβdγ.

4 Second-order moment of WIS integrals

This section first introduces theWick product and subsequently analyzes the second-

order moment of WIS integrals for H ∈ (0, 12 ).

Consider the following Hermite polynomials as

hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 , n = 0, 1, 2, ...,

and let J denote the set of all finite multi-indices of non-negative integers as follows

η = (η1, ..., ηn) ∈ J .

Additionally, suppose (en)n∈N be an orthonormal basis in L2(R) and ω ∈ Ω. Then

Hη(ω) is defined as

Hη(ω) = hη1
(⟨ω, e1⟩)hη2

(⟨ω, e2⟩) ...hηn
(⟨ω, en⟩) .

Definition 4.1. [8] Let G ∈ L2(R) and cη ∈ R. Then the set of all expansions of

G(ω) =
∑
η∈J

cηHη(ω) such that for δ ∈ N we have

∥G∥2H,−δ =
∑
η∈J

η!c2η(2N)
−δη

,

is called fractional Hida distribution space and denoted by S∗.

Definition 4.2. [8] (Wick Product) If F (ω) =
∑
η∈J

aηHη(ω) ∈ S∗ and G(ω) =∑
ξ∈J

bξHξ(ω) ∈ S∗, then the Wick product of Fand G is defined as follows

F♢G(ω) :=
∑
η∈J

aηbξHη+ξ(ω).
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Definition 4.3. Dordevic and Øksendal [7] Given a function ϕ mapping the real

numbers to the space of generalized distributions S∗, if the product ϕ(s)♢WH(s) is

integrable with respect to ds within the space S∗, then ϕ is deemed dBH -integrable.

The WIS integral of this function is then defined as follows∫
R

ϕ(s)dBH(s) =

∫
R

ϕ(s)♢WH(s)ds.

Lemma 4.4. Dordevic and Øksendal [7] (Product rule) Consider a measurable

process η, such that E
[∫ t

0
|η(s)| ds

]
< ∞ for all t ≥ 0. Furthermore, suppose λ be

an F-adapted stochastic process exhibiting cadlag paths and satisfying the criteria

for the WIS integrability. Let

dYi = ηi(t)dt+ λi(t)dB
H(t), i = 1, 2,

with Yi(0) = yi. Then the following holds

E [Y1(t)Y2(t)] = y1y2 + E
[∫ t

0

(Y1(s)η2(s) + Y2(s)η1(s)) ds+∫ t

0

(
λ1(s)M

2(λ2χ[0,t])(s) + λ2(s)M
2(λ1χ[0,t])(s)

)
ds

]
.

Theorem 4.5. Let 0 < H < 1
2 and let ϕ(t) = ϕ(t, ω) be an F-adapted stochastic

process such that

E

[∫ T

0

ϕ2(s)ds

]
<∞.

Define

Y (t) =

∫ t

0

ϕ(s)dBH(s), 0 ≤ t ≤ T,

where the integration is performed using the WIS method. Then

E
[
Y 2(t)

]
≤ KHE

[∫ t

0

ϕ2(s)ds

]
,

where

KH = 2C2
HC̄,

and CH and C̄ is constant.

Proof. We can, without loss of generality, consider ϕ to be a non-negative function.

This is achieved by separating ϕ into positive and negative portions and adjusting

the estimate by a factor of two. Subsequently, application of Lemma 4.4 yields

Ψ(t) := E
[
Y 2(t)

]
= E

[∫ t

0

2ϕ(s)M2(ϕχ[0,t])(s)ds

]
.
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Also, by Lemma 3.5

M2f(α) = C2
Hp.v.

∫
R

∫
R

|βγ|H−3/2
f(α− β − γ)dβdγ.

Therefore, by employing the Cauchy-Schwarz inequality in two consecutive in-

stances, we deduce

Ψ(t) = 2C2
Hp.v.E

[∫ t

0

(
p.v.

∫∫
R2

|βγ|H− 3
2ϕ(s)ϕ(s− β − γ)

×χ[0,t](s− β − γ) dβ dγ
)
ds
]

= 2C2
H

[
p.v.

∫∫
R2

(∫ t

0

E [ϕ(s)ϕ(s− β − γ)]

×χ[0,t](s− β − γ) ds
)
|βγ|H− 3

2 dβ dγ
]

≤ 2C2
H

[
p.v.

∫∫
R2

(∫ t

0

E
[
ϕ2(s)

]
χ[0,t](s− β − γ) ds

) 1
2

×
(∫ t

0

E
[
ϕ2(s− β − γ)

]
χ[0,t](s− β − γ) ds

) 1
2

×|βγ|H− 3
2 dβ dγ

]
≤ 2C2

H

{[
p.v.

∫∫∫
R2×[0,t]

E
[
ϕ2(s)

]
|βγ|H− 3

2

×χ[0,t](s− β − γ) ds dβ dγ
] 1

2

×
[
p.v.

∫∫
R2

(∫ t

0

E
[
ϕ2(s− β − γ)

]
×χ[0,t](s− β − γ) ds

)
|βγ|H− 3

2 dβ dγ
] 1

2

}
= 2C2

Hu
1
2
1 u

1
2
2 ,

where

u1 := p.v.

∫
R

∫
R

∫ t

0

E[ϕ2(s)]χ[0,t](s− β − γ)|βγ|H−3/2
dsdβdγ,

u2 := p.v.

∫
R

∫
R

∫ t

0

E[ϕ2(s− β − γ)]χ[0,t](s− β − γ)ds|βγ|H−3/2
dβdγ.

To facilitate the estimation of the dsdβdγ-integral u1, we decompose it into sequen-

tial integrals: a ds-integral followed by a dβdγ-integral, as demonstrated below.

Observe that given 0 ≤ s ≤ t and s − β − γ ∈ [0, t] it necessarily implies that
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−β − γ ∈ [−t, t]. Consequently

u1 ≤
∫ t

0

E[ϕ2(s)]ds p.v.
∫
R

∫
R

χ[−t,t](−β − γ)|βγ|H−3/2
dβdγ.

The integral dβ dγ is convergent according to the definition of power-type integral

convergence (since H − 3
2 < −1). Therefore,

p.v.

∫
R

∫
R

χ[−t,t](−β − γ) |βγ|H−3/2 dβ dγ ≤ C̃.

To facilitate the estimation of u2, we employ a variable substitution
z = s− β − γ

υ = −β
ϖ = −γ

⇔


s = z − υ −ϖ =: Θ(z, υ,ϖ)

β = −υ =: Λ(z, υ,ϖ)

γ = −ϖ =: Φ(z, υ,ϖ).

Then the Jacobian is∣∣∣∣∣∣∣
∂Θ
∂z

∂Θ
∂υ

∂Θ
∂ϖ

∂Λ
∂z

∂Λ
∂υ

∂Λ
∂ϖ

∂Φ
∂z

∂Φ
∂υ

∂Φ
∂ϖ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 −1 −1

0 −1 0

0 0 −1

∣∣∣∣∣∣∣ = 1.

So we get

u2 = p.v.

∫
R

∫
R

∫ t

0

E
[
ϕ2(z)

]
χ[0,t](z)dz|υϖ|H−3/2

dυdϖ.

Given that this integral exhibits a structure identical to u1, we have∫ t

0

E
[
ϕ2(z)

]
dzp.v.

∫
R

∫
R

χ[0,t](z)|υϖ|H−3/2
dυdϖ.

Then

p.v.

∫
R

∫
R

χ[0,t](z)|υϖ|H−3/2
dυdϖ ≤ Ĉ.

As result

E[Y 2(t)] ≤ 2C2
HC̄E

[∫ T

0

ϕ2(s)ds

]
, t ≤ T,

where C̄ = ĈC̃.
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5 Existence and uniqueness

This section provides a rigorous proof of the existence and uniqueness of a solution

to the fractional stochastic differential equation for H ∈ (0, 12 ).

Theorem 5.1. Let T > 0 and b(., .) : [0, T ]×Rn → Rn, σ(., .) : [0, T ]×Rn → Rn×m

be measurable functions satisfying

|b(t, y)|+ |σ(t, y)| ≤ D(1 + |y|), y ∈ Rn, t ∈ [0, T ],

and

|b(t, y)− b(t, ȳ)|+ |σ(t, y)− σ(t, ȳ)| ≤ K |y − ȳ| , y, ȳ ∈ Rn, t ∈ [0, T ].

Let Y0 be a random variable which is independent of both F and the σ-field F = F∞
generated by BH

s (.), s ≥ 0 such that

E
[
|Y0|2

]
<∞.

Then the stochastic differential equation

dYt = b(t, Yt)dt+ σ(t, Yt)dB
H
t , 0 ≤ t ≤ T,

Y (0) = Y0,

for H ∈ (0, 12 ) has a unique solution Y (t) with the property that

E

[∫ T

0

|Yt|2dt

]
<∞.

Proof. In order to demonstrate uniqueness, we posit the existence of two solutions,

Yt and Ȳt, with corresponding initial values Y0 and Ȳ0. Then by Lyapunov inequality

we have

E
[∣∣Yt − Ȳt

∣∣2] = E
[∣∣∣∣Y0 − Ȳ0 +

∫ t

0

(
b(s, Ys)− b(s, Ȳs)

)
ds

+

∫ t

0

(
σ(s, Ys)− σ(s, Ȳs)

)
dBH

s

∣∣∣∣2
]

≤ 3E
[∣∣Y0 − Ȳ0

∣∣2]+ 3E

[∣∣∣∣∫ t

0

(
b(s, Ys)− b(s, Ȳs)

)
ds

∣∣∣∣2
]

+ 3E

[∣∣∣∣∫ t

0

(
σ(s, Ys)− σ(s, Ȳs)

)
dBH

s

∣∣∣∣2
]
.
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Applying Lipschitz condition, Jensens inequality and Theorem 4.5 we have

E
[∣∣Yt − Ȳt

∣∣2] ≤ 3E
[∣∣Y0 − Ȳ0

∣∣2]+ 3tK2

∫ t

0

E
[∣∣Ys − Ȳs

∣∣2] ds
+ 3KH

∫ t

0

E
[∣∣Ys − Ȳs

∣∣2] ds
≤ 3E

[∣∣Y0 − Ȳ0
∣∣2]+ 3

(
tK2 +KH

) ∫ t

0

E
[∣∣Ys − Ȳs

∣∣2] ds.
Suppose F = 3E

[∣∣Y0 − Ȳ0
∣∣2] and Pt = E

[∣∣Ys − Ȳs
∣∣2] . Using Gronwall’s inequality,

we have

Pt = F +A

∫ t

0

Psds ≤ FeAt,

where A = 3
(
tK2 +KH

)
. The uniqueness of solution can be proved using Y0 = Ȳ0.

In order to establish the existence of a solution, we define an increasing family of

σ-fields Ft(0 ≥ t ≥ T ), such that Y0 is measurable with respect to F0 and BH
t

is measurable with respect to Ft for all t ≥ 0. We may choose Ft to be the σ-

fields generated by Y0 and F(BH
s , 0 ≥ s ≥ T ), relying on the premise that Y0 is

independent of F(BH
s , 0 ≥ s ≥ T ). Define Y

(0)
t = Y0 and

Y
(m+1)
t = Y0 +

∫ t

0

b(Y (m)
s , s)ds+

∫ t

0

σ(Y (m)
s , s)dBH

s .

The inductive assumption is that Y m ∈ L2 norm and that

E
∣∣∣Y (k+1)

t − Y
(k)
t

∣∣∣2 ≤ (At)(k+1)

(k + 1)!
for 0 ≤ k ≤ m− 1, (1)

where A is some positive constant (depending only on D,K, T ). Since Y0 ∈ F0,

Y
(m+1)
t is well defined if m = 0. Further∣∣∣Y (1)

t − Y (0)
∣∣∣2 ≤ 2

∣∣∣∣∫ t

0

b(Y0, s)ds

∣∣∣∣2 + 2

∣∣∣∣∫ t

0

σ(Y0, s)dB
H
s

∣∣∣∣2.
Taking the expectation, we get∣∣∣Y (1)

t − Y (0)
∣∣∣ ≤ 2D2t2

(
1 + E|Y0|2

)
+ 2D2KH

(
1 + E|Y0|2

)
≤ At.

This implies that Y (1) ∈ L2 norm and Eq. (1) holds for m = 0. We postulate the

inductive hypothesis, which holds for all m ≥ 0, and then establish its truth for the

successor, m+ 1. Then∣∣∣Y (m+1)
t − Y

(m)
t

∣∣∣2 ≤ 2

∣∣∣∣∫ t

0

(
b(Y (m)

s , s)− b(Y (m−1)
s , s)

)
ds

∣∣∣∣2
+ 2

∣∣∣∣∫ t

0

(
σ(Y (m)

s , s)− σ(Y (m−1)
s , s)

)
dBH

s

∣∣∣∣2 .
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Taking the epectation and using Theorem 4.5, we have

E
[∣∣∣Y (m+1)

s − Y (m)
s

∣∣∣2] ≤ 2tK2E
[∫ t

0

∣∣∣Y (m)
t − Y

(m−1)
t

∣∣∣2 ds]
+ 2KHK

2E
[∫ t

0

∣∣∣Y (m)
s − Y (m−1)

s

∣∣∣2 ds] .
Thus

E
[∣∣∣Y (m+1)

t − Y
(m)
t

∣∣∣2] ≤ C

∫ t

0

∣∣∣Y (m)
s − Y (m−1)

s

∣∣∣2ds,
if C ≥ 2K2(t+KH). Substituting (1) with k = m− 1 into the right-hand side, we

get

E
[∣∣∣Y (m+1)

t − Y
(m)
t

∣∣∣2] ≤ C

∫ t

0

(As)m

m!
ds =

(As)m+1

(m+ 1)!
.

Thus Eq. (1) holds for k = m. As this result demonstrates that Y (m+1) belongs to

the L2 norm, the inductive step for m+ 1 is thereby established.

6 Conclusion

The dynamic fluctuations of financial markets, characterized by their complex and

memory-driven nature, necessitate the development of rigorous and efficient model-

ing paradigms. In this context, stochastic processes exhibiting short-term memory

assume particular significance due to their capacity to capture and represent tem-

poral dependencies of limited yet substantial magnitude. Consequently, fractional

stochastic differential equations with short-term memory are recognized as a potent

analytical tool for modeling financial market volatility. This paper is dedicated to

the investigation of the existence of solutions for fractional stochastic differential

equations characterized by short-term memory. Initially, the boundedness of the

WIS integral is established for values of the Hurst parameter within the interval

H ∈ (0, 12 ), utilizing the formal definition of the integral and the inherent prop-

erties of fractional processes. Subsequently, by imposing conditions of Lipschitz

continuity and linear growth on the coefficients of the aforementioned stochastic

differential equation, and by employing the Gronwall’s inequality, the existence of

solutions is analytically demonstrated. The findings of this investigation reveal that

fractional stochastic differential equations with short-term memory, under the spec-

ified conditions, admit solutions. The boundedness of the WIS integral is rigorously

established as a necessary prerequisite for solution existence, while the conditions of

Lipschitz continuity and linear growth are presented as sufficient criteria. This pa-

per contributes to the advancement of theoretical understanding in this domain by

providing a rigorous analytical framework for examining the existence of solutions

for fractional stochastic differential equations characterized by short-term memory.
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