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Abstract:
Abstract:
In the context of financial risk management, predictive modeling under censored
data remains a complex challenge. This paper develops and compares two ap-
proaches: a traditional log-normal regression model and a hybrid framework
combining log-normal regression with an XGBoost-based correction layer. While
the parametric component captures the structured relationships between covari-
ates and claim costs, the machine learning layer adjusts for nonlinear residual
structure. Building on this, we introduce a stochastic interpretation of the hybrid
estimator by modeling prediction errors as a Gaussian process. We derive a formal
variance decomposition, separating model-based and correction-layer uncertainty.
To quantify this, we implement both simulation-based estimation and diagnostic
tools for residual stationarity and ergodicity. Additionally, we propose a Bayesian
stochastic extension by placing priors over model parameters and deriving posterior
predictive intervals. A novel contribution of this work is the incorporation of
residual dynamics via autoregressive stochastic processes, where residuals from
the hybrid model are modeled as AR(1) processes and also as a Diffusion Process.
This allows for modeling temporal dependence and improves interpretability of
correction structures.
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1 Introduction

In the domain of actuarial science and financial risk management, accurate mod-

eling of claim cost distributions is crucial. Traditional parametric models, such

as the log-normal regression, are widely employed due to their interpretability

and ability to handle positively skewed data, which is typical in insurance ap-

plications as thoroughly treated in Klugman et al (2019) [15] and J.F.Lawless
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(2003) [19]. However, real-world insurance data often introduce complications such

as left-censoring, covariate interactions, and latent structures that challenge purely

parametric assumptions.

To overcome these limitations, we propose a hybrid modeling approach that

combines the classical log-normal regression model with a nonparametric correc-

tion layer based on the XGBoost algorithm. This method builds on recent work

highlighting the benefits of combining statistical estimators with machine learning

components in the context of prediction under uncertainty see Dunn and Smyth

(2018) [14] and Scornet et al (2015) [6].

While the existing literature establishes a strong foundation for hybrid modeling,

our work extends this paradigm by introducing a comprehensive stochastic process

framework that provides both theoretical depth and practical tools for uncertainty

quantification. Traditional parametric models in Klugman et al (2019) [15] and

J.F.Lawless (2003) [19] offer interpretability but often lack the flexibility to capture

complex data patterns, while existing semi-parametric and machine learning hybrids

in P.Dunn and G.Smyth (2018) [14] and Scornet et al (2015) [6] primarily focus

on predictive accuracy. The novel contributions of this paper are fourfold: (1) we

provide a formal stochastic process interpretation of hybrid estimators, modeling

prediction errors as realizations of a Gaussian process; (2) we derive a rigorous

variance decomposition that separates model-based and correction-layer uncertainty

under this framework; (3) we innovate by modeling residual dynamics via both

autoregressive (AR(1)) and Diffusion processes, capturing temporal dependencies in

the correction layer; and (4) we introduce a geometric interpretation via stochastic

metrics, offering new diagnostic tools for assessing prediction stability across the

feature space. This integrated perspective not only enhances predictive performance

but also provides a unified probabilistic understanding of hybrid learning dynamics,

particularly for financial risk applications with censored data.

The hybrid predictor is interpreted as the sum of a structured parametric mean

µ̂MLE(x) and a data-driven residual correction ε(x) modeled as a realization from a

zero-mean stochastic process, such as a Gaussian Process (GP). This interpretation

allows us to quantify the variance and uncertainty attributable to each component,

extending classical variance decomposition to hybrid models.

Furthermore, we view the hybrid learning process as a two-step Markov process:

X → µ̂(X)→ Ŷ (X),

whereX is the design matrix, the first step captures the mean structure via maximum

likelihood estimation (MLE), and the second models the residual via XGBoost. This

Markovian framing enables a stochastic interpretation of learning dynamics and

opens pathways to analyze stationarity, ergodicity, and long-run behavior of the

correction layer.

This integrated framework enhances predictive power, particularly in the presence

of left-censored outcomes a setting commonly encountered in non-life insurance
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data, as highlighted by J.F.Dupuy (2022) [20] and Wang et al (2011) [21]. It also

supports the construction of confidence intervals and credible sets by combining

bootstrapping with influence function-based variance estimates.

Our empirical study, based on censored motor claim data, confirms that the

proposed hybrid model outperforms the standard log-normal regression in both

predictive accuracy and robustness. The theoretical and practical advantages of

this model make it a promising tool for modern actuarial risk assessment.

This paper develops a comprehensive methodological framework for financial risk

modeling under left-censored data, progressing from foundational theory to empirical

application. We begin in section 2 by establishing the theoretical underpinnings of

the log-normal regression model and its extension to left-censored data environments

in section 3, including maximum likelihood estimation and asymptotic properties in 4

. In section 5 a simulation study validates these theoretical developments and assesses

finite-sample performance. The core empirical contribution unfolds in section 6,

where we first benchmark our proposed hybrid log-normal/XGBoost model against

the standard log-normal approach using real insurance data, demonstrating superior

performance in claims provisioning, Value at Risk estimation, and backtesting.

We then develop a unified stochastic process framework that provides theoretical

grounding through consistency proofs, Markovian interpretations, and variance

decomposition, while offering practical diagnostic tools via residual dynamics analysis

and geometric interpretation. The paper concludes with a synthesis of results and

discussion of implications for financial risk management in section 7.

2 Log-Normal regression model

Let Yi be the response variable following a log–normal distribution:

lnYi ∼ N (β⊤Xi, σ
2),

where

• Xi ∈ Rp is the covariate vector for observation i.

• β ∈ Rp is the vector of regression coefficients.

• σ > 0 is the scale (standard deviation) parameter.

For n independent observations, the joint likelihood is

L(β, σ) =

n∏
i=1

f
(
Yi | Xi

)
,

where the log–normal density is

f(y | Xi) =
1

y σ
√
2π

exp
(
− (ln y − β⊤Xi)

2

2σ2

)
.



162 Journal of Mathematics and Modeling in Finance

By taking logarithms, the log–likelihood becomes:

ℓ(β, σ) =

n∑
i=1

ln f
(
Yi | Xi

)
=

n∑
i=1

[
− ln

(
Yi σ
√
2π
)
− (lnYi − β⊤Xi)

2

2σ2

]
. (1)

The maximum likelihood estimators (β̂, σ̂) are defined by

(β̂, σ̂) = arg max
β∈Rp, σ>0

ℓ(β, σ).

and they satisfy the score equations:
∂ℓ

∂β
=

n∑
i=1

(lnYi − β⊤Xi)

σ2
Xi = 0,

∂ℓ

∂σ
=

n∑
i=1

[
− 1

σ
+

(lnYi − β⊤Xi)
2

σ3

]
= 0.

Solving these equations yields the MLEs:

β̂ =
(
X⊤X

)−1
X⊤ ln(Y ), σ̂2 =

1

n

n∑
i=1

(
lnYi − β̂⊤Xi

)2
.

3 Left-Censored Log-Normal Regression Model

Now, we observe censored values:

Ỹi = max(Yi, Ci), δi = I(Yi > Ci)

with Ci being the censoring threshold satisfying:

• Ci ⊥ Yi | Xi (Independence)

• Ci is ancillary to (β, σ)

The joint likelihood for n independent observations is given by:

L(β, σ) =

n∏
i=1

[
f(Ỹi|Xi)

δiF (Ỹi|Xi)
1−δi

]
(2)

where:

• f(y|Xi) =
1

yσ
√
2π

exp
(
− (ln y−β⊤Xi)

2

2σ2

)
(Log-normal PDF)

• F (y|Xi) = Φ
(

ln y−β⊤Xi

σ

)
(Log-normal CDF)

The log-likelihood function is:

ℓ(β, σ) =

n∑
i=1

[
δi ln f(Ỹi|Xi) + (1− δi) lnF (Ỹi|Xi)

]
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and by expanding all the terms:

ℓ(β, σ) =

n∑
i=1

{
δi

[
− ln(Ỹiσ

√
2π)− (ln Ỹi − β⊤Xi)

2

2σ2

]

+ (1− δi) lnΦ

(
ln Ỹi − β⊤Xi

σ

)} (3)

The MLE estimators (β̂, σ̂) are solutions to:

(β̂, σ̂) = argmax
β∈Rp,σ>0

ℓ(β, σ)

and they are characterized by the score equations:
∂ℓ
∂β =

∑n
i=1

[
δi
σ2 (ln Ỹi − β⊤Xi)Xi − (1−δi)

σ
ϕ(zi)
Φ(zi)

Xi

]
= 0

∂ℓ
∂σ =

∑n
i=1

[
− δiσ + δi(ln Ỹi−β⊤Xi)

2

σ3 − (1−δi)zi
σ

ϕ(zi)
Φ(zi)

]
= 0

where zi =
ln Ỹi−β⊤Xi

σ and ϕ(·) is the standard normal PDF.

4 Asymptotic Normality for the Left–Censored Log–Normal
Regression MLE

We assume that the response variable Yi follows a log-normal distribution:

log(Yi) ∼ N (µi, σ
2), µi = βTXi,

with left-censoring at threshold c. We observe:

Ỹi = max(Yi, c), δi = 1{Yi > c}.

The total log-likelihood is:

ℓ(β, σ) =

n∑
i=1

[
δi log f(Ỹi|Xi) + (1− δi) logF (c|Xi)

]
,

where

f(y|Xi) =
1

yσ
√
2π

exp

(
− (log y − βTXi)

2

2σ2

)
,

F (c|Xi) = Φ

(
log c− βTXi

σ

)
.

Let θ = (β, σ). The score vector U(θ) = ∇θℓ(θ) is composed of the partial

derivatives with respect to the parameters in β and σ:
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• Uncensored Observations (δi = 1):

∂

∂β
log f(Yi|Xi) =

∂

∂β

[
− (log Yi − βTXi)

2

2σ2

]
=

(log Yi − βTXi)

σ2
Xi,

∂

∂σ
log f(Yi|Xi) =

∂

∂σ

[
− log σ − (log Yi − βTXi)

2

2σ2

]
= − 1

σ
+

(log Yi − βTXi)
2

σ3
.

• Censored Observations (δi = 0): Let zi =
log c−βTXi

σ . Then:

∂

∂β
logF (c|Xi) =

ϕ(zi)

Φ(zi)
· ∂zi
∂β

=
ϕ(zi)

Φ(zi)
·
(
−Xi

σ

)
,

∂

∂σ
logF (c|Xi) =

ϕ(zi)

Φ(zi)
· ∂zi
∂σ

=
ϕ(zi)

Φ(zi)
·
(
−zi
σ

)
.

The Fisher information matrix is given by:

I(θ) = −E
[
∇2
θℓ(θ)

]
=

[
Iββ Iβσ
Iσβ Iσσ

]
.

where:

Iββ = E

[
n∑
i=1

XiX
T
i

σ2

(
δi + (1− δi)

ϕ(zi)

Φ(zi)

(
zi +

ϕ(zi)

Φ(zi)

))]

Iσσ = E

[
n∑
i=1

(
δi
σ2

+ (1− δi)
ϕ(zi)

Φ(zi)

z2i
σ2

)]

Iβσ = E

[
n∑
i=1

Xi

σ2

(
δi(log Yi − βTXi) + (1− δi)

ϕ(zi)

Φ(zi)
zi

)]
Under standard regularity conditions :

• (R1): the true parameter θ0 lies in the interior of the parameter space.

• (R2): the log-likelihood is continuously differentiable.
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• (R3): the Fisher information matrix I(θ0) is positive definite.

• (R4): the support of the log-likelihood does not depend on θ.

and the key steps:

• Taylor expansion about θ0

• LLN: − 1
n∇

2
θℓ(θ̃)

p−→ I(θ0)

• CLT: 1√
n
U(θ0)

d−→ N (0, I(θ0))

we obtain the following results:

(i) Consistency:

θ̂
p−→ θ0 as n→∞ (convergence in Probability).

(ii) Asymptotic Distribution:

√
n(θ̂ − θ0) =

[
− 1

n
∇2
θℓ(θ̃)

]−1

· 1√
n
U(θ0)

d−→ N
(
0, I(θ0)−1

)
(convergence in Distribution).

These results are standard for Maximum Likelihood Estimation under censoring.

We will cite appropriate foundational texts, such as J.F.Lawless (2003) [19] (Theorem

6.1, for MLE asymptotic under Type I censoring) and Theorem 5.1 in J.P.Klein and

M.L.Moeschberger (2003) [17] for the general case.

5 Simulation study

5.1 Left-censored log-normal regression model

We simulate 1000 replications for a different sample size of (n=100, n=200, n=500

and n=1000), we set a fixed censoring threshold C equal to the 35th quantile of

the simulated, uncensored Y values. Any observation with Yi ≤ C is considered

left-censored. After that, we simulate a vector of regression parameters β= (0.3,

-0.1,0.45,0.3,0.6), vectors of factors: an intercept , X1 follows a normal distribution

with mean m=0 and variance σ2= 1 , X2 follows a binomial distribution with

parameters n = 1 and p = 0.3 (equivalent to Bernoulli(0.3)), X3 follows a normal

distribution with mean m=1 and variance σ2= 1.5, X4 follows a normal distribution

with mean m=3 and variance σ2= 6 and a dependent variable Y following log-normal

distribution with mean m=βTXi and scale σ = 1.5. Now, we will estimate the

regression parameters using the maxLik function from the package ”maxLik” under

R we obtain the following results:
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Table 1: Results of left-censored log-normal regression for different sample size

sample size Metric σ intercept β1 β2 β3 β4

100

Coefficient 2.3295 0.2297 -0.2286 0.4231 0.2851 0.5690

Std. Error 0.4502 0.3467 0.1252 0.2681 0.0906 0.1393

t-value 5.1740 0.6630 -1.8260 1.5780 3.1440 4.0840

p-value 0.0002 0.5076 0.0678 0.1145 0.0016 0.0004

200

Coefficient 1.1613 0.2077 -0.0493 0.3734 0.3289 0.5222

Std. Error 0.1983 0.3438 0.0762 0.1710 0.0595 0.0983

t-value 5.8530 0.4880 -0.6470 2.1840 5.5260 5.3110

p-value 0.0004 0.6260 0.5174 0.0290 0.0003 0.0001

500

Coefficient 1.4453 0.2569 -0.1490 0.2976 0.3269 0.6097

Std. Error 0.1501 0.2109 0.0467 0.0972 0.0290 0.0531

t-value 9.6250 2.1660 -3.1890 3.0610 11.2720 7.8940

p-value 0.0002 0.0303 0.0014 0.0022 0.0002 0.0009

1000

Coefficient 1.4544 0.3268 -0.0712 0.4435 0.3236 0.6381

Std. Error 0.1020 0.1471 0.0317 0.0670 0.0232 0.0375

t-value 14.2590 1.5420 -2.2450 6.6140 13.8950 12.7220

p-value 0.0003 0.1231 0.0247 0.0003 0.0002 0.0002

The scale Parameter σ varies between 2.3295 (for n=100) and 1.45 (for n=1000),

it is always significant (p − value ≤ 0.05), which indicates that the log-normal

distribution is well adapted to simulated data. As the sample size increases, the

estimated value of σ approaches the simulated value (σ = 1.5), showing a convergence

to the true value.

intercept : varies between 0.2297 (for n=100) and 0.3268 for (n=1000). Not

significant for n=100 and n=200 (p − value ≥ 0.05), but significant for n=500

(p-value = 0.0303). The impact of the intercept is small and only detected for large

samples.

β1 : varies between -0.2286 (for n=500) and -0.0712 (for n=1000). Not significant

for n=100 and n=200, but significant for n=500 and n=1000 (p− value ≤ 0.05).

The impact of the first explanatory variable is negative for large samples, which

corresponds to the simulated value (-0.1).

β2: varies between 0.4231 (for n=100) and 0.4435 (for n=1000). Significant for

n=200, n=500 and n=1000 (p−value ≤ 0.05). The impact of the second explanatory

variable is positive and approaches the simulated value (0.45) as sample size increases.

β3: varies between 0.2851 (for n=100) and 0.3236 (for n=1000). Always significant

(p − value ≤ 0.05). The impact of the third explanatory variable is strong and

stable, close to the simulated value (0.3).

β4: varies between 0.5690 (for n=100) and 0.6381 (for n=1000). Always significant

(p − value ≤ 0.05). The impact of the fourth explanatory variable is strong and

close to the simulated value (0.6) for large samples.
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Standard errors decrease as the sample size increases, showing greater accuracy of

estimates. For example, for β3, the standard error changes from 0.0906 (for n=100)

to 0.0232 (for n=1000).

t-values increase with sample size, reflecting greater confidence in estimates. For

example, for β4, the value of t goes from 4.084 (for n=100) to 12.722 (for n=1000).

The p-values generally decrease with increasing sample size, making the coefficients

more significant. For example, for β1, the p-value changes from 0.0678 (for n=100)

to 0.0247 (for n=1000).

5.2 Bias and RMSE

Bias measures the average difference between the estimated value of a parameter and

its actual (or simulated) value. Bias = 1
N

∑N
i=1(β̂i − β) where β̂i is the parameter

estimate and β is the real value. A bias close to zero indicates that the estimator is

unbiased.

The RMSE measures the square root of the mean quadratic error between estimated

and actual values. RMSE =
√

1
N

∑N
i=1(β̂i − β)2. A low RMSE indicates that the

estimates are accurate and close to actual values.

Table 2: Biais and RMSE for different sample size

sample size Metric σ intercept β1 β2 β3 β4

100
Biais 0.1914 -0.0018 0.0130 -0.0265 0.0060 -0.0063

RMSE 0.2550 0.1949 0.0089 0.0412 0.0039 0.0143

200
Biais 0.1388 -0.0062 0.0006 -0.0031 0.0068 -0.0029

RMSE 0.0723 0.0961 0.1823 0.0197 0.0018 0.0063

500
Biais 0.0354 -0.0107 0.0020 -0.0111 0.0018 -0.0012

RMSE 0.0265 0.0323 0.0015 0.0090 0.0008 0.0021

1000
Biais 0.0361 -0.0071 0.0021 -0.0037 0.0004 0.0022

RMSE 0.0152 0.0189 0.0008 0.0042 0.0005 0.0012

In our study the Bias and RMSE are calculated over N=1000 simulation repli-

cations . Table 2 shows for n=100, The biases are relatively low, except for scale

parameter σ (0.1914) and β2 (-0.0265). The RMSE are moderate, indicating accept-

able accuracy for a small sample size.

for n=200, Biases decrease compared to n=100 and the RMSE also decreases,

showing better accuracy.

for n=500, The biases are very low, indicating that the estimators are almost

unbiased. The RMSE is very low, showing excellent accuracy.

for n=1000, The biases are almost equal to zero, confirming that the estimators are

unbiased. RMSE is very low, indicating high accuracy.

The results found for bias and RMSE show that estimators converge to true parame-
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ter values as sample size increases. This is consistent with the asymptotic properties

of maximum likelihood estimators.

6 Empirical Study: Hybrid Model Performance and In-
terpretation

The data set dataCar from the package insurance in R published by Cambridge

University Press contains information on one-year vehicle insurance policies. It is

commonly used to model claim frequency, cost, and other insurance-related analyses.

It includes 67,566 policies of which 4,589 had at least one claim.

(i) veh-value: Vehicle value (in 10,000 dollars)

(ii) exposure: Policy exposure (scaled between 0 and 1)

(iii) clm: Occurrence of a claim (binary: 0 = no claim, 1 = at least one claim)

(iv) numclaims: Number of claims per policy

(v) claimcst0: Claim amount (0 if no claim occurred)

(vi) veh-body: Vehicle body type, with categories such as BUS, COUPE, SEDAN,

TRUCK

(vii) veh-age: Age of the vehicle (discrete: 1 = youngest, up to 4 = oldest)

(viii) gender: F = Female and M = Male

(ix) area: Geographic area of the policyholder

(x) agecat: Policyholder age category (discrete: 1 = youngest to 6 = oldest)

This data set has been widely used in the literature to benchmark algorithms,

particularly for regression and financial mathematical tasks such as in the work of

Dunn and Smyth (2018) [14]. For our study, we chose the most important variables,

which are gender, veh-age, veh-value, age category and veh-body (SEDAN). After

that we apply a censoring threshold to the dependent variable claimcst0. Let

us assume that the exact values of claims below 408.95 dollars (quartile of 35%)

were not reported because they will not be compensated for policy reasons. In this

scenario, they will be left-censored which means we know only that these claims

are valued at less than 408.95 dollars, but we do not know their exact values. We

are going to apply Anderson-Darling test to prove that the dependent variable

claimcst0 follows a log-normal distribution and the maxLik function under R to

estimate the coefficients of all covariates.
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Goodness-of-Fit Test and Parameter Estimation

The Anderson-Darling test for log-normality yields a test statistic of 1.1296 with a

p-value of 0.1458, failing to reject the null hypothesis that the claim costs follow a

log-normal distribution.

Table 3 presents the maximum likelihood estimates for the left-censored log-

normal regression model applied to the dataCar dataset. The parameter log(σ) =

0.74 indicates that the log-normal distribution is well-adapted to the response

variable claimcst0. A fixed censoring threshold was set at the 35th percentile

of the observed non-zero claims (408.95 USD), resulting in a censoring rate of

approximately 35% for the claim cost data.

Table 3: Coefficient Estimates for Left-Censored Log-Normal Model

Variable Estimate Std. Error t-value Pr ≥ |t|
log(σ) 0.748482 0.011269 45.123 2.00e-16

intercept 7.608142 0.101666 74.834 2.00e-16

gender 0.177963 0.042356 4.202 2.65e-05

veh-age 0.050602 0.022720 2.227 0.0259

veh-value 0.002405 0.020056 0.120 0.9046

agecat -0.064805 0.014530 -4.460 8.19e-06

SEDAN -0.095062 0.045773 -2.077 0.0378

• gender (0.1779): Significant positive effect (p-value = 2.65e-06) indicating

that male insured persons have higher average claim costs.

• veh-age (0.0506): Significant positive effect (p-value = 0.0259) of vehicle age.

• veh-value (0.0024): The lack of significance (p-value = 0.7991) could indicate

a low correlation with claim costs.

• agecat (-0.0648): An increase in one agecat unit (age category of insured) is

associated with a reduction in average claim costs (claimcst0). This result

suggests that older policyholders may have different driving behaviours or risk

profiles, resulting in lower claim costs.

• sedan indicator (-0.0950): Significant negative effect (p-value = 0.0378),

indicating that ”SEDAN” vehicles are associated with lower costs.
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6.1 The Hybrid Log-Normal + XGBoost Model: Definition and
Empirical Performance

Model Definition

Let:

• Y : The claim cost.

• µ = Xβ: The linear predictor from the log-normal model.

• ϵ = ln Y - µ: The residual on the log-scale.

• fXGB(X): The XGBoost model learned on the residuals ϵ.

• l̂nY = Xβ + fXGB(X): The final hybrid prediction

The hybrid model combines parametric and machine learning components:

• Parametric Component:

lnY ∼ N (µ, σ2), µ = Xβ

where X is the design matrix, β are regression coefficients, and σ is the

log-scale standard deviation.

• Machine Learning Component:

ϵ = lnY − µ (Residuals from log-normal model)

An XGBoost model fXGB(X) learns the residual pattern:

ϵ ≈ fXGB(X)

• Combined Prediction:

l̂nY = Xβ︸︷︷︸
Parametric

+ fXGB(X)︸ ︷︷ ︸
Non-linear correction

Table 4 shows example claim cost predictions using both the left-censored log-

normal regression model and the Hybrid model. The predictions by the Hybrid

model are closer to the real values of claim costs compared to the predictions by

the log-normal model.
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Table 4: Claim Costs and Predictions Comparison

Cost Claim pred-lnorm pred-hybrid

1230.50 1185.33 1248.90

780.10 803.45 790.02

920.02 912.11 934.56

1500.25 1487.50 1562.34

2124.36 2089.36 2101.35

6.2 Empirical Comparison with Log-Normal Benchmark

Provisions for Claims to be Paid under Log-Normal Regression

The provision calculation was investigated in S.G.Mingari et al (2006) [22] but

without taking into account the censoring variable and covariates. Our left-censored

log-normal model with covariates allows for an accurate estimation of provisions

for future costs, taking into account both censored data and explanatory factors

related to the policyholder’s characteristics. This approach is particularly useful for

partially observed claims data.

Our model uses the following assumptions:

• The dependent variable claimcst0 (claim costs) follows a log-normal distri-

bution conditional on the covariates.

• A left-censoring variable is applied for observations whose value is less than a

threshold c.

• The covariates include: gender, veh-age, veh-value, agecat, and a sedan-

indicator.

For each observation, the provision is calculated as the conditional expectation

of the remaining costs:

E[Y | Y > c] = eµ+
σ2

2 ·
Φ
(
µ−ln c+σ2

σ

)
Φ
(
µ−ln c
σ

) (4)

where:

• eµ+
σ2

2 is the unconditional mean of a log-normal distribution Y ∼ LN(µ, σ2).

•
Φ
(

µ−ln c+σ2

σ

)
Φ(µ−ln c

σ )
adjusts the unconditional mean for censoring.

• Φ(·) is the Cumulative Distribution Function (CDF) of the standard normal

distribution.
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• Numerator: Probability-weighted adjustment for censoring threshold c, shifted

by σ2.

• Denominator: Probability that Y > c, i.e., P (lnY > ln c) = Φ
(
µ−ln c
σ

)
.

Table 5 shows some example claims costs and their corresponding provisions

calculated under the left-censored log-normal model.

Table 5: Example Claims Costs and Provisions under the Log-Normal Model

Cost Claim Provision under Log-Normal Model

1250 884.76

1452 1017.78

1505 1052.10

1830 1258.37

2145 1452.97

2300 1547.32

2500 1769.85

2950 2089.58

3230 2275.32

3500 2455.76

Provisions for Claims to be Paid under Hybrid Model

The provisions under the Hybrid model are calculated by incorporating the XGBoost

correction into the conditional expectation formula:

Provisioni = eµi+fXGB(Xi)+
σ2

2 ·
Φ
(
µi+fXGB(Xi)−ln c+σ2

σ

)
Φ
(
µi+fXGB(Xi)−ln c

σ

) (5)

where Φ(·) is the standard normal CDF, µi = Xiβ, and fXGB(Xi) is the XGBoost

correction learned from the residuals.

Table 6 shows the provisions for the same example claims under the Hybrid

model.
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Table 6: Example Claims Costs and Provisions under the Hybrid Model

Cost Claim Provision under Hybrid Model

1250 890.30

1452 1068.18

1505 1112.40

1830 1339.54

2145 1632.07

2300 1750.12

2500 1960.55

2950 2255.34

3230 2450.52

3500 2753.29

We benchmark our hybrid approach against the standard log-normal regression,

which represents established methodology for censored loss data in S.A.Klugman et

al (2019) [15] and J.F.Lawless (2003) [19]. Table 7 demonstrates the hybrid model’s

superior performance.

Table 7: Prediction Accuracy Comparison

Model Mean Squared Error Improvement

Log-Normal 12,532,023 –

Hybrid 8,306,044 33.7%

The hybrid model’s superior performance extends to practical risk management

applications, including claims provisioning and Value at Risk calculation. As shown

in Table 8, the hybrid model estimates 0.6% higher total reserves while achieving

significantly better predictive accuracy, suggesting it more effectively identifies

financial risks that traditional approaches may underestimate.

Table 8: Comparison of Total Provisions and Predictive Accuracy

Total Provisions MSE

Log-normal Model 12,987,275 12,532,023

Hybrid Model 13,067,861 8,306,044

Value at Risk (VaR)

The Value at Risk is a financial metric that estimates the risk of an investment.

More specifically, VaR is a statistical technique used to measure the potential loss
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in an investment portfolio over a specified period (for more see M.Z.Rahman (2024)

[23]). VaR gives the probability of losing more than a given amount in a portfolio.

The explicit expression for the VaR under the log-normal model is given by:

VaR(i)
α = exp

(
µi + σΦ−1(α)

)
(6)

where: µi = Xiβ and Φ−1 is the inverse CDF of the standard normal distribution.

For the hybrid model with residual correction fXGB(Xi):

HybridVaR(i)
α = exp

(
µhyb
i + σΦ−1(α)

)
(7)

where: µhyb
i = Xiβ + fXGB(Xi) and fXGB(Xi) is the XGBoost correction learned

from residuals ϵi = lnYi −Xiβ.

Table 9 presents a statistical summary of the VaR calculations at the 95%

confidence level for both models.

Table 9: Value at Risk (VaR) Comparison at 95% Confidence Level

Model Min 1st Qu. Median Mean 3rd Qu. Max

Log-Normal VaR 1,221 3,568 4,987 6,241 7,543 31,872

Hybrid VaR 1,455 3,789 5,241 6,592 8,021 33,541

Average VaR Difference 350.62

Percentage Increase 5.63%

Note: All values in currency units. VaR calculated at 95% confidence level.

Figure 1 visually compares the VaR estimates from both models.
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Figure 1: Log-normal VaR and Hybrid VaR.
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Backtesting of the VaR

Backtesting of Value at Risk (VaR) is a validation process used to evaluate the accu-

racy and reliability of a VaR model by comparing its predicted risk estimates with

actual historical outcomes. It combines statistical rigor with regulatory standards

to maintain trust in financial risk systems, ultimately safeguarding institutions and

markets.

• Backtesting Purpose: Assess whether actual losses (exceptions) frequency and

pattern align with the model’s predictions.

The backtesting of VaR uses the Kupiec statistical test, which employs a likelihood

ratio to determine if the observed exception rate statistically deviates from the

expected rate. It uses two hypotheses:

• H0: The model is correct (5% exceedances are expected).

• H1: The model is incorrect.

Table 10 presents the backtesting results for both models.

Table 10: VaR Backtesting Results (95% Confidence Level)

Model Exceptions Expected LR Stat. P-Value Conclusion

Log-Normal 127 136 4.152 0.0416 Reject H0

Hybrid 131 136 0.846 0.3572 Fail to Reject H0

Note: Critical value for χ2(1) at 5% significance is 3.841. LR Stat. = Likelihood

Ratio Test Statistic.

From Table 10, the Log-Normal Model has an LR statistic of 4.15 and a p-value

of 0.0416, indicating statistically significant deviations from the expected number

of exceptions. This means the model underestimates or overestimates risk. At a

95% confidence level, the number of actual exceptions (losses exceeding VaR) is

inconsistent with theoretical expectations.

For the Hybrid Model, the LR statistic (0.85) and p-value (0.3572) suggest no

significant deviation from the expected exceptions. This result means that the

model’s exceptions align with the 95% confidence level (5% expected exceptions),

and it is statistically valid and suitable for risk assessment.

Figure 2 illustrates the Kupiec test results, confirming the statistical validity of

the hybrid VaR model.
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VaR Backtesting Results (95% Confidence)

Hybrid Model Log-Normal Model

LR = 0.85

p = 0.3572

ACCEPT

LR = 4.15

p = 0.0416

REJECT

Actual Exceptions: 131 (Hybrid), 127 (Log-Normal)
Expected Exceptions: 136

Figure 2: Kupiec test results.

6.3 A Stochastic Process Framework for Hybrid Model Interpreta-
tion

Having established the empirical superiority of the hybrid model over established

benchmarks. Our stochastic process framework builds upon and extends several

established lines of research in statistical learning and financial risk modeling. The

integration of parametric and nonparametric components has been explored in

semi-parametric statistics T.Hastie and R.Tibshirani (1993) [34], D.Ruppert et

al (2003) [41], while stochastic process interpretations of prediction errors have

roots in spatial statistics and Gaussian process regression in C.E.Rasmussen and

C.K.Williams (2006) [40]. However, our approach uniquely combines these elements

specifically for censored financial data.

Theoretical Foundations: Consistency, Markovian Structure, and Residual Dynamics

The theoretical foundation of our hybrid estimator draws inspiration from semi-

parametric efficiency theory in P.J.Bickel et al (1993) [25] and two-stage estimation

procedures in W.K.Newey (1994) [38]. The consistency results extend the clas-

sical MLE theory for censored data in J.F.Lawless (2003) [19], J.P.Klein and

M.L.Moeschberger (2003) [17] to hybrid settings. The Markovian interpretation of

the learning process shares conceptual similarities with hierarchical Bayesian models

in A.Gelman et al (2013) [32] and multi-stage estimation in econometrics with

J.M.Wooldridge (2010) [43], though our specific formulation for hybrid statistical-

ML models is novel.

Consistency We establish the theoretical foundations of the hybrid estimator by

analyzing its consistency properties under a rigorous statistical framework.

Let (Yi, Xi, δi)
n
i=1 be a sequence of i.i.d. observations where:

• Yi ∈ R+ is the outcome
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• Xi ∈ Rp are the covariates

• δi = I(Yi > Ci) is the indicator of left-censoring at threshold Ci

• Ỹi = max(Yi, Ci) is the observed value

We assume the true data-generating process satisfies:

log Yi = µ0(Xi) + εi, εi ∼ N (0, σ2),

with µ0(x) = E[log Yi | Xi = x], which may be nonlinear.

The parametric log-normal regression model is specified as:

log Yi ≈ µ(Xi;β) = β⊤Xi.

Given left-censoring, the log-likelihood is:

ℓ(β, σ) =

n∑
i=1

{
δi

[
− ln(Ỹiσ

√
2π)− (ln Ỹi − β⊤Xi)

2

2σ2

]

+ (1− δi) lnΦ

(
ln Ỹi − β⊤Xi

σ

)}
where Φ(·) is the standard normal CDF.

Let (β̂n, σ̂n) be the MLEs. Under standard regularity conditions:

• (A1): The parametric MLE (µ̂n(x)) is consistent for its projection µp(x)

• (A2): The nonparametric estimator (XGBoost) (f̂n(x)) is consistent for the

true residual function f0(x) = µ0(x)− µp(x)

• (A3): The data (Yi, Xi) are i.i.d.

We have:

µ̂n(x) = µ(x; β̂n)
p→ µP (x),

where µP (x) is the projection of µ0(x) into the parametric space:

µP (x) = arg min
b∈Rp

E
[
(µ0(Xi)− b⊤Xi)

2
]
.

We define the residuals:

ri = log Yi − µ̂n(Xi).

We then train a nonparametric model (XGBoost) to approximate the conditional

expectation of these residuals:

f̂n(x) = An ({(Xi, ri)}ni=1) ≈ E[ri | Xi = x].
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We assume:

f̂n(x)
p→ f0(x) = E[log Yi − µP (Xi) | Xi = x] = µ0(x)− µP (x), (8)

which is a standard assumption for consistent nonparametric regression.

The hybrid estimator is defined on the log scale as:

ĝn(x) = µ̂n(x) + f̂n(x).

From the consistency of µ̂n(x) and f̂n(x), and using Slutsky’s theorem, we obtain:

ĝn(x)
p→ µP (x) + f0(x) = µP (x) + (µ0(x)− µP (x)) = µ0(x).

Thus, the hybrid estimator is consistent for the conditional mean on the log scale:

ĝn(x)
p→ E[log Y | X = x].

We define the hybrid prediction on the original scale as:

Ŷ hyb
n (x) = exp(ĝn(x)).

Then, by the continuous mapping theorem:

Ŷ hyb
n (x)

p→ exp(µ0(x)) = median(Y | X = x),

because for log-normal distributions:

median(Y | X = x) = exp(E[log Y | X = x]).

Markovian Interpretation The hybrid prediction model can be viewed as a two-step

stochastic system:

X
MLE−−−→ µ̂MLE(X)

ML−−→ Ŷhyb(X),

where:

• µ̂MLE(X) is the parametric prediction from a left-censored log-normal model

• The ML layer models the residual ε(X) := Y − µ̂MLE(X)

This sequence satisfies the Markov property:

P(Ŷhyb(X) | µ̂MLE(X), X) = P(Ŷhyb(X) | µ̂MLE(X)),

meaning that once the intermediate state µ̂MLE(X) is known, the original covariates

X do not contribute further information for predicting Ŷhyb(X).
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Stochastic Residual Dynamics and Stationarity Analysis We assume that the

residuals follow a stochastic process of the form:

εt+1 = f(εt) + ηt, ηt ∼ N (0, σ2),

This defines a Markov chain {εt} with the following properties:

• Markovian: P(εt+1 | εt, εt−1, . . .) = P(εt+1 | εt)

• Stationary: the distribution of εt does not depend on t

• Ergodic: the time average of residuals converges to their expectation:

1

T

T∑
t=1

εt
a.s.−−→ E[ε]

These properties support the validity of residual modeling using machine learning,

ensuring convergence and generalization when the residual dynamics are stable.

Table 11: Stationarity Diagnostics for Residuals from Log-Normal Regression

Test Null Hypothesis Test Statistic p-value

ADF (Augmented Dickey-Fuller) Non-stationarity (unit root) −4.65 < 0.01

KPSS (Level Stationarity) Stationarity 0.15 > 0.1

As shown in Table 11, the Augmented Dickey-Fuller test rejects the null hypothesis

of a unit root, while the KPSS test fails to reject the null of stationarity. These

results collectively confirm that the residuals from the log-normal model can be

treated as stationary, supporting the assumption of ergodic dynamics in the machine

learning correction layer.

This comprehensive theoretical foundation justifies the hybrid model (log-normal

regression + XGBoost) under left-censored data, providing both statistical guaran-

tees and practical interpretability for financial risk management applications.

Unified Variance Decomposition Framework

Building upon established methodologies while introducing novel integrations, we

analyze prediction uncertainty through complementary theoretical and stochastic

perspectives. Our unified framework reveals the distinct contributions of parametric

and machine learning components while capturing complex residual structures.

The bootstrap approach for machine learning variance follows in B.Efron and

R.J.Tibshirai (1994) [29] and T.Hastie et al (2009) [35], while the Gaussian process

perspective extends spatial modeling literature in N.A.Cressie (1993) [28]. This

combined approach addresses limitations noted in J.Fan et al (2020) [30] for finan-

cial applications, providing comprehensive uncertainty quantification for hybrid

estimators.
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Theoretical Foundation The hybrid estimator is defined as:

ĝn(x) = µ̂n(x) + f̂n(x),

where:

• µ̂n(x) is the parametric component from left-censored log-normal regression

• f̂n(x) is the nonparametric correction from XGBoost applied to residuals

The hybrid prediction on the original scale is:

Ŷ hyb
n (x) = exp(ĝn(x)).

Classical Variance Decomposition Under asymptotic independence (justified via

cross-fitting), the total variance decomposes additively:

V[ĝn(x)] ≈ V[µ̂n(x)] + V[f̂n(x)].

• Parametric Component: µ̂n(x) = x⊤β̂n with

V[µ̂n(x)] = x⊤Σβx,

where Σβ is the covariance matrix from Fisher information.

• Machine Learning Component: The correction term is:

f̂n(x) ≈ E[log Yi − µ̂n(Xi) | Xi = x].

Its variance can be estimated by bootstrap:

(i) Compute residuals: ri = log Yi − µ̂n(Xi)

(ii) Generate B = 1000 bootstrap samples from {(Xi, ri)}ni=1

(iii) Train f̂
(b)
n on each sample and evaluate at x

(iv) Compute:

V̂[f̂n(x)] =
1

B − 1

B∑
b=1

(
f̂ (b)n (x)− f̄n(x)

)2
,

where f̄n(x) =
1
B

∑B
b=1 f̂

(b)
n (x)

Stochastic Process Extension To capture complex residual dynamics often present

in financial data, we extend the decomposition using Gaussian processes:

ε(x) ∼ GP(0,Σ(x, x′))

This leads to the stochastic representation:

Ŷhyb(x) = ŶMLE(x) + ε̂ML(x)



Paper 8: Stochastic Process Perspective for Financial Risk 181

The law of total variance provides an alternative decomposition:

Var[Ŷhyb(x)] = Var[E[Ŷhyb(x) | ŶMLE(x)]] + E[Var[Ŷhyb(x) | ŶMLE(x)]]

which simplifies to:

Var[Ŷhyb(x)] = Var[ŶMLE(x)] + Var[ε̂ML(x) | ŶMLE(x)]

Table 12: Comprehensive Variance Decomposition of Hybrid Predictions

Component Perspective Variance Interpretation

V[ĝn(x)] Combined 0.4882 Total prediction uncertainty

V[µ̂n(x)] Theoretical 0.3011 Structured variation (61.7%)

V[f̂n(x)] Theoretical 0.1869 ML correction (38.3%)

Var(ŶMLE) Stochastic 0.3011 Parametric model uncertainty

Var(ε̂ML) Stochastic 0.1869 Residual process variability

Uncertainty Quantification and Confidence Intervals The unified framework en-

ables rigorous uncertainty quantification. For the hybrid prediction on the original

scale:

V[Ŷ hyb
n (x)] ≈ (exp(ĝn(x)))

2 · V[ĝn(x)]

A 95% confidence interval is constructed as:[
exp

(
ĝn(x)− 1.96

√
V[ĝn(x)]

)
, exp

(
ĝn(x) + 1.96

√
V[ĝn(x)]

)]

Table 13: Variance Decomposition and 95% CI for Hybrid Prediction (Observation 50)

Quantity Description Value

ĝn(x50) Hybrid log-prediction 2.4987

Ŷ hyb
n (x50) Final prediction (USD) 1216.35

V[µ̂n(x50)] Parametric variance 0.021387

V[f̂n(x50)] ML correction variance 0.006442

V[ĝn(x50)] Total variance 0.027829

95% CI (USD) Prediction interval [974, 1518]

The decomposition reveals that approximately 61.7% of total variance stems from

the parametric component, while 38.3% arises from the machine learning correction.

This indicates:

• The log-normal regression captures the majority of structured signal
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• Significant nonlinear patterns (38.3%) require machine learning correction

• Both perspectives yield consistent variance estimates, validating the framework

• The stochastic approach provides functional uncertainty quantification across

the covariate space

While the classical decomposition offers algebraic tractability and independence

assumptions, the stochastic extension captures heteroscedasticity and spatial depen-

dencies. Together, they provide a principled balance between interpretability and

flexibility, enhancing the hybrid model’s reliability for financial risk applications.

The hybrid estimator’s ability to quantify uncertainty from both structured

and unstructured components represents a significant advancement over traditional

parametric approaches, offering transparent risk assessment while maintaining

competitive predictive performance.
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Figure 3: Residual plot as a stochastic process.

The relatively random scatter around zero, with no obvious trend or heteroscedas-

ticity, supports the assumption of stationarity used in our stochastic process mod-

elling.

Residual Dynamics via Autoregressive Stochastic Processes

The modeling of residuals as stochastic processes has precedents in time series

analysis in G.E.Box et al (2015) [26] and financial econometrics in R.S.Tsay (2010)

[42]. Our specific application of AR(1) and Ornstein-Uhlenbeck processes to hybrid

model residuals extends the residual analysis framework discussed in A.C.Harvey

(1990) [33] for structural time series models. The stationarity validation using
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ADF and KPSS tests follows established econometric practice in P.C.Phillips and

P.Perron (1988) [39].

We interpret the residuals {εi = Ŷ hyb
i − Ŷ MLE

i }ni=1 as a realization from an

autoregressive stochastic process.

Model Specification We define the residual correction process as an autoregressive

model of order 1 (AR(1)):

εi = ϕεi−1 + ηi, ηi
iid∼ N (0, σ2

η)

where:

• εi is the ith residual from the hybrid prediction

• ϕ is the autoregressive coefficient

• ηi is white noise innovation term

This model captures local dependency structures in the residuals, which may

arise from omitted nonlinearities, correlated features, or the sequential learning

mechanism of XGBoost.

Estimation and Stationarity Let ε = (ε1, . . . , εn)
⊤ be the residual vector. The

likelihood function under the AR(1) process is:

ℓ(ϕ, σ2
η) = −

n

2
log(2π)− n

2
log(σ2

η)−
1

2σ2
η

n∑
i=2

(εi − ϕεi−1)
2

The process is weakly stationary if |ϕ| < 1. This assumption implies that residual

dynamics are bounded over iterations and the hybrid model does not diverge in

repeated learning phases.

Variance Contribution Given the AR(1) structure, the residual variance becomes:

Var(ε) =
σ2
η

1− ϕ2

This allows for a refined decomposition of hybrid variance:

Var(Ŷ hyb) = Var(Ŷ MLE)︸ ︷︷ ︸
Parametric model

+
σ2
η

1− ϕ2︸ ︷︷ ︸
Autoregressive ML correction
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Application to dataCar We implement this residual dynamics analysis on the

dataCar dataset used throughout this study. After fitting the hybrid model and

computing residuals, we fit an AR(1) model under R programming language to

obtain the following results:

• Estimated ϕ̂ ≈ 0.52 indicating moderate residual autocorrelation

• σ̂η ≈ 1.97 giving total residual variance ≈ 5.73

• Proportion of hybrid variance explained by residual autocorrelation: ≈ 43.5%

This modeling choice provides a refined understanding of how machine learning

corrections evolve and affect prediction uncertainty. It also offers a basis for

forecasting future corrections and adapting regularization dynamically in sequential

updates of the hybrid model.

Figure 4: AR(1) and ACF of Hybrid Residual model.

Residual Dynamics via Diffusion Processes

In this section, we explore a continuous-time stochastic representation of the hybrid

residuals using diffusion processes, specifically the Ornstein-Uhlenbeck (OU) process.

This approach allows for a richer understanding of the temporal evolution and

variability of residual errors in the hybrid log-normal + XGBoost model.

Ornstein-Uhlenbeck Process for Residuals Let ε(t) represent the hybrid prediction

residual at pseudo-time t. We model ε(t) as an Ornstein-Uhlenbeck (OU) process:

dε(t) = −θε(t)dt+ σdW (t),

where:

• θ > 0 is the mean-reversion rate

• σ > 0 is the volatility coefficient
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• W (t) is a standard Brownian motion

The solution to this SDE is a Gaussian process with mean zero (if initialized at

zero) and the following stationary distribution:

ε(t) ∼ N
(
0,
σ2

2θ

)
.

This formulation reflects that residuals fluctuate randomly but revert to zero

over time with controllable variability.

Estimation Strategy We discretize the process by approximating ε(t+ 1)− ε(t) ≈
−θε(t) + ηt, where ηt ∼ N (0, σ2). This gives a first-order autoregressive model:

εt+1 = (1− θ)εt + ηt.

We fit this AR(1) model to the vector of hybrid residuals {Ŷhyb(xi) − Yi} to

estimate θ and σ.

The results are obtained under R programming language:

• Estimated AR coefficient (ϕ = 1− θ) close to 0.6-0.8

• Estimated innovation variance σ2, from which θ = 1−ϕ and Var(ε) = σ2/(2θ)

can be computed

The fitted AR(1) model approximates the OU dynamics and supports the stochas-

tic nature of hybrid residuals. If θ is significantly positive, it confirms mean-reversion

and bounded variance, reinforcing that the hybrid prediction error behaves as a

stationary diffusion process.

This interpretation allows theoretical uncertainty quantification and enhances

the temporal reliability of hybrid predictions under stochastic fluctuations.

6.4 Geometric Interpretation of Hybrid Learning via Stochastic
Metrics

In this section, we provide a geometric framework to interpret the hybrid learning

model, which combines a log-normal regression with an XGBoost correction layer.

This framework relies on concepts from differential geometry and information

geometry, where the parameter space is viewed as a Riemannian manifold with a

metric induced by the Fisher Information matrix or empirical uncertainty measures.

By treating hybrid prediction as a mapping on a stochastic Riemannian manifold,

we gain interpretable insights into the nature of prediction stability, correction

uncertainty, and sensitivity to inputs. This geometric perspective provides a novel

diagnostic and regularization tool for hybrid statistical-ML frameworks.
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Stochastic Manifold Formulation Let Ŷhyb(x) denote the hybrid predictor composed

of two mappings:

Ŷhyb(x) = fMLE(x) + fML(x),

where fMLE(x) = exp(X⊤β̂) corresponds to the parametric log-normal component,

and fML(x) is the residual correction learned via XGBoost.

We consider the prediction function as a mapping

f : X → Y, x 7→ Ŷ (x),

endowed with a stochastic metric gij(x) representing local uncertainty around

prediction Ŷ (x). In the parametric case, this can be approximated using the Fisher

Information:

gMLE
ij (x) = E

[
∂ log p(y | x)

∂θi

∂ log p(y | x)
∂θj

]
.

For the hybrid model, the composite metric becomes:

ghybij (x) = gMLE
ij (x) + Var (fML(x)) ,

capturing both structured curvature from the statistical model and data-adaptive

curvature from the machine learning layer.

Geodesic Paths and Predictive Stability A geodesic γ(t) in input space represents a

smooth transformation of covariates from x0 to x1. The length of this transformation

under the stochastic metric is:

L(γ) =
∫ 1

0

√
γ̇(t)⊤g(γ(t))γ̇(t)dt,

which measures the sensitivity of the hybrid prediction to local changes in x.

Regions with large metric curvature indicate instability or overfitting, often

caused by highly nonlinear ML corrections and low variance implies steep metric

space with stable predictions. Geodesic deviation can be studied to identify robust

vs. sensitive prediction regimes.

Table 14 summarizes the estimated local hybrid metrics for selected observations

in the dataset. These metrics quantify the predictive uncertainty introduced by the

XGBoost correction in the hybrid log-normal + XGBoost model.

These values allow for the following interpretation:

• Lower values (e.g., 0.0128 at observation 30) indicate regions where the

parametric log-normal model performs well, and the XGBoost correction

introduces relatively little variance. This suggests greater model stability.

• Higher values (e.g., 0.0414 at observation 33) highlight data points where the

machine learning correction plays a larger role, compensating for parametric

model limitations. These regions experience greater local predictive variability.
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Table 14: Estimated Local Predictive Uncertainty Introduced by Machine Learning Correction

Observation Estimated Local Hybrid Metric

1 0.0171

5 0.0354

30 0.0128

33 0.0414

50 0.0153

• The variation across observations reflects heteroskedastic behavior in the

residual structure, which is now partially captured through a data-driven

correction mechanism.

In summary, the local hybrid metric provides a diagnostic tool to understand

how uncertainty is spatially distributed in the feature space and to assess the hybrid

model’s behavior across different regions of the data.

7 Results discussion

The proposed hybrid modeling framework, which combines the log-normal regression

model with XGBoost machine learning correction, provides substantial improvements

in predictive performance under left-censored data. Empirical results on the dataCar

dataset show that the hybrid model consistently outperforms the standalone log-

normal model in terms of prediction accuracy, residual behavior, and uncertainty

quantification.

Importantly, the hybrid approach achieves a 33.7% reduction in mean squared

error (MSE) compared to the log-normal model alone, showcasing its superior pre-

dictive accuracy. In risk management applications, Value at Risk (VaR) calculations

using the hybrid model indicate a 5.6% higher average risk exposure, capturing

more tail risk than the parametric counterpart. Furthermore, backtesting with

the Kupiec test confirms the statistical validity of the hybrid VaR model, with

exception frequencies aligning well with theoretical expectations. Overall, these

results underscore the hybrid model’s robustness and its potential to enhance both

actuarial reserving and financial risk assessments in settings with left-censored data.

A detailed variance decomposition revealed that the machine learning correction

accounts for a significant portion of the total prediction variance, complementing

the structured component of the log-normal MLE. Moreover, the stochastic process

framework including the residual dynamics modeled via autoregressive processes

and stochastic differential equations provided further insights into the underlying

temporal and geometric behavior of prediction errors.

The use of localized hybrid metrics and geodesic curvature visualization has

shown how regions of the feature space contribute differently to uncertainty, sug-
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gesting potential heteroskedasticity and nonstationary dynamics. For example,

high-curvature areas were associated with greater residual corrections and increased

uncertainty, reflecting the necessity of nonparametric learning adjustments in such

regimes.

Diagnostic tests also indicated mild stationarity in residual corrections post-

hybridization, confirming the stabilization role of the machine learning layer. These

findings underline the theoretical robustness and practical flexibility of the hybrid

approach in actuarial and financial modeling scenarios.

conclusion

This study introduced a novel hybrid modeling framework that integrates para-

metric log-normal regression with nonparametric XGBoost correction to handle

left-censored insurance claim data. Beyond empirical performance, the hybrid

estimator is rigorously interpreted through the lens of stochastic processes, variance

decomposition, and control theory.

The theoretical developments included a variance decomposition via Gaussian

processes, residual dynamics modeled as autoregressive processes and SDEs, and a

geometric interpretation based on stochastic metrics. These perspectives enrich the

understanding of hybrid estimators and provide a unified probabilistic view of the

learning dynamics.

In addition, the geometric curvature analysis offer new tools for predictive

uncertainty quantification. The results demonstrated that hybrid models not only

enhance predictive power but also offer interpretable and quantifiable reliability

measures in complex actuarial environments.

Future work could involve applying the hybrid methodology to other types of

censoring (e.g., interval-censoring), extending the stochastic interpretation to deep

learning models, and exploring the use of reinforcement learning to control residual

dynamics adaptively.
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