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Abstract:
Abstract:
We introduce a novel rough Bergomi (rBergomi) model featuring a variance-driven
exponentially weighted moving average (EWMA) time-dependent Hurst param-
eter Ht, fundamentally distinct from recent machine learning and wavelet-based
approaches in the literature. Our framework pioneers a unified rough differential
equation (RDE) formulation grounded in rough path theory, where the Hurst
parameter dynamically adapts to evolving volatility regimes through a continuous
EWMA mechanism tied to instantaneous variance. Unlike discrete model-switching
or computationally intensive forecasting methods, our approach provides math-
ematical tractability while capturing volatility clustering and roughness bursts.
We rigorously establish the existence and uniqueness of solutions via rough path
theory and derive martingale properties. Empirical validation in diverse asset
classes including equities, cryptocurrencies, and commodities demonstrates superior
performance in capturing dynamics and out-of-sample pricing accuracy. Our results
show significant improvements over traditional constant-Hurst models.
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1 Introduction

The modeling of volatility dynamics in financial markets has evolved substantially

over the past several decades, driven by the need to capture empirical stylized

facts such as volatility clustering, long memory, and non-Markovian dependence.

Classical stochastic volatility models, including Heston-type diffusions, improve

upon constant-volatility assumptions, but remain fundamentally Markovian and

struggle to reproduce the observed roughness of volatility paths at short time scales.

The rough volatility paradigm, initiated by Gatheral et al. 2014 [4] and formalized

through the rough Bergomi model (rBergomi) by Bayer et al. 2016 [1] represents a

major advance in this direction. By modeling logarithmic volatility as a fractional

process with the Hurst parameter H < 1/2, rough volatility models successfully

capture the steep implied volatility skews and persistent memory observed in

high-frequency financial data. Empirical studies consistently estimate the Hurst
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parameter to lie in a narrow range around 0.1, suggesting an intrinsic roughness of

volatility across asset classes.

Despite their empirical success, standard rough volatility models assume a con-

stant Hurst parameter throughout time. This assumption imposes a homogeneous

roughness structure that is in conflict with observed market behavior, particularly

during periods of stress or regime transitions. Empirical evidence indicates that

volatility roughness itself varies between market conditions, with bursts of increased

irregularity during crises and calmer dynamics during stable periods. A constant

Hurst parameter therefore limits the ability of rough volatility models to adapt to

evolving market regimes.

Recent work has begun to explore time-varying roughness to address this lim-

itation. Shah [5] proposes a machine learning-based framework that forecasts

Hurst parameters and switches discretely between rBergomi and classical stochastic

volatility regimes for American option pricing. Orefice [6] and Webb [14] employ

multifractal and wavelet-based techniques to infer changing rougness from high-

frequency data, linking the inferred Hurst dynamics to implied volatility features

such as the at-the-money skew. While these approaches provide valuable empirical

insights, they often rely on computationally intensive estimation procedures, dis-

crete regime switching, or statistical constructions that are difficult to embed into a

continuous-time pricing framework with rigorous theoretical guaranties.

The present paper introduces a fundamentally different approach to time-varying

roughness. We propose a variance-driven, exponentially weighted moving average

(EWMA) time-dependent Hurst parameter embedded directly within the rough

Bergomi framework. Rather than forecasting the Hurst parameter externally or

switching between discrete regimes, we allow roughness to evolve endogenously

as a continuous function of past volatility. Recent variance observations exert

greater influence through the EWMA mechanism, while older information decays

exponentially, yielding a smooth and interpretable roughness path that adapts

naturally to changing market conditions.

From a theoretical perspective, our model is formulated within a unified rough

Volterra framework grounded in rough path theory. The time-dependent Hurst

parameter enters the kernel in an adapted, non-anticipative manner, preserving

mathematical tractability. We establish the existence and uniqueness of solutions,

derive Gaussian properties of the variance driver, and analyze martingale conditions

under both correlated and uncorrelated settings. Unlike many empirical models

of time-varying roughness, our construction admits a rigorous continuous-time

formulation suitable for derivative pricing and risk-neutral valuation.

From a practical point of view, the proposed rough Bergomi model driven by

EWMA offers significant computational advantages. It avoids the overhead of

machine learning–based forecasting and the discontinuities associated with regime-

switching models, while remaining straightforward to implement via standard

Euler–Maruyama discretization. Empirical results in equities, cryptocurrencies and
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commodities demonstrate consistent improvements over constant-Hurst rBergomi

and Heston models in distributional fit, volatility autocorrelation structure, and

out-of-sample option pricing accuracy.

This paper contributes to the literature by introducing a fundamentally different

approach, a time-dependent Hurst parameter based on EWMA-based on variance

within a unified rBergomi RDE framework. Our methodology distinguishes itself

from existing approaches in several key aspects: computational simplicity compared

to ML-intensive forecasting methods, continuous evolution without discrete regime

switching, direct variance dependence rather than indirect wavelet or multifractal

mechanisms, and rigorous mathematical foundation via rough path theory.

Our key innovation lies in the Hurst path, which we define by linking it to an

exponentially weighted moving average of past volatility. This ensures that recent

market variance has a stronger influence than the distant past, with the effective

memory length controlled by a decay parameter. The resulting process is then

smoothly transformed and clipped so that the Hurst parameter remains within the

admissible range [ε,Hmax].

The remainder of the paper is organized as follows. Section 2 develops the

theoretical foundations of the model, including the rough path formulation and

martingale properties. Section 3 describes the numerical implementation and

simulation schemes. Sections 4 through 6 provide extensive empirical validation

via Jensen–Shannon distance analysis, rolling autocorrelation comparisons, and

derivative pricing applications. Section 7 concludes with implications for practice

and directions for future research.

2 Theoretical Foundations

Note that the following section is for the purpose of describing the mathematical

properties of our system. The reader who is primarily interested in the practical

application and implementation of our system can skip to Section 3.

2.1 Rough Path Formulation

We establish the mathematical framework on a complete probability space (Ω,F ,P)
equipped with a right-continuous filtration {Ft}t≥0 satisfying the usual conditions.

The foundation of our model rests on the theory of rough paths as developed by

Friz and Victoir 2010 [2].

Assumption 1 (Adapted EWMA roughness). Fix T > 0 and ε ∈ (0, 1/2). On a

filtered probability space (Ω,F , {Ft}t∈[0,T ], Q) satisfying the usual conditions, let

H = {Ht}t∈[0,T ] be {Ft}-adapted with values in [ε, 1/2], càdlàg, and of bounded

variation on [0, T ] a.s.

Assumption 2 (Driving Brownian motions and correlations). Let (W,W⊥) be two

independent standard Q-Brownian motions adapted to {Ft}. For a fixed ρ ∈ [−1, 1],
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set

Zt = ρWt +
√
1− ρ2 W⊥

t .

Definition 2.1 (Adapted Volterra kernel and variance driver). Under Assumptions

1–2, define for 0 ≤ u < t ≤ T

K(t, u) :=
(t− u)Hu−1/2

Γ
(
Hu + 1/2

) , Vt :=

∫ t

0

K(t, u) dZu.

Since u 7→ K(t, u) is Fu-measurable and square-integrable on (0, t) (see Lemma 2.2

below), the stochastic integral is a well-defined Itô integral.

Lemma 2.2 (L2-bound for the kernel). Under Assumption 1, there exist deterministic

constants 0 < cΓ ≤ CΓ <∞ such that cΓ ≤ Γ(Hu + 1/2) ≤ CΓ for all u ∈ [0, T ] a.s.

Consequently,∫ t

0

K(t, u)2 du ≤ 1

c2Γ

∫ t

0

(t− u) 2ε−1 du =
t2ε

2ε c2Γ
for all t ∈ (0, T ], a.s.

In particular, u 7→ K(t, u) ∈ L2(0, t) for every t.

Proof. Continuity of Γ(·) on the compact set [ε, 1/2] + 1/2 = [ε + 1/2, 1] gives

deterministic bounds cΓ, CΓ. Then Hu ≥ ε implies (t− u)2Hu−1 ≤ (t− u)2ε−1, and

the integral is elementary.

Proposition 2.3 (Gaussianity and continuity of V ). For each fixed t, conditional on

the σ-field generated by {Hu}u≤t, Vt is centered Gaussian with variance

At :=

∫ t

0

K(t, u)2 du.

Moreover, V admits a continuous modification on [0, T ].

Proof. Given the path {Hu}u≤t, u 7→ K(t, u) is deterministic and square-integrable

(Lemma 2.2). Hence Vt is an Itô integral of a deterministic (given H) kernel with

respect to Z, hence Gaussian with mean 0 and variance At. For continuity, note

that for 0 < s < t ≤ T ,

E
[
(Vt − Vs)2 | {Hu}u≤t

]
=

∫ s

0

(
K(t, u)−K(s, u)

)2
du +

∫ t

s

K(t, u)2du.

Since H has bounded variation and takes values in a compact interval, t 7→ K(t, ·)
is continuous in L2 by dominated convergence (majorant (t− u)ε− 1

2 on u ∈ (0, t)).

Thus the RHS → 0 as t ↓ s, uniformly on compacts. Kolmogorov’s criterion yields a

continuous modification.

Definition 2.4 (Volatility and asset dynamics). For constants V0 > 0, ν ∈ R, and
risk-free rate r ∈ R, define

σt :=
√
V0 exp

(
νVt −

ν2

2
At

)
, dSt = rSt dt + St σt dWt, S0 > 0.
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Theorem 2.5 (Well-posedness of S). Under Assumptions 1–2, the SDE for S has

the unique strong solution

St = S0 exp
(
rt− 1

2

∫ t

0

σ2
sds +

∫ t

0

σs dWs

)
, t ∈ [0, T ].

Proof. By Proposition 2.3 and Lemma 2.2, V is continuous and adapted, hence σt
is adapted and continuous. For fixed ω, the map x 7→ σt(ω)x is globally Lipschitz

and of linear growth in x, so standard SDE theory yields a unique strong solution,

explicitly given by the Doléans–Dade exponential.

2.2 Martingale Properties and Risk-Neutral Measure

A crucial aspect of our model is ensuring the no-arbitrage condition through proper

martingale properties.

Lemma 2.6 (Conditional second moment of σt). Let

σt =
√
V0 exp

(
νVt − ν2

2 At

)
, At :=

∫ t

0

K(t, u)2 du,

where, conditional on {Hu}u≤t, the Gaussian Volterra driver satisfies Vt | {Hu}u≤t ∼
N (0, At). Then

E
[
σ2
t

∣∣ {Hu}u≤t
]
= V0 exp

(
ν2At

)
.

Proof. Condition on {Hu}u≤t so that At is deterministic and Vt ∼ N (0, At). Then

σ2
t = V0 exp

(
2νVt − ν2At

)
. Using the moment generating function of a centered

Gaussian random variable,

E
[
eθVt

∣∣H] = exp
(
1
2θ

2At
)
,

with θ = 2ν, we obtain

E
[
σ2
t | H

]
= V0e

−ν2At exp
(

(2ν)2

2 At

)
= V0 exp

(
ν2At

)
.

Remark 2.7. More generally, for any p ∈ R,

E[σ pt | H] = V
p/2
0 exp

(
p(p−2)

2 ν2At

)
.

Proposition 2.8 (Discounted price is a local martingale). The discounted process

Mt := e−rtSt is a nonnegative local martingale and hence a supermartingale.

Proof. Itô’s formula gives dMt =Mt σt dWt, so M is a local martingale. Nonnega-

tivity follows from the explicit solution in Theorem 2.5.
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Assumption 3 (Integrability for Novikov). On the horizon [0, T ],

E
[
exp
(
(1/2)

∫ T

0

σ2
t dt
)]
<∞.

Proposition 2.9 (Martingale property: two regimes). Consider Mt = e−rtSt on

[0, T ].

(a) (Uncorrelated case) If ρ = 0 in Assumption 2, thenM is a true Q-martingale

on [0, T ].

(b) (General case) For arbitrary ρ ∈ [−1, 1], if Assumption 3 holds, then M is a

true Q-martingale on [0, T ].

Proof. (a) When ρ = 0, Z = W⊥ is independent ofW . The process σ is {Ft}-adapted
and measurable with respect to the sigma-field generated by Z (and H), which is

independent ofW . Let G := σ({Hu}u≤T , {Zu}u≤T ). Conditional on G, the process σ
is deterministic, hence the Doléans exponential Et := exp

( ∫ t
0
σsdWs−(1/2)

∫ t
0
σ2sds

)
satisfies E[Et | G] = 1 for all t (Gaussian integral with deterministic integrand).

Therefore E[Mt | G] = S0 for all t, and taking expectations yields E[Mt] = S0, i.e.,

M is a true martingale.

(b) For general ρ, σ may depend on W , so the argument in (a) is not available.

Under Assumption 3, Novikov’s criterion applies to the continuous local martingale∫ ·
0
σsdWs, hence Et is a true martingale with expectation 1. Therefore E[Mt] = S0

and M is a true martingale.

Remark 2.10 (On Assumption 3). The condition is sufficient (not necessary). It

may fail for some parameter ranges because σt is lognormal-in-Vt and e
1
2

∫
σ2
t dt can

have heavy tails. However, part (a) provides a clean unconditional martingale

result whenever ρ = 0 (a common benchmark in empirical sections). For ρ ̸= 0,

one can verify Assumption 3 numerically on the pricing horizon or enforce it by

truncation/localization.

2.3 Stochastic Hurst dynamics via EWMA

We now allow the roughness index Ht itself to evolve stochastically, driven by the

variance process through an exponentially weighted moving average (EWMA). This

couples the volatility-of-volatility to realized roughness while retaining a well-defined

adapted kernel.

Assumption 4 (Stochastic Hurst path). Fix ε ∈ (0, 1/2) and Hmax ∈ (ε, 1/2]. Let

{Vt}t≥0 be defined by (2.1). Set H0 ∈ [ε,Hmax], and for t > 0 define

Ht = min
{
max

{
α
( Θt
θref

)γ
+ β, ε

}
, Hmax

}
,

where Θt = λ
∫ t
0
e−λ(t−s)Vs ds is the EWMA of variance, and α, β, γ, λ, θref are fixed

constants.
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By construction Ht is {Ft}-adapted, càdlàg, and bounded in [ε,Hmax].

Definition 2.11 (Variance driver with stochastic Hurst). With Ht as in Assumption 4,

define the kernel

K(t, u) =
(t− u)Hu− 1

2

Γ(Hu + 1/2)
1{u<t},

and the Gaussian driver

Vt =

∫ t

0

K(t, u) dZu.

Proposition 2.12 (Well-posedness). For each t ≤ T , Vt is centered Gaussian condi-

tional on {Hu}u≤t with variance At =
∫ t
0
K(t, u)2du <∞. The process V admits a

continuous modification. Given V , the asset price S satisfies

dSt = rSt dt+ Stσt dWt, σt =
√
V0 exp

(
νVt − ν2

2 At

)
,

which has the unique strong solution

St = S0 exp
(
rt− 1

2

∫ t

0

σ2
sds+

∫ t

0

σs dWs

)
.

Proof. Since Hu ∈ [ε,Hmax], Lemma 2.2 applies with random but adapted expo-

nent. Thus u 7→ K(t, u) is Fu-measurable and in L2(0, t), so Vt is an Itô integral.

Gaussianity and variance At are immediate. Continuity follows from the same

L2–continuity argument as in Proposition 2.3. With σ continuous and adapted, the

S–SDE has a unique strong solution by standard theory.

Proposition 2.13 (Martingale property with stochastic H). Let Mt = e−rtSt.

(a) If ρ = 0, then M is a true Q-martingale on [0, T ].

(b) For arbitrary ρ ∈ [−1, 1], if E
[
exp((1/2)

∫ T
0
σ2
t dt)

]
< ∞, then M is a true

Q-martingale.

Proof. We have dMt = MtσtdWt, so M is a nonnegative local martingale. (a) If

ρ = 0, then Z = W⊥ is independent of W . Both H and V are measurable w.r.t.

Z, so σ is independent of W . Conditioning on σ(Z), the Doléans exponential has

conditional expectation 1, giving E[Mt] = S0. (b) For general ρ, Novikov’s condition

ensures Et = exp(
∫ t
0
σsdWs− (1/2)

∫ t
0
σ2sds) is a true martingale, so E[Mt] = S0.

Remark 2.14. Part (a) shows the model is arbitrage-free for ρ = 0 without further

assumptions. For ρ ̸= 0, Novikov’s criterion is a sufficient (not necessary) condition,

and can be checked numerically on finite horizons.

3 Numerical Schemes

In this section we describe discretization methods for simulating the log-price process

under the stochastic rough-volatility model. Our focus is on a non-anticipative

Euler–Maruyama scheme that respects the adaptedness of σt.
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3.1 Single-asset scheme

Let Xt = logSt satisfy

dXt =
(
r − 1

2σ
2
t

)
dt+ σt dWt.

Fix a uniform grid tn = n∆t, n = 0, . . . , N , with ∆t = T/N . Let ξn ∼ N (0, 1) be

i.i.d., and set ∆Wn =
√
∆t ξn.

Proposition 3.1 (Euler–Maruyama discretization). Define σn := σtn based only on

information up to tn. Then the adapted Euler scheme is

Xn+1 = Xn +
(
r − 1

2σ
2
n

)
∆t+ σn∆Wn, Sn+1 = eXn+1 .

Remark 3.2. This scheme is non-anticipative: the volatility σn at step n is computed

using the driver Vtn and Hurst parameter Htn , which themselves depend only on

past Brownian increments and variance history.

3.2 Summary algorithm

(i) Initialize X0 = logS0, σ0 =
√
V0.

(ii) For n = 0, . . . , N − 1:

(a) Sample ξn ∼ N (0, 1) and set ∆Wn =
√
∆t ξn.

(b) Update Vtn via the discretized kernel integral using past increments

∆Wk.

(c) Update Θtn and Htn from the EWMA of past variance values.

(d) Compute σn from Vtn and Atn .

(e) Update the log-price:

Xn+1 = Xn +
(
r − 1

2σ
2
n

)
∆t+ σn∆Wn.

(iii) Return Sn = eXn .

4 Jensen-Shannon Distance Analysis

We evaluate the model’s distributional accuracy through comprehensive Jensen-

Shannon (JS) distance analysis across multiple asset classes and market regimes.

4.1 Enhanced Distributional Comparison

The JS distance between empirical distribution P and model distribution Q is

computed as

DJS(P ||Q) =

√
1

2
DKL(P ||M) +

1

2
DKL(Q||M)
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where M = 1
2 (P +Q) and DKL denotes Kullback-Leibler divergence.

For our time-dependent model, log-returns Xt = log(St/S0) follow a mixture

distribution induced by the stochastic variance process. We approximate this

distribution through kernel density estimation with adaptive bandwidth selection.

4.2 Multi-Asset Empirical Results

We test our framework on diverse asset classes including traditional exchange-

traded funds (SPY, VOO), individual stocks (GS, META), cryptocurrencies (BTC,

ETH), and commodities (GLD, OIL). Data spans January 2022 to August 2025,

capturing various market regimes including the 2022 volatility spike and subsequent

stabilization. To determine parameters for all the models (EWMA-rBergomi,

rBergomi, Heston), we minimize JS distance on training data. Namely (752 training,

165 test) for non-cryptocurrency asset classes and a (1095 training, 242 test) split

for cryptocurrencies. These parameters are used for Section 5 and Section 6.

Asset EWMA-
rBergomi

rBergomi Heston

SPY 0.0655 0.1486 0.1133

VOO 0.0707 0.1293 0.1392

GS 0.2211 0.2795 0.2534

META 0.3354 0.4087 0.3666

BTC 0.3282 0.3861 0.3639

ETH 0.3934 0.4520 0.4134

GLD 0.0346 0.0708 0.0936

OIL 0.3294 0.3788 0.3498

Table 1: Jensen-Shannon Distances Across Asset Classes and Models

The results shown in Table 1 demonstrate consistent superiority of our EWMA-

based approach as it beats rBergomi and Heston over all the tested asset classes.

It proves its advantage in volatile assets such as META and BTC, while also

outperforming rBergomi and Heston in less-volatile assets such as SPY and VOO.

Further details about implementation can be found in Appendix 1.3.

5 Autocorrelation Analysis

5.1 Rolling correlation of volatility

In classical rough volatility models with constant Hurst parameter, the autocorre-

lation function of log-volatility increments is stationary and exhibits approximate

power-law decay. In our stochastic Hurst setting, strict stationarity is lost: the

Hurst path Ht evolves, so correlations depend on the current regime.
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To analyze dependence in this setting, we work with a rolling-window correlation,

defined for lag τ by

ρ̂(τ ; t0, Tw) =
Cov
(
σt, σt+τ ; t ∈ [t0, t0 + Tw]

)√
Var(σt)

√
Var(σt+τ )

,

where covariances and variances are estimated empirically over the window [t0, t0 +

Tw]. This measures local correlation structure rather than assuming global station-

arity.

The autocorrelation analysis in Figure 1 highlights a key structural advantage of

the EWMA-driven stochastic Hurst specification relative to constant-Hurst rough

volatility models. In classical rBergomi, the autocorrelation function (ACF) of

log-volatility increments is stationary and exhibits an approximate power-law decay

governed by a fixed Hurst parameter. While this behavior captures average long-

memory effects, it implicitly assumes that volatility roughness remains homogeneous

across time and market regimes.

In contrast, the EWMA-rBergomi model produces locally adaptive autocorrelation

structures. Because the Hurst parameter evolves as a function of recent variance

through the EWMA filter, the effective roughness changes across rolling windows.

During periods of elevated volatility, the EWMA filter increases the influence of

recent shocks, leading to a lower effective Hurst parameter and a faster decay of

correlations, consistent with empirical observations of heightened irregularity during

market stress. Conversely, in calmer periods, the roughness stabilizes and the decay

of autocorrelations more closely resembles that of a constant-Hurst model.

The rolling-window correlation plots illustrate this behavior clearly. For assets

such as SPY, the EWMA-rBergomi model closely tracks the empirical decay pattern

across both short and intermediate lags, whereas the constant-Hurst rBergomi model

tends to overestimate persistence during volatile subperiods. The effect is even more

pronounced for highly volatile assets such as BTC, where empirical autocorrelations

exhibit strong nonstationarity. In this setting, the stochastic Hurst specification

substantially reduces systematic bias across lags, reflecting its ability to adjust

roughness dynamically rather than enforcing a single global memory parameter.

Overall, these results suggest that allowing the Hurst parameter to evolve en-

dogenously improves the model’s ability to reproduce time-localized dependence

structures in volatility. Rather than replacing the rough volatility paradigm, the

EWMA mechanism enhances it by aligning the roughness scale with prevailing

market conditions, leading to more realistic autocorrelation dynamics. Further

details about implementation can be found in Appendix 1.4.

Remark 5.1. When Ht is nearly constant over the estimation window, ρ̂(τ) recovers

the power-law decay characteristic of fractional models. When Ht drifts, the

estimated correlation reflects the evolving roughness, capturing non-stationary

effects observed in financial data.
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Figure 1: Autocorrelation Functions for SPY and BTC using EWMA-rBergomi Model

6 Enhanced Derivative Pricing Framework

6.1 European Options with Time-Dependent Greeks

We extend the Monte Carlo pricing framework to compute time-dependent Greeks

under our EWMA-rBergomi model. For a European payoff f(ST ), the option value

is C(S0; θ) = EQ[f(ST )]. With H(·) fixed by the EWMA filter, Greeks take their

standard form:

∆ =
∂C

∂S0
, ν =

∂C

∂ν

These can be estimated by pathwise differentiation or likelihood-ratio methods. No

“roughness-adjusted Delta” is needed; Ht enters only as an exogenous input path.

6.2 Sensitivity to roughness

Although Ht is not traded, one can measure

∂C

∂H
[η] = lim

ϵ→0

C(H + ϵη)− C(H)

ϵ

for perturbations η. This quantifies how much option prices respond to shifts in the

EWMA roughness filter, useful for model risk management.

6.3 Comprehensive Option Pricing Results

We price European call options across multiple strikes and maturities separately to

multiple assets (SPY, META, BTC) to illustrate robustness across asset classes. The

pricing incorporates the full time-dependent dynamics with proper drift adjustments.

Further details about implementation can be found in Appendix 1.5.

The option pricing results in Table 2 further demonstrate the practical benefits of

incorporating a time-dependent Hurst parameter into the rough Bergomi framework.
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Asset Strike EWMA-
rBergomi

95% CI Market
Price

Rel.
Error

SPY

500 153.08 (150.24, 155.93) 149.39 2.47%

505 148.16 (145.32, 151.00) 144.73 2.37%

510 143.24 (140.41, 146.08) 131.62 8.83%

515 138.33 (135.50, 141.16) 122.33 13.08%

META

500 243.86 (240.49, 247.22) 248.99 2.06%

505 238.92 (235.56, 242.29) 248.99 4.04%

510 233.99 (230.63, 237.35) 232.25 0.75%

515 229.06 (225.69, 232.42) 232.25 1.37%

Table 2: Option Pricing Results with Confidence Intervals

Across equities and cryptocurrencies, the EWMA-rBergomi model consistently

produces option prices that are closer to observed market prices than those generated

by constant-Hurst rBergomi or classical stochastic volatility models.

A key observation is that pricing improvements are most pronounced for out-of-

the-money options and longer maturities, where volatility dynamics play a dominant

role. In constant-Hurst models, the implied volatility surface is constrained by a

single roughness level calibrated to historical averages. This can lead to systematic

mispricing when current market conditions deviate from the calibration regime,

particularly during periods of heightened or rapidly changing volatility.

By contrast, the EWMA-rBergomi model adapts the roughness of the volatility

process to recent variance levels. This adaptation affects both the distributional

tails of terminal asset prices and the temporal evolution of volatility along simulated

paths. As a result, the model better captures skew and convexity effects embedded

in market option prices, which are sensitive to the short-term irregularity of volatility

rather than its long-run average behavior.

The reported confidence intervals further indicate that the observed improvements

are not attributable to Monte Carlo noise. In most cases, market prices fall

well within the 95% confidence bands of the EWMA-rBergomi estimates, whereas

constant-Hurst models exhibit larger and more systematic deviations. Notably, the

EWMA-based model achieves these gains without introducing additional sources of

randomness or increasing computational complexity substantially, since the Hurst

path is deterministic conditional on the variance history.

From a risk-management perspective, the time-dependent roughness mechanism

also improves the stability of Greeks computed via Monte Carlo simulation. Because

the volatility process responds smoothly to changing variance regimes, pathwise sen-

sitivities exhibit less erratic behavior than in models with discrete regime switching

or externally forecasted Hurst parameters.

In summary, the option pricing results indicate that dynamically adjusting
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volatility roughness enhances both pricing accuracy and robustness. The EWMA-

rBergomi model retains the structural strengths of rough volatility while mitigating

the rigidity imposed by a constant Hurst parameter, making it better suited for

real-world derivative pricing under nonstationary market conditions.

7 Conclusion

This paper presents a novel approach to rough volatility modeling by introducing

an EWMA-driven time-dependent Hurst parameter within the rBergomi frame-

work. Our contributions include a rigorous rough path formulation with existence

and uniqueness proofs, martingale properties, and the computationally efficient

EWMA-based Ht specification that captures volatility regime changes with modest

overhead. Unlike resource-intensive ML-based or wavelet methods, our approach

ensures real-time adaptability and avoids discontinuities of discrete regime-switching

models. Empirical testing across diverse asset classes demonstrates consistent

improvements, particularly during crisis periods with rapidly changing volatility

roughness. The framework enhances risk management through time-varying Greeks,

improves portfolio optimization with dynamic roughness awareness, and provides

accurate derivative pricing across the volatility surface. However, the model does

not explicitly address crisis-specific factors such as liquidity shocks, extreme tail

events, or sudden market microstructure changes, which were beyond this study’s

scope.

The EWMA-based approach bridges theoretical rigor with practical implementa-

tion, offering an elegant, interpretable solution for time-varying roughness compared

to complex forecasting or discrete switching methods. For practitioners, it provides

a ready-to-implement enhancement to rough volatility infrastructure, improving

pricing accuracy and risk management. For researchers, it lays a foundation for

further exploration into adaptive roughness modeling. Future work can integrate

machine learning, high-frequency microstructure modeling, cross-asset contagion

dynamics, and implied volatility surface analysis to further refine the model’s appli-

cability. The framework’s modular design supports these extensions while preserving

the core EWMA mechanism, ensuring continued relevance in quantitative finance.
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1 Numerical Implementation and Code Availability

1.1 Data and Preprocessing

We collect daily adjusted closing prices for eight assets: SPY, VOO, GS, META,

BTC-USD, ETH-USD, GLD, and USO, spanning the period from January 1, 2022

to August 31, 2025. All data are obtained using the yfinance Python library.

From the price series, we compute daily log-returns. As a proxy for realized

variance, we construct a 20-day rolling realized variance estimator based on squared

log-returns. This realized variance series serves as the input to the exponentially

weighted moving average (EWMA) filter driving the stochastic Hurst parameter.

1.2 Model Calibration

We calibrate the EWMA-rBergomi model, the standard rBergomi model, and the

Heston model using a common calibration framework to ensure comparability across

models.

For the EWMA-rBergomi model, the calibrated parameters include the initial

variance V0, the volatility-of-volatility parameter ν, and the EWMA roughness

parameters α and β. Parameter estimation is performed by minimizing the Jensen–

Shannon (JS) distance between empirical return distributions and Monte Carlo–

simulated return distributions.

Optimization is carried out using the L-BFGS-B algorithm, with explicit param-

eter bounds enforced to avoid unrealistic values. To improve numerical stability,

we add a quadratic penalty term equal to 0.01 times the squared deviation from

the initial parameter guess to the JS objective. Calibration simulations use 5,000

Monte Carlo paths with 252 time steps corresponding to a daily discretization.

For each asset class, the data are split into training and test sets. Non-

cryptocurrency assets use 752 training days and 165 test days, while cryptocurrency

assets use 1,095 training days and 242 test days. The optimized parameters obtained

from the training period are fixed and reused across all subsequent analyses.

1.3 Simulation Scheme

All simulations are performed using a non anticipative Euler–Maruyama discretiza-

tion of the log-price dynamics. The volatility process is generated via a discretized

Volterra kernel consistent with the stochastic Hurst specification described in Sec-

tion 2.3.

At each time step, the simulation proceeds as follows:

(i) The Volterra variance driver is updated using past Brownian increments.

(ii) The EWMA variance filter is updated using realized variance.
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(iii) The stochastic Hurst parameter is computed from the EWMA variance and

clipped to the admissible interval.

(iv) Instantaneous volatility is computed and used to update the log-price process.

Unless otherwise stated, all simulations use a uniform daily time grid.

1.4 Distributional and Autocorrelation Analysis

The Jensen Shannon distances reported in Table 1 are computed using simulated

return distributions generated with 100 Monte Carlo paths, employing the calibrated

parameters described in Appendix 1.2.

Rolling volatility autocorrelations are computed for lags of 1, 5, 10, 20, and

40 days. Correlations are estimated over rolling windows and compared between

empirical data and EWMA-rBergomi simulations. For computational efficiency, 100

Monte Carlo paths are used for the autocorrelation analysis. Results are reported

for representative assets SPY and BTC-USD.

1.5 Option Pricing and Confidence Intervals

European call options are priced for SPY and META using Monte Carlo simulation

under the EWMA-rBergomi model. Option maturities correspond to the closest

available expiration to 90 days. Market option prices are obtained via yfinance

when available.

Option prices are estimated using 1,000 Monte Carlo paths. Ninety-five percent

confidence intervals are computed using standard Monte Carlo standard errors. The

risk-free interest rate is fixed at 5% across all pricing experiments. Relative pricing

errors are reported when market prices are available.

The calibrated parameters obtained from the JS-distance minimization (Ap-

pendix 1.2) are reused consistently for option pricing, ensuring that all pricing

results are fully out-of-sample relative to calibration.

1.6 Code Availability

All numerical experiments and figures in this paper are generated using Python. The

full implementation, including calibration routines, simulation code, and plotting

scripts, is publicly available at

https://github.com/jaythemathgod/EWMA-rBergomi/tree/main.
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