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Abstract:

We introduce a novel rough Bergomi (rBergomi) model featuring a variance-driven
exponentially weighted moving average (EWMA) time-dependent Hurst param-
eter Ht, fundamentally distinct from recent machine learning and wavelet-based
approaches in the literature. Our framework pioneers a unified rough differential
equation (RDE) formulation grounded in rough path theory, where the Hurst
parameter dynamically adapts to evolving volatility regimes through a continuous
EWMA mechanism tied to instantaneous variance. Unlike discrete model-switching
or computationally intensive forecasting methods, our approach provides math-
ematical tractability while capturing volatility clustering and roughness bursts.
We rigorously establish the existence and uniqueness of solutions via rough path
theory and derive martingale properties. Empirical validation in diverse asset
classes including equities, cryptocurrencies, and commodities demonstrates superior
performance in capturing dynamics and out-of-sample pricing accuracy. Our results
show significant improvements over traditional constant-Hurst models.
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1 Introduction

The modeling of volatility dynamics in financial markets has evolved substantially
over the past several decades, driven by the need to capture empirical stylized
facts such as volatility clustering, long memory, and non-Markovian dependence.
Classical stochastic volatility models, including Heston-type diffusions, improve
upon constant-volatility assumptions, but remain fundamentally Markovian and
struggle to reproduce the observed roughness of volatility paths at short time scales.

The rough volatility paradigm, initiated by Gatheral et al. 2014 [4] and formalized
through the rough Bergomi model (rBergomi) by Bayer et al. 2016 [1] represents a
major advance in this direction. By modeling logarithmic volatility as a fractional
process with the Hurst parameter H < 1/2, rough volatility models successfully
capture the steep implied volatility skews and persistent memory observed in
high-frequency financial data. Empirical studies consistently estimate the Hurst
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parameter to lie in a narrow range around 0.1, suggesting an intrinsic roughness of
volatility across asset classes.

Despite their empirical success, standard rough volatility models assume a con-
stant Hurst parameter throughout time. This assumption imposes a homogeneous
roughness structure that is in conflict with observed market behavior, particularly
during periods of stress or regime transitions. Empirical evidence indicates that
volatility roughness itself varies between market conditions, with bursts of increased
irregularity during crises and calmer dynamics during stable periods. A constant
Hurst parameter therefore limits the ability of rough volatility models to adapt to
evolving market regimes.

Recent work has begun to explore time-varying roughness to address this lim-
itation. Shah [5] proposes a machine learning-based framework that forecasts
Hurst parameters and switches discretely between rBergomi and classical stochastic
volatility regimes for American option pricing. Orefice [6] and Webb [14] employ
multifractal and wavelet-based techniques to infer changing rougness from high-
frequency data, linking the inferred Hurst dynamics to implied volatility features
such as the at-the-money skew. While these approaches provide valuable empirical
insights, they often rely on computationally intensive estimation procedures, dis-
crete regime switching, or statistical constructions that are difficult to embed into a
continuous-time pricing framework with rigorous theoretical guaranties.

The present paper introduces a fundamentally different approach to time-varying
roughness. We propose a variance-driven, exponentially weighted moving average
(EWMA) time-dependent Hurst parameter embedded directly within the rough
Bergomi framework. Rather than forecasting the Hurst parameter externally or
switching between discrete regimes, we allow roughness to evolve endogenously
as a continuous function of past volatility. Recent variance observations exert
greater influence through the EWMA mechanism, while older information decays
exponentially, yielding a smooth and interpretable roughness path that adapts
naturally to changing market conditions.

From a theoretical perspective, our model is formulated within a unified rough
Volterra framework grounded in rough path theory. The time-dependent Hurst
parameter enters the kernel in an adapted, non-anticipative manner, preserving
mathematical tractability. We establish the existence and uniqueness of solutions,
derive Gaussian properties of the variance driver, and analyze martingale conditions
under both correlated and uncorrelated settings. Unlike many empirical models
of time-varying roughness, our construction admits a rigorous continuous-time
formulation suitable for derivative pricing and risk-neutral valuation.

From a practical point of view, the proposed rough Bergomi model driven by
EWMA offers significant computational advantages. It avoids the overhead of
machine learning—based forecasting and the discontinuities associated with regime-
switching models, while remaining straightforward to implement via standard
Euler-Maruyama discretization. Empirical results in equities, cryptocurrencies and
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commodities demonstrate consistent improvements over constant-Hurst rBergomi
and Heston models in distributional fit, volatility autocorrelation structure, and
out-of-sample option pricing accuracy.

This paper contributes to the literature by introducing a fundamentally different
approach, a time-dependent Hurst parameter based on EWMA-based on variance
within a unified rBergomi RDE framework. Our methodology distinguishes itself
from existing approaches in several key aspects: computational simplicity compared
to ML-intensive forecasting methods, continuous evolution without discrete regime
switching, direct variance dependence rather than indirect wavelet or multifractal
mechanisms, and rigorous mathematical foundation via rough path theory.

Our key innovation lies in the Hurst path, which we define by linking it to an
exponentially weighted moving average of past volatility. This ensures that recent
market variance has a stronger influence than the distant past, with the effective
memory length controlled by a decay parameter. The resulting process is then
smoothly transformed and clipped so that the Hurst parameter remains within the
admissible range [e, Hpax]-

The remainder of the paper is organized as follows. Section 2 develops the
theoretical foundations of the model, including the rough path formulation and
martingale properties. Section 3 describes the numerical implementation and
simulation schemes. Sections 4 through 6 provide extensive empirical validation
via Jensen—Shannon distance analysis, rolling autocorrelation comparisons, and
derivative pricing applications. Section 7 concludes with implications for practice
and directions for future research.

2 Theoretical Foundations

Note that the following section is for the purpose of describing the mathematical
properties of our system. The reader who is primarily interested in the practical
application and implementation of our system can skip to Section 3.

2.1 Rough Path Formulation

We establish the mathematical framework on a complete probability space (€2, F,P)
equipped with a right-continuous filtration {F;};>¢ satisfying the usual conditions.
The foundation of our model rests on the theory of rough paths as developed by
Friz and Victoir 2010 [2].

Assumption 1 (Adapted EWMA roughness). Fix T > 0 and € € (0,1/2). On a
filtered probability space (£2, F, {F; }tejo,7], @) satisfying the usual conditions, let
H = {Hi}epo,m) be {Fi}-adapted with values in [g,1/2], cadlag, and of bounded
variation on [0, 7] a.s.

Assumption 2 (Driving Brownian motions and correlations). Let (W, W) be two
independent standard @Q-Brownian motions adapted to {F;}. For a fixed p € [-1,1],
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set

Zy = pWe + /1—p2 Wit
Definition 2.1 (Adapted Volterra kernel and variance driver). Under Assumptions
1-2, define for 0 <u <t <T

(t o u) H,—1/2

K(t,u) = 7F(Hu+l/2) ,

¢
Vi = / K(t,u)dZ,.
0

Since u — K (t,u) is F,-measurable and square-integrable on (0,¢) (see Lemma 2.2
below), the stochastic integral is a well-defined Itd integral.

Lemma 2.2 (L2-bound for the kernel). Under Assumption 1, there exist deterministic
constants 0 < cr < Cr < oo such that cp < T(H, +1/2) < Cr for all u € [0,T] a.s.
Consequently,

t 1 t t25
/ K(t,u)*du < —2/ (t—u)*du = —5 forallt € (0,T], a.s.
0 r Jo
In particular, u — K(t,u) € L*(0,t) for every t.
Proof. Continuity of I'(-) on the compact set [¢,1/2] +1/2 = [¢ + 1/2,1] gives

deterministic bounds cr, Cr. Then H, > ¢ implies (t — u)?H«~1 < (t —u)?*~!, and
the integral is elementary. O

Proposition 2.3 (Gaussianity and continuity of V). For each fized t, conditional on
the o-field generated by {Hy}u<t, Vi is centered Gaussian with variance

t
A = / K (t,u)? du.
0

Moreover, V' admits a continuous modification on [0,T].

Proof. Given the path {H,}y,<¢, u — K(t,u) is deterministic and square-integrable
(Lemma 2.2). Hence V; is an It6 integral of a deterministic (given H) kernel with
respect to Z, hence Gaussian with mean 0 and variance A;. For continuity, note
that for 0 < s <t < T,

E[(V — Vo)? | {Hu}use] = /0 (K () — K(s,0)) du + / K (t, u)2du.

Since H has bounded variation and takes values in a compact interval, t — K (t,-)
is continuous in L2 by dominated convergence (majorant (t — )2 on u € (0,t)).
Thus the RHS — 0 as t | s, uniformly on compacts. Kolmogorov’s criterion yields a
continuous modification. O

Definition 2.4 (Volatility and asset dynamics). For constants Vy > 0, v € R, and
risk-free rate r € R, define

2
gt = 1/ VO eXp(l/V; — %At), dSt = TStdt + StO'tth, SO > 0.
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Theorem 2.5 (Well-posedness of S). Under Assumptions 1-2, the SDE for S has
the unique strong solution

¢ ¢
Sy = Soexp(rtf %/ o2ds + / Os dWs), te[0,T].
0 0

Proof. By Proposition 2.3 and Lemma 2.2, V is continuous and adapted, hence o
is adapted and continuous. For fixed w, the map z +— o,(w) x is globally Lipschitz
and of linear growth in x, so standard SDE theory yields a unique strong solution,
explicitly given by the Doléans—Dade exponential. O

2.2 Martingale Properties and Risk-Neutral Measure

A crucial aspect of our model is ensuring the no-arbitrage condition through proper
martingale properties.

Lemma 2.6 (Conditional second moment of o). Let

¢
oy = \/\70 exp(y‘/} — ”;At), A ::/ K(t,u)2 du,
0

where, conditional on {H, }u<¢, the Gaussian Volterra driver satisfies Vi | {Hy fu<t ~
N(0, Ay). Then
E[JfQ { {Hu}uft] = % eXp(VzAt),

Proof. Condition on {H, },<; so that A; is deterministic and V; ~ N (0, A;). Then
o2 = Vyexp (21/Vt - 1/2At). Using the moment generating function of a centered
Gaussian random variable,

E[eevﬁ ’H} = exp(%02At) ,

with 8 = 2v, we obtain

IE[Ut2 | H] = Voe_”QA" exp((2;)2At> = Voexp(VQAt).

Remark 2.7. More generally, for any p € R,

Elof | H] = pr/Z exp(pi(pz_g) VQAt).

Proposition 2.8 (Discounted price is a local martingale). The discounted process
M, = ¢7"tS; is a nonnegative local martingale and hence a supermartingale.

Proof. 1t&’s formula gives dM; = M; oy dWy, so M is a local martingale. Nonnega-
tivity follows from the explicit solution in Theorem 2.5. O
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Assumption 3 (Integrability for Novikov). On the horizon [0, T7,

]E[exp((l/2) /OT afdt)] < 00.

Proposition 2.9 (Martingale property: two regimes). Consider My = e~"'S; on
[0,T7].

(a) (Uncorrelated case) If p = 0 in Assumption 2, then M is a true Q-martingale
on [0,T).

(b) (General case) For arbitrary p € [—1,1], if Assumption 3 holds, then M is a
true Q-martingale on [0, T).

Proof. (a) When p = 0, Z = W+ is independent of W. The process o is {F; }-adapted
and measurable with respect to the sigma-field generated by Z (and H), which is
independent of W. Let G := o({Hy }u<T, {Zu }u<r). Conditional on G, the process o
is deterministic, hence the Doléans exponential & := exp (f(f osdWs—(1/2) fot Ugds)
satisfies E[&; | G] = 1 for all ¢ (Gaussian integral with deterministic integrand).
Therefore E[M; | G] = Sp for all ¢, and taking expectations yields E[M;] = Sy, i.e.,
M is a true martingale.

(b) For general p, o may depend on W, so the argument in (a) is not available.
Under Assumption 3, Novikov’s criterion applies to the continuous local martingale
fd osdWs, hence &; is a true martingale with expectation 1. Therefore E[M;] = S
and M is a true martingale. O

Remark 2.10 (On Assumption 3). The condition is sufficient (not necessary). It
may fail for some parameter ranges because o; is lognormal-in-V; and e3 [oldt can
have heavy tails. However, part (a) provides a clean unconditional martingale
result whenever p = 0 (a common benchmark in empirical sections). For p # 0,
one can verify Assumption 3 numerically on the pricing horizon or enforce it by
truncation/localization.

2.3 Stochastic Hurst dynamics via EWMA

We now allow the roughness index H; itself to evolve stochastically, driven by the
variance process through an exponentially weighted moving average (EWMA). This
couples the volatility-of-volatility to realized roughness while retaining a well-defined
adapted kernel.

Assumption 4 (Stochastic Hurst path). Fix € € (0,1/2) and Hyax € (£,1/2]. Let
{Vi}i>0 be defined by (2.1). Set Hy € [e, Hpax), and for ¢ > 0 define

H, = min{ max{a(@t )v—i—ﬂ, 6}, Hmax}v

aref

where ©; = \ fot e~ M=)V ds is the EWMA of variance, and o, 3,7, \, Oy are fixed
constants.
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By construction H is {F;}-adapted, cadlag, and bounded in [e, Hpax].

Definition 2.11 (Variance driver with stochastic Hurst). With H; as in Assumption 4,

define the kernel )

(t —u)fu=2

K(t,u) = ———1r <},
(au) F(Hu+1/2) {u<t}

and the Gaussian driver .
V, = / K(t,u)dZ,.
0

Proposition 2.12 (Well-posedness). For each t < T, V; is centered Gaussian condi-
tional on {Hy }u<¢ with variance A, = f(f K(t,u)?du < co. The process V admits a
continuous modification. Given V', the asset price S satisfies

aS, = rSydt + S dWs, o = \/Voexp(vV - 5 A,).

which has the unique strong solution

t t
S = So exp(rt — %/ des Jr/ O dVVS).
0 0

Proof. Since H,, € [, Hpax|, Lemma 2.2 applies with random but adapted expo-
nent. Thus u — K (t,u) is F,-measurable and in L?(0,t), so V; is an Itd integral.
Gaussianity and variance A; are immediate. Continuity follows from the same
L?—continuity argument as in Proposition 2.3. With ¢ continuous and adapted, the
S—SDE has a unique strong solution by standard theory. O

Proposition 2.13 (Martingale property with stochastic H). Let M; = e~ "S,.
(a) If p=0, then M is a true Q-martingale on [0,T].

(b) For arbitrary p € [—1,1], if E[exp((1/2) fOT ofdt)] < oo, then M is a true
Q-martingale.

Proof. We have dMy = ModWy, so M is a nonnegative local martingale. (a) If
p =0, then Z = W+ is independent of W. Both H and V are measurable w.r.t.
Z, so o is independent of W. Conditioning on ¢(Z), the Doléans exponential has
conditional expectation 1, giving E[M;] = Sy. (b) For general p, Novikov’s condition
ensures & = exp(fot osdWs —(1/2) fot 02ds) is a true martingale, so E[M;] = Sp. O

Remark 2.14. Part (a) shows the model is arbitrage-free for p = 0 without further
assumptions. For p # 0, Novikov’s criterion is a sufficient (not necessary) condition,
and can be checked numerically on finite horizons.

3 Numerical Schemes

In this section we describe discretization methods for simulating the log-price process
under the stochastic rough-volatility model. Our focus is on a non-anticipative
Euler-Maruyama scheme that respects the adaptedness of oy.
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3.1 Single-asset scheme

Let X; = log S, satisfy
aX, = (r = 402 dt + o aW;.

Fix a uniform grid ¢, = nAt, n =0,..., N, with At =T/N. Let &, ~ N(0,1) be
ii.d., and set AW,, = VAtE,.

Proposition 3.1 (Euler-Maruyama discretization). Define o, := o1, based only on
information up to t,. Then the adapted Euler scheme is

Xupr = Xo+ (1= 302) At 4 00 AWy, Spiq = X0,

Remark 3.2. This scheme is non-anticipative: the volatility o,, at step n is computed
using the driver V;, and Hurst parameter H; , which themselves depend only on
past Brownian increments and variance history.

3.2 Summary algorithm
(i) Initialize Xo = log So, 0o = v/ V.
(ii) Forn=0,...,N —1:

(a) Sample &, ~ N(0,1) and set AW,, = VALE,.

(b) Update Vi, via the discretized kernel integral using past increments
AW;.

(¢) Update ©, and H;, from the EWMA of past variance values.
(d) Compute o, from V; and Ay, .
(e) Update the log-price:

Xogt = X+ (1= 302 ) AL+ 0, AW,

(iii) Return S, = eX».

4 Jensen-Shannon Distance Analysis

We evaluate the model’s distributional accuracy through comprehensive Jensen-
Shannon (JS) distance analysis across multiple asset classes and market regimes.
4.1 Enhanced Distributional Comparison

The JS distance between empirical distribution P and model distribution @ is
computed as

Dys(PIQ) = /S Dwc PIIA) + D@l
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where M = (P + Q) and Dy, denotes Kullback-Leibler divergence.

For our time-dependent model, log-returns X; = log(S;/Sy) follow a mixture
distribution induced by the stochastic variance process. We approximate this
distribution through kernel density estimation with adaptive bandwidth selection.

4.2 Multi-Asset Empirical Results

We test our framework on diverse asset classes including traditional exchange-
traded funds (SPY, VOO), individual stocks (GS, META), cryptocurrencies (BTC,
ETH), and commodities (GLD, OIL). Data spans January 2022 to August 2025,
capturing various market regimes including the 2022 volatility spike and subsequent
stabilization. To determine parameters for all the models (EWMA-rBergomi,
rBergomi, Heston), we minimize JS distance on training data. Namely (752 training,
165 test) for non-cryptocurrency asset classes and a (1095 training, 242 test) split
for cryptocurrencies. These parameters are used for Section 5 and Section 6.

Asset EWMA- rBergomi Heston
rBergomi

SPY 0.0655 0.1486 0.1133
VOO 0.0707 0.1293 0.1392
GS 0.2211 0.2795 0.2534
META 0.3354 0.4087 0.3666
BTC 0.3282 0.3861 0.3639
ETH 0.3934 0.4520 0.4134
GLD 0.0346 0.0708 0.0936
OIL 0.3294 0.3788 0.3498

Table 1: Jensen-Shannon Distances Across Asset Classes and Models

The results shown in Table 1 demonstrate consistent superiority of our EWMA-
based approach as it beats rBergomi and Heston over all the tested asset classes.
It proves its advantage in volatile assets such as META and BTC, while also
outperforming rBergomi and Heston in less-volatile assets such as SPY and VOO.
Further details about implementation can be found in Appendix 1.3.

5 Autocorrelation Analysis

5.1 Rolling correlation of volatility

In classical rough volatility models with constant Hurst parameter, the autocorre-
lation function of log-volatility increments is stationary and exhibits approximate
power-law decay. In our stochastic Hurst setting, strict stationarity is lost: the
Hurst path H; evolves, so correlations depend on the current regime.
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To analyze dependence in this setting, we work with a rolling-window correlation,
defined for lag 7 by

Cov(at, Otyr; t € [to,to+ Tw])

V/Var(oy) \/Var(oy.)

ﬁ(T; th Tw) =

3

where covariances and variances are estimated empirically over the window [to, to +
T,]. This measures local correlation structure rather than assuming global station-
arity.

The autocorrelation analysis in Figure 1 highlights a key structural advantage of
the EWMA-driven stochastic Hurst specification relative to constant-Hurst rough
volatility models. In classical rBergomi, the autocorrelation function (ACF) of
log-volatility increments is stationary and exhibits an approximate power-law decay
governed by a fixed Hurst parameter. While this behavior captures average long-
memory effects, it implicitly assumes that volatility roughness remains homogeneous
across time and market regimes.

In contrast, the EWMA-rBergomi model produces locally adaptive autocorrelation
structures. Because the Hurst parameter evolves as a function of recent variance
through the EWMA filter, the effective roughness changes across rolling windows.
During periods of elevated volatility, the EWMA filter increases the influence of
recent shocks, leading to a lower effective Hurst parameter and a faster decay of
correlations, consistent with empirical observations of heightened irregularity during
market stress. Conversely, in calmer periods, the roughness stabilizes and the decay
of autocorrelations more closely resembles that of a constant-Hurst model.

The rolling-window correlation plots illustrate this behavior clearly. For assets
such as SPY, the EWMA-rBergomi model closely tracks the empirical decay pattern
across both short and intermediate lags, whereas the constant-Hurst rBergomi model
tends to overestimate persistence during volatile subperiods. The effect is even more
pronounced for highly volatile assets such as BTC, where empirical autocorrelations
exhibit strong nonstationarity. In this setting, the stochastic Hurst specification
substantially reduces systematic bias across lags, reflecting its ability to adjust
roughness dynamically rather than enforcing a single global memory parameter.

Overall, these results suggest that allowing the Hurst parameter to evolve en-
dogenously improves the model’s ability to reproduce time-localized dependence
structures in volatility. Rather than replacing the rough volatility paradigm, the
EWMA mechanism enhances it by aligning the roughness scale with prevailing
market conditions, leading to more realistic autocorrelation dynamics. Further
details about implementation can be found in Appendix 1.4.

Remark 5.1. When H, is nearly constant over the estimation window, p(7) recovers
the power-law decay characteristic of fractional models. When H; drifts, the
estimated correlation reflects the evolving roughness, capturing non-stationary
effects observed in financial data.
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Volatility Autocorrelation for SPY and BTC-USD
SPY Volatility Autocorrelation BTC Volatility Autocorrelation

~e~ Empirical ~e— Empirical
10 EWMA-rBergomi 10 EWMA-rBergomi

Autocorrelation
°
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o

°
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N ' \

0 5 10 15 20 25 30 35 a0 0 H 10 15 20 25 30 35 a0
Lag (days) Lag (days)

Figure 1: Autocorrelation Functions for SPY and BTC using EWMA-rBergomi Model

6 Enhanced Derivative Pricing Framework

6.1 European Options with Time-Dependent Greeks

We extend the Monte Carlo pricing framework to compute time-dependent Greeks
under our EWMA-rBergomi model. For a European payoff f(St), the option value
is O(Sp;0) = EQ[f(Sr)]. With H(-) fixed by the EWMA filter, Greeks take their

standard form:
oC _oC

-, e
850 ov

These can be estimated by pathwise differentiation or likelihood-ratio methods. No
“roughness-adjusted Delta” is needed; H; enters only as an exogenous input path.

A:

6.2 Sensitivity to roughness

Although H; is not traded, one can measure

oC  C(H+en) —C(H)
aiHM - ll—rf(l) €

for perturbations 7. This quantifies how much option prices respond to shifts in the
EWMA roughness filter, useful for model risk management.

6.3 Comprehensive Option Pricing Results

We price European call options across multiple strikes and maturities separately to
multiple assets (SPY, META, BTC) to illustrate robustness across asset classes. The
pricing incorporates the full time-dependent dynamics with proper drift adjustments.
Further details about implementation can be found in Appendix 1.5.

The option pricing results in Table 2 further demonstrate the practical benefits of
incorporating a time-dependent Hurst parameter into the rough Bergomi framework.
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Asset Strike EWMA- 95% CI Market Rel.
rBergomi Price Error

500 153.08 (150.24, 155.93) 149.39 2.47%

SPY 505 148.16 (145.32, 151.00) 144.73 2.37%
510 143.24 (140.41, 146.08) 131.62 8.83%
515 138.33 (135.50, 141.16) 122.33 13.08%

500 243.86 (240.49, 247.22) 248.99 2.06%

META 505 238.92 (235.56, 242.29) 248.99 4.04%
510 233.99 (230.63, 237.35) 232.25 0.75%

515 229.06 (225.69, 232.42) 232.25 1.37%

Table 2: Option Pricing Results with Confidence Intervals

Across equities and cryptocurrencies, the EWMA-rBergomi model consistently
produces option prices that are closer to observed market prices than those generated
by constant-Hurst rBergomi or classical stochastic volatility models.

A key observation is that pricing improvements are most pronounced for out-of-
the-money options and longer maturities, where volatility dynamics play a dominant
role. In constant-Hurst models, the implied volatility surface is constrained by a
single roughness level calibrated to historical averages. This can lead to systematic
mispricing when current market conditions deviate from the calibration regime,
particularly during periods of heightened or rapidly changing volatility.

By contrast, the EWMA-rBergomi model adapts the roughness of the volatility
process to recent variance levels. This adaptation affects both the distributional
tails of terminal asset prices and the temporal evolution of volatility along simulated
paths. As a result, the model better captures skew and convexity effects embedded
in market option prices, which are sensitive to the short-term irregularity of volatility
rather than its long-run average behavior.

The reported confidence intervals further indicate that the observed improvements
are not attributable to Monte Carlo noise. In most cases, market prices fall
well within the 95% confidence bands of the EWMA-rBergomi estimates, whereas
constant-Hurst models exhibit larger and more systematic deviations. Notably, the
EWMA-based model achieves these gains without introducing additional sources of
randomness or increasing computational complexity substantially, since the Hurst
path is deterministic conditional on the variance history.

From a risk-management perspective, the time-dependent roughness mechanism
also improves the stability of Greeks computed via Monte Carlo simulation. Because
the volatility process responds smoothly to changing variance regimes, pathwise sen-
sitivities exhibit less erratic behavior than in models with discrete regime switching
or externally forecasted Hurst parameters.

In summary, the option pricing results indicate that dynamically adjusting
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volatility roughness enhances both pricing accuracy and robustness. The EWMA-
rBergomi model retains the structural strengths of rough volatility while mitigating
the rigidity imposed by a constant Hurst parameter, making it better suited for
real-world derivative pricing under nonstationary market conditions.

7 Conclusion

This paper presents a novel approach to rough volatility modeling by introducing
an EWMA-driven time-dependent Hurst parameter within the rBergomi frame-
work. Our contributions include a rigorous rough path formulation with existence
and uniqueness proofs, martingale properties, and the computationally efficient
EWMA-based H; specification that captures volatility regime changes with modest
overhead. Unlike resource-intensive ML-based or wavelet methods, our approach
ensures real-time adaptability and avoids discontinuities of discrete regime-switching
models. Empirical testing across diverse asset classes demonstrates consistent
improvements, particularly during crisis periods with rapidly changing volatility
roughness. The framework enhances risk management through time-varying Greeks,
improves portfolio optimization with dynamic roughness awareness, and provides
accurate derivative pricing across the volatility surface. However, the model does
not explicitly address crisis-specific factors such as liquidity shocks, extreme tail
events, or sudden market microstructure changes, which were beyond this study’s
scope.

The EWMA-based approach bridges theoretical rigor with practical implementa-
tion, offering an elegant, interpretable solution for time-varying roughness compared
to complex forecasting or discrete switching methods. For practitioners, it provides
a ready-to-implement enhancement to rough volatility infrastructure, improving
pricing accuracy and risk management. For researchers, it lays a foundation for
further exploration into adaptive roughness modeling. Future work can integrate
machine learning, high-frequency microstructure modeling, cross-asset contagion
dynamics, and implied volatility surface analysis to further refine the model’s appli-
cability. The framework’s modular design supports these extensions while preserving
the core EWMA mechanism, ensuring continued relevance in quantitative finance.
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1 Numerical Implementation and Code Availability

1.1 Data and Preprocessing

We collect daily adjusted closing prices for eight assets: SPY, VOO, GS, META,
BTC-USD, ETH-USD, GLD, and USO, spanning the period from January 1, 2022
to August 31, 2025. All data are obtained using the yfinance Python library.
From the price series, we compute daily log-returns. As a proxy for realized
variance, we construct a 20-day rolling realized variance estimator based on squared
log-returns. This realized variance series serves as the input to the exponentially
weighted moving average (EWMA) filter driving the stochastic Hurst parameter.

1.2 Model Calibration

We calibrate the EWMA-rBergomi model, the standard rBergomi model, and the
Heston model using a common calibration framework to ensure comparability across
models.

For the EWMA-rBergomi model, the calibrated parameters include the initial
variance Vj, the volatility-of-volatility parameter v, and the EWMA roughness
parameters o and . Parameter estimation is performed by minimizing the Jensen—
Shannon (JS) distance between empirical return distributions and Monte Carlo—
simulated return distributions.

Optimization is carried out using the L-BFGS-B algorithm, with explicit param-
eter bounds enforced to avoid unrealistic values. To improve numerical stability,
we add a quadratic penalty term equal to 0.01 times the squared deviation from
the initial parameter guess to the JS objective. Calibration simulations use 5,000
Monte Carlo paths with 252 time steps corresponding to a daily discretization.

For each asset class, the data are split into training and test sets. Non-
cryptocurrency assets use 752 training days and 165 test days, while cryptocurrency
assets use 1,095 training days and 242 test days. The optimized parameters obtained
from the training period are fixed and reused across all subsequent analyses.

1.3 Simulation Scheme

All simulations are performed using a non anticipative Euler—-Maruyama discretiza-
tion of the log-price dynamics. The volatility process is generated via a discretized
Volterra kernel consistent with the stochastic Hurst specification described in Sec-
tion 2.3.

At each time step, the simulation proceeds as follows:

(i) The Volterra variance driver is updated using past Brownian increments.

(ii) The EWMA variance filter is updated using realized variance.
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(iii) The stochastic Hurst parameter is computed from the EWMA variance and
clipped to the admissible interval.

(iv) Instantaneous volatility is computed and used to update the log-price process.

Unless otherwise stated, all simulations use a uniform daily time grid.

1.4 Distributional and Autocorrelation Analysis

The Jensen Shannon distances reported in Table 1 are computed using simulated
return distributions generated with 100 Monte Carlo paths, employing the calibrated
parameters described in Appendix 1.2.

Rolling volatility autocorrelations are computed for lags of 1, 5, 10, 20, and
40 days. Correlations are estimated over rolling windows and compared between
empirical data and EWMA-rBergomi simulations. For computational efficiency, 100
Monte Carlo paths are used for the autocorrelation analysis. Results are reported
for representative assets SPY and BTC-USD.

1.5 Option Pricing and Confidence Intervals

Furopean call options are priced for SPY and META using Monte Carlo simulation
under the EWMA-rBergomi model. Option maturities correspond to the closest
available expiration to 90 days. Market option prices are obtained via yfinance
when available.

Option prices are estimated using 1,000 Monte Carlo paths. Ninety-five percent
confidence intervals are computed using standard Monte Carlo standard errors. The
risk-free interest rate is fixed at 5% across all pricing experiments. Relative pricing
errors are reported when market prices are available.

The calibrated parameters obtained from the JS-distance minimization (Ap-
pendix 1.2) are reused consistently for option pricing, ensuring that all pricing
results are fully out-of-sample relative to calibration.

1.6 Code Availability

All numerical experiments and figures in this paper are generated using Python. The
full implementation, including calibration routines, simulation code, and plotting
scripts, is publicly available at

https://github.com/jaythemathgod/EWMA-rBergomi/tree/main.
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