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Abstract:

We develop an option-pricing framework that couples the Heston stochastic volatility
model with a fractional Vasicek short-rate process to incorporate long-memory
effects in interest rates. Using a regularized semimartingale approximation of
fractional Brownian motion and an affine surrogate representation, we derive a
tractable pricing PDE and a semi-closed-form characteristic function suitable
for Fourier-based valuation. The numerical implementation employs adaptive
integration for fast and accurate pricing, and sensitivity analysis highlights the role
of the memory parameter «, the smoothing term &, and the short-rate volatility
or. Empirical calibration to S&P 500 option data demonstrates that the proposed
model improves the fit to market prices relative to the classical Heston model,
particularly for longer maturities. These results indicate that persistent interest-
rate dynamics can materially influence equity option valuation and motivate further
development of fractional interest-rate modelling.
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Fourier transform methods
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1 Introduction

Modern financial markets are increasingly shaped by the joint stochastic dynamics
of asset prices, volatility, and interest rates. Among the most influential models for
capturing such interactions is the Heston stochastic volatility framework [9], which
models the variance of asset returns as a mean-reverting square-root process and
accounts for empirically observed phenomena such as volatility clustering and the
leverage effect. While the Heston model has been extended in various directions to
improve empirical fit [5, 8, 12, 13, 17], many implementations retain the simplifying
assumption of constant interest rates or rely on short-memory dynamics such as the
Vasicek or CIR models when incorporating stochastic rates.

A growing body of empirical research indicates, however, that short-term interest
rates frequently exhibit long-range dependence, meaning that their autocorrelations
decay at a hyperbolic rather than exponential rate. This persistence implies that
shocks to interest rates may exert influence over extended horizons, a feature that
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standard Markovian specifications fail to capture. Evidence for such long-memory
behaviour has been documented across maturities, currencies, and market regimes:
[11] detect multifractal persistence in interest rate futures; [2] identify fractional
integration patterns in real interest rate differentials over 150 years; [1] note persistent
inflation uncertainty impacting the term structure; [3] find strong persistence in
European monetary policy spreads; and [15] show that real interest rates display
structural breaks and centuries-long persistence. These findings underscore the
relevance of incorporating long-memory features into models used for pricing interest
rate—sensitive derivatives.

One natural approach to modelling such persistence is to drive the short rate
with a fractional Brownian motion (fBm), leading to a fractional Vasicek process
[14, 16, 19]. The fBm-driven specification enriches the autocorrelation structure of
the short rate while preserving a familiar SDE framework. The degree of memory is
governed by the parameter o € (0,0.5), corresponding to a Hurst index H = a+ 0.5,
which offers a transparent interpretation of persistence intensity.

In this paper, we propose a hybrid model that couples the Heston stochastic
volatility dynamics with an fBm-driven, fractional Vasicek-type short rate. By
introducing a fractional component into the interest-rate process, the model aims
to capture the persistent effects of monetary policy and macroeconomic conditions
documented in empirical studies. Our framework builds on [7], which integrated
a classical Vasicek rate into the Heston model, and extends it by incorporating
fractional characteristics.

Importantly, the objective of this paper is not to derive pricing formulas for the
exact fractional Vasicek model, whose non-Markovian, Volterra-type structure ne-
cessitates an infinite-dimensional state augmentation to obtain a rigorous generator.
Instead, our aim is to construct a computationally efficient, approrimately affine
surrogate model obtained through a regularized (semi-martingale) representation
of fBm and an affine approximation analogous to those used in hybrid Heston
interest-rate models. This approximation intentionally restores tractability, enabling
a semi-closed-form characteristic function and fast Fourier-based pricing. The result-
ing pricing formulas are therefore mathematically valid for the approzimate affine
model, whose role is to provide a practical and numerically efficient framework for
incorporating long-memory effects into derivative valuation. All pricing results in
this paper apply to the regularized affine surrogate model and therefore are fully
compatible with the classical arbitrage-free, risk-neutral framework. Since the surro-
gate short-rate process is a semimartingale and Markovian, standard Feynman-Kac
arguments apply without modification. Our goal is therefore not to construct a full
interest-rate derivative calibration framework, but to study how persistent short-rate
dynamics affect equity option valuation.

Within this approximate setting, we derive a semi-analytical expression for
the characteristic function of the joint dynamics, facilitating efficient European
option pricing via Fourier inversion techniques [6]. We also develop a numerical
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implementation based on adaptive integration and conduct a detailed sensitivity
analysis to quantify the influence of the memory parameter «, the smoothing
parameter €, and the short-rate volatility o,. Finally, we illustrate the practical
estimation of the memory parameter using the Whittle likelihood, a frequency-
domain method well suited for long-memory Gaussian processes.

The remainder of the paper is organized as follows. Section 2 reviews the mathe-
matical background on fractional Brownian motion and its smoothing approximation.
Section 3 presents the joint Heston—fractional Vasicek model. Section 4 derives the
option pricing formula and the associated characteristic function. Section 5 describes
the numerical scheme, validates it via convergence tests, and reports simulation
results. Section 6 concludes and outlines directions for future research.

2 Preliminaries

Fractional Brownian motion (fBm) with Hurst parameter 0 < H < 1 is a con-
tinuous, centered Gaussian process that generalizes classical Brownian motion by
capturing long-—range dependence and self-similarity. Denoting the process by
By = {Bg(t), 0 <t < T}, its covariance structure is given by

1
Ry(t,s) = §(t2H + 2 — |t — 5P, t,s € 10,77

For H = 0.5, {Bm reduces to standard Brownian motion. When H > 0.5, the
increments exhibit positive long—range dependence, a feature that makes fBm
particularly relevant for modeling persistent temporal structures in financial time
series, including interest rates.

A significant challenge, however, is that By is not a semimartingale when H # 0.5.
Consequently, It6 calculus does not apply in its classical form, complicating any
attempt to incorporate By directly into arbitrage-free asset—pricing frameworks.

To circumvent this issue, one strategy is to approximate fBm by a process that
belongs to the semimartingale class while retaining its long-memory characteristics
in an L? sense. A widely used representation expresses fBm as

Bu(t) = P(Hlﬂ (Ut + (g dm) ,

where W is a standard Brownian motion and U; is an absolutely continuous process.
The Volterra integral term captures the persistent autocorrelation structure of fBm.

To obtain a tractable semimartingale approximation, Thao [18] introduced the
regularized process

t
BH,E(t):/ (t—s+5)H*%dW$, e>0.
0

Define a = H — 3. The kernel K.(t,s) := (t—s+&) is smooth in ¢, and the process
By (t) = fot K_(t, s)dW; falls within the class of Volterra Gaussian semimartingales.
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Since 0; K. (t,s) = a(t — s +¢)*~! € L? for every fixed ¢ > 0, the stochastic Fubini
theorem yields the Ito differential (see, e.g., standard results on Volterra stochastic
integrals):

t t
d</ K.(t,9) dWs> _ (/ 0,K.(t, 5) dWs> dt + K. (t, ¢) AW,
0 0
Substituting the explicit kernel derivatives,
0K (t,s) =a(t —s+e)* ! K (t,t) =&,

we obtain the Itd differential of the regularized fBm:
t
dBr.(t) = a (/ (t—s+e)> ! dWs> dt + e* dW;.
0

Introducing the auxiliary Volterra process

t
i = / (t—s+e)* tdWy,
0
we finally arrive at the semimartingale representation:
dBp . (t) = apf dt + * dW,.

In the remainder of the paper, we adopt this semimartingale approximation
of fBm for modeling interest-rate dynamics with long-range dependence. This
formulation enables the use of classical It6 calculus under the risk-neutral measure,
facilitates numerical simulation, and avoids the theoretical difficulties associated
with the non-semimartingale nature of genuine fBm.

3 Model Setup

We consider a financial market over a finite time horizon [0, T, consisting of a risky
asset with price process S; and a stochastic short-term interest rate process r;. The
dynamics of the asset price are governed by a generalized Heston stochastic volatility
model, while the interest rate follows a fractional Vasicek process approximated via
a semi—martingale formulation.

Let (Q,F,F = {F;}1>0,P) be a filtered probability space satisfying the usual
conditions. The asset price process S = {S;, 0 < t < T} satisfies the following
stochastic differential equation (SDE):

dS, = 7S, dt 4 /v, S; AW},

where r; is the short-term stochastic interest rate, and v, denotes the stochastic
variance of the asset. The variance process v; evolves according to the classical
Heston dynamics:

dvy = k(0 — vy) dt + oy/ve WY, (1)
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where k > 0 is the rate of mean reversion, 6 > 0 is the long-run variance level, ¢ > 0
is the volatility of volatility, and W;%, W} are standard Brownian motions with
correlation E[dW, dW}] = p; for some |p;| < 1.

The classical Vasicek model assumes a mean-reverting Ornstein—Uhlenbeck pro-
cess for the short-term interest rate r;. To account for long-range dependence
observed in empirical interest rate data, we extend this model by incorporating
a fractional Brownian motion (fBm) component with Hurst parameter H > 0.5.
However, since fBm is not a semi—martingale, we work with its semi—martingale
approximation B¥¢(t) as discussed in Section 2.

Accordingly, the fractional Vasicek interest rate dynamics are modeled as:

dry = a(b— ;) dt + o, dB™<(t),
where a > 0 is the speed of mean reversion, b is the long-term mean of the interest
rate, o, > 0 is the interest rate volatility, and B#:¢(t) is defined via the regularized
semi—martingale representation:

dB™(t) = ap$ dt + > dW,

with o = H — § and ¢f = fot(tfere)a*ldW;.
Substituting this into the Vasicek model yields the following tractable formulation:

dry = (a(b —r¢) + orap;) dt + o.e® dW].
Combining the Heston asset price model with the semi—-martingale approximation

of the fractional Vasicek interest rate process, we obtain the full system:

dS; =rSpdt + /v S AW,

dv; = k(0 —v)dt + o\ /o, dWY, (2)
dre = (a(b—r¢) + oragf) dt + ope® dWY,

where (W, W2, W) is a three-dimensional Brownian motion with instantaneous
correlations:

E[dW dW?] = p1, E[AWS dW]] = po, E[dAW? dW/] =0,

where |p1] < 1 and |p2] < 1.

This hybrid model captures both stochastic volatility in asset returns and long-
range dependence in interest rate dynamics, providing a richer framework for
derivative pricing and risk assessment in financial markets.
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4 Pricing Formula for European Options

European options, which may only be exercised at maturity, constitute some of the
most fundamental instruments in financial markets. Their valuation is essential for
hedging, risk management, and model calibration. In this section, we derive a semi-
analytical pricing formula for European options under the hybrid Heston—fractional
Vasicek model presented in Section 3.

We work under the risk-neutral measure Q and assume frictionless and arbitrage-
free markets. Let ¢(x,v,r,t) denote the price at time ¢ of a European contingent
claim written on the underlying asset Sy, where z; := log S, v; denotes the instan-
taneous variance, and r; denotes the short-term interest rate. The latter evolves
according to the regularized fractional Vasicek specification discussed in Section 3.

The log-transformation z; = log S; is standard in stochastic volatility modelling
and is particularly convenient for Fourier-based valuation techniques. Formally,
¢(x,v,r,t) may be regarded as a sufficiently regular candidate solution to the
backward pricing equation under the relevant risk-neutral dynamics.

The pricing PDE under the full regularized fractional model

Applying Itd’s lemma to the function ¢(z¢,vs,7¢,¢) under the dynamics of the
system (2) yields the formal backward equation:

N (R T L B - 522
ot (r 2”) og TV, talbmnt oo
1 9% o 1, P 1 45 ,,0% @ 0?9
3% TP g0 T 27 Vg T2 e TV gy T 19

A key observation is that the PDE presented here does not represent the Kol-
mogorov equation associated with the full fractional Vasicek dynamics. The aux-
iliary process ¢f is a Volterra-type Gaussian process and therefore inherently
non-Markovian. As a result, the augmented state vector (xs,vs, 7, ©5) possesses
an infinite-dimensional memory structure. Consequently, a PDE posed solely in
the variables (z,v,r,t) cannot correspond to the generator of the original fractional
model, whose dynamics depend on the entire past history through 5.

To retain analytic tractability, we therefore introduce an affine surrogate model
via structurally motivated approximations, following the methodology of Grzelak and
Oosterlee [7] and similar affine approximations used in hybrid Heston interest-rate
models.

Affine Approximation of Nonlinear and Non-Markovian Terms

Two specific simplifications are introduced:
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(i) The non-Markovian fractional term f appears only in the drift of r;. Since §
is a centered Gaussian Volterra process, we approximate its drift contribution
by zero, i.e.,

& ~
orap; =0,

thereby removing path-dependence in the drift of r,. This step does not
render the original fractional model Markovian; rather, it defines a Markovian
approrimate Vasicek-type model under which analytical pricing becomes
feasible.

(i) The mixed second-order term 92¢/(0xz dr) contains the non-affine factor /v,
preventing closed-form Fourier methods. Following [7], we replace /vy by its

deterministic approximation A(t), constructed via moment-matching for the
CIR distribution:

Vur = A(t) := E[y/vy).
This preserves the affine form of the pricing operator while maintaining a
meaningful coupling between equity and interest-rate factors.

Under these approximations, the pricing equation corresponds to an affine Marko-
vian surrogate with generator:

0=6¢—&—(7‘—11))agb—l—/s(@—v)a(b—Hz(b—r)8¢—|—11;8%Zs

ot 2 ) Oz ov or 2 0z2
62¢ 1 2 82¢ 1 2 2« 82¢ @ 62¢
T e T3 Vgt T30 gz Tt A G e ()

Equation (3) is therefore not the generator of the original fractional Vasicek
model, but the generator of the approzimated affine hybrid model used for pricing.
This clarification resolves the issues related to mathematical consistency and the
rigorous applicability of the Feynman—Kac framework.

Characteristic-Function-Based Pricing

With the affine surrogate structure restored, we may apply transform techniques in
the spirit of Duffie et al. [6]. Let z; = log S, and define the conditional characteristic
function:

Cb(uaT):EQ[ein’xt:ﬂ?, Ut:U7Tt:T], T:=T —1t.

Motivated by the affine form of (3), we postulate the exponential-affine representa-
tion:
o(u,7) = exp(A(u, 7) + B(u,7)x + C(u, 7)v + D(u, 7)r),
with terminal conditions A(u,0) =0, B(u,0) = iu, C(u,0) =0, D(u,0) = 0.
Substituting this exponential-affine representation into (3) and matching coef-
ficients yields the usual Riccati and linear ODEs for (4, B, C, D), consistent with
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the affine structure. The resulting characteristic function enables efficient valua-
tion of European options via Fourier inversion. The explicit ODE system and its
closed-form solutions are presented below; their structure is unchanged from the
classical Heston model, except for the additional deterministic coupling term A(¢)
in the coefficient of A(u,7), which captures the (approximated) interaction between
the equity variance and the fractional interest-rate dynamics.

Since B(u,7) does not depend on 7 (as there is no second-order derivative in x
that depends on any state variable), we immediately find:

0B

— =0 = B(u,7)=iu.
or

The ODE for C(u, 7) corresponds to the component associated with the stochastic
volatility vy, and takes the form of a Riccati equation:

oc 1 L oo

Substituting B(u, ) = iu and defining constants

1 , . L,
c1 = f§u(u+z), €2 1= profu— kK, C31= 507,

the Riccati equation becomes:

8£ =c1 +cC+ 0302,
or

which admits the closed-form solution:

_ 7(C2+d) —dt
C(U,T)—m(l—e d )’

d
d:=\/c3 —4dcics, g:= Zz+d'
, —

Next, the ODE for D(u,7) corresponds to the interest rate factor and is linear:

with

oD
— =B —(aD+1).

or (eD+1)

Using the initial condition D(u,0) = 0 and solving by the integrating factor method
yields:

i — 1
D(u,7) = w

" (1 — e_(”) .

The function A(u,7) aggregates contributions from the drift and variance terms
and satisfies:

0A 1
5 = abD + 0C + 507> D? + pr0,€* A(r) BD,
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which integrates to:
1
A(u, ) = abl; (1) + KOI3(7) + 503620‘[3(7') + poo€XI4(T),

where the integral terms are given explicitly as:

Il(T)Z/OTD(s)ds:iul <T_ 16‘”>7

a a

. T . 2 1— e—dT
0

T 1
I3(1) = / DQ(S) ds = ﬁ(l + u)2 (3 + e _ gm0 — 2ar) ,
0
iu + u?

Iu(7) Z/OTA(T—S)D(S) ds=— /OTA(T—S)(l—e_aS)dS.

a

The function A(-) was defined earlier as the deterministic approximation to
E[\/@] and encodes the memory effects of the variance process. The integral Iy
thus incorporates the fractional Vasicek memory structure into the pricing kernel.

The complete set of functions (A, B, C, D) fully characterizes the conditional
characteristic function of the log-asset price, and allows for efficient numerical pricing
of European-style derivatives via Fourier inversion techniques.

Financial Interpretation of long-memory Effects

The inclusion of a fractional Vasicek process for the short-term interest rate in-
troduces long-range dependence, a phenomenon widely documented in empirical
studies of financial time series. In contrast to classical Vasicek dynamics, which
model interest rates as Markovian Ornstein—Uhlenbeck processes with exponentially
decaying memory, the fractional variant exhibits power-law decay in the autocorrela-
tion structure. This means that shocks to the interest rate tend to persist for longer
periods, reflecting more realistic behavior of interest rates observed in practice,
particularly in low-rate or slowly adjusting economic environments.

From a financial perspective, this long-memory has critical implications for
the valuation of interest rate—sensitive securities. In standard models, the future
path of interest rates is largely independent of distant past behavior. However, in
the fractional Vasicek setting, past interest rate levels influence the present and
future values to a much greater degree. This persistence introduces a form of
path dependence into the model, where the interest rate’s historical trajectory can
significantly affect discounting and, thus, the present value of expected payoffs.

For European-style options, particularly those with longer maturities, the impact
of this memory becomes nontrivial. A more persistent (higher Hurst parameter)
interest rate process can lead to a slower mean reversion, often keeping rates lower
for longer periods. Since the risk-neutral discount factor is directly tied to the short
rate, this persistence translates into a smaller effective discount rate. Consequently,
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the expected present value of the option payoff increases, raising the overall price
of the option. This is consistent with the numerical results obtained in Section 5,
where higher values of the memory-related parameter « (equivalent to H — 0.5)
result in increased option prices.

Moreover, incorporating long-memory provides more robust modeling in environ-
ments characterized by economic inertia, such as during monetary policy transitions
or macroeconomic shocks. In such settings, traditional Markovian models may
underestimate the true risk or overstate the speed of reversion. The fractional Va-
sicek model addresses this by embedding a more flexible and empirically consistent
framework for interest rate dynamics, enabling better pricing, hedging, and risk
management of interest rate—sensitive derivatives.

5 Numerical Implementation and Empirical Analysis

In this section, we turn our attention to the practical implications of the model
developed in previous sections. Having derived the option pricing partial differential
equation and its solution via the characteristic function, we now focus on how
this theoretical framework can be utilized to compute option prices in practice.
Specifically, we derive a semi-closed-form expression for European option prices
via Fourier inversion techniques and discuss how the presence of fractional interest
rate dynamics influences numerical implementation. Following this, we present a
set of numerical experiments to assess the model’s pricing performance, sensitivity
to parameters, and its ability to capture market-implied volatility surfaces. The
results highlight both the benefits and limitations of incorporating long-memory
interest rate effects in the Heston-style stochastic volatility framework.

5.1 Pricing Formula via Fourier Inversion

After deriving the conditional characteristic function of the log-asset price process
xzp = log St in exponential-affine form, we now proceed to compute European
option prices via Fourier inversion techniques. This approach is well suited to
models with (approximate) affine dynamics and was pioneered in the context of
stochastic volatility models by Heston [9], and generalized by Carr and Madan [4]
and Duffie et al. [6].

Under the risk-neutral measure Q, the price of a European call option with strike
price K, maturity T, and current time ¢ is given by the discounted expected payoff:

O(Sy, K,7) = EQ [e= Fmds (5, — Ky ‘ st} ,

where 7 =T — t is the time to maturity.
Due to the presence of stochastic interest rates r; governed by a fractional Vasicek

rsds

process, the discount factor e~ I is random and nontrivially correlated with Sr.

However, since the model remains (approximately) affine, the joint characteristic
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function of zr := log St and the integral of rs over [t,T] remains exponentially
affine. Thus, following standard methodology, we define:

C(S,K,7) =S, P, — KE® [e* S dS} P,
where P; and P, are risk-neutral probabilities defined as:

P, =QJlog St > log K | Fi],
P, = Q7 [log St > log K | Fi],

where Q7 denotes the T-forward measure. In affine models, these probabilities can
be computed via Fourier inversion of the characteristic function.

Following Carr and Madan (1999), we define a dampened option price function
to ensure integrability:

Ck):=e"*C(S;, K =€, 7), a>0,

and compute its Fourier transform:
FIC)(u) = / ¢ G dk,

Using the characteristic function ¢(u, ) derived in Section 4, the closed-form
representation of the call price is then given by:

C(Sy, K, 7) =S (1 L1 /°° Re [MW] du)
0

2 7 (x
- 00 —iulog K
~ KE® [e— S dS} (1+1/ Re [e‘bz(uq du), (4)
2w/ w

where ¢ (u) and ¢2(u) denote the characteristic functions of xp evaluated under
the risk-neutral and forward measures, respectively.

In our setting, due to the time-dependent discounting induced by r;, the exact
computation of E2[e~ [ 45] may not admit a closed-form expression. However,
under the affine approximation and the exponential-affine form of the solution, this
expectation can be computed using the function A(u,7) derived earlier, evaluated
at u = 0:

EQ [6_ ftT T ds] ~ eA(O,T)-‘—C(O,T)’Ut-‘rD(O,T)’r’t.

In practical implementation, we perform numerical integration in Equation (4)
using quadrature methods such as the trapezoidal or Gauss—Laguerre rule, after
discretizing the integral over a suitably truncated domain [0, Up,ay] with step size
Au. The choice of the damping parameter «, integration bounds, and discretization
scheme affects numerical stability and convergence and will be discussed in the next
subsection.
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5.2 Numerical Implementation Details

This subsection outlines the computational strategy employed to implement the
option pricing methodology developed in the preceding sections. The analytical
tractability of the model hinges on the availability of a closed-form expression for
the characteristic function of the log-asset price under risk-neutral dynamics, which
enables efficient pricing via Fourier inversion.

The pricing algorithm is implemented in MATLAB, utilizing numerical quadra-
ture to evaluate the relevant integrals. Specifically, we employ adaptive integration
routines to ensure stability and accuracy when computing oscillatory Fourier inte-
grals. The formulation accommodates both the stochastic volatility of the Heston
model and the long-memory effects introduced by the fractional Vasicek interest
rate process.

All numerical experiments are based on a consistent baseline parameter set,
calibrated according to representative values from the literature on stochastic
interest rate and volatility models. The model inputs include the parameters
governing the variance process (k, 6, o, ,01), the interest rate process (a, b,ompg),
and the fractional parameters («, ).

To assess the sensitivity of the option price to individual parameters, we perform
a series of one-at-a-time experiments in which a single parameter is varied while all
others are held constant. These include variations in the Hurst-related parameter «,
the smoothing parameter ¢, the initial short rate rg, and the interest rate volatility
or. The goal of this sensitivity analysis is to isolate and understand the marginal
effects of each modeling component on European call option prices.

All numerical results are presented graphically and discussed in the following
subsection.

Under the baseline parameter values specified in Section 5.2, the European call
option price is computed to be approximately 9.1565. This result is obtained using
a Fourier inversion technique with adaptive integration, and the computation time
is reasonably fast (under 0.01 seconds). This suggests that our implementation is
both efficient and suitable for practical pricing applications.

5.3 Convergence Analysis of Fourier Integral

The Fourier inversion method used in pricing relies on numerical integration over
a truncated domain. To ensure accuracy and efficiency, we investigate how the
integration upper bound U affects the computed option price.

Figure 1 shows the convergence behavior of the call option price as U increases
from 20 to 200. As expected, the price gradually stabilizes, with diminishing
improvements for larger values of U. This supports our choice of U = 200 in
all subsequent experiments, as it strikes a good balance between accuracy and
computational speed. This analysis confirms that the Fourier inversion method
is numerically stable and convergent under the fractional Heston—Vasicek model,
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thereby validating its use in the subsequent pricing and sensitivity experiments.

Convergence of Fourier Integral

Option Price

20 40 60 80 100 120 140 160 180 200
Integration Upper Bound (U)

Figure 1: Convergence of the option price with respect to the upper integration bound U in
the Fourier inversion method.

5.4 Estimation of the Memory Parameter o

The fractional parameter a governs the degree of long-range dependence in the
short rate dynamics of the fractional Vasicek model. Specifically, it determines the
Hurst index H = a + 0.5, which measures the degree of memory and persistence
in the underlying process. For « > 0 (i.e., H > 0.5), the process exhibits positive
long-range dependence, meaning that shocks to the short rate decay slowly over
time. Accurately estimating « is therefore crucial for calibration, pricing, and risk
management applications.

Despite its importance, the estimation of « is often neglected in theoretical
modeling. To address this gap, we conduct a numerical experiment to evaluate the
feasibility of recovering a from simulated data. In our experiment, we simulate
sample paths of the short rate under the fractional Vasicek model over a five-year
horizon, using N = 10,000 time steps and the smoothing approximation method
described in Section 3. This approach approximates the fractional kernel via a finite-
memory expansion, enabling tractable numerical simulations of the non-Markovian
short rate process.

For each simulated path, we estimate the Hurst index H using the Whittle esti-
mator—a widely used frequency-domain method that approximates the Gaussian
maximum likelihood estimator [20]. The Whittle method is particularly well suited
for stationary Gaussian processes and long-memory time series, offering desirable sta-
tistical properties such as asymptotic unbiasedness and consistency under standard
regularity conditions. The Whittle likelihood function is given by:

owio)= [ [1ogfg<x>+;;%>) an, (5)

where fy(\) denotes the parametric spectral density of the process, indexed by the
parameter 6 (here related to H), and I()) is the periodogram of the observed data.



238 JOURNAL OF MATHEMATICS AND MODELING IN FINANCE

The estimator minimizes Ly (6) with respect to 6, producing an efficient estimate
of the memory parameter.

The following pseudocode outlines the steps used in our MATLAB implementation
to estimate a from a simulated path of the fractional Vasicek short rate process:

Algorithm 4 Estimation of « via the Whittle Estimator

1: Simulate a path {r;}Z_, of the fractional Vasicek model using a smoothing
approximation.

2: Remove deterministic trend: 7y = r, — E[ry].

3: Estimate the Hurst index H using a spectral method (e.g., MATLAB’s wfb-
mesti).

4: Compute the memory parameter as « = H — 0.5.

5: Return & as the estimated fractional parameter.

In our context, we apply the Whittle estimator to the simulated short rate path
and compute « via the identity « = H — 0.5. Table 1 reports the results from three
representative simulation trials, all based on a true value of a = 0.20.

Table 1: Whittle-based estimation of the Hurst index and the memory parameter a.

Trial Estimated H Estimated « = H — 0.5

1 0.6831 0.1831
2 0.6869 0.1869
3 0.6998 0.1998

The results demonstrate that the Whittle estimator is capable of producing highly
accurate estimates of the Hurst index even in relatively short sample sizes, provided
that the sampling frequency is sufficiently high. The recovered values of « lie within
a small neighborhood of the true parameter, with absolute errors below 0.017 in all
three cases. This supports the practical viability of using spectral-domain techniques
for estimating long-memory effects in interest rate modeling.
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Vasicek Process ( a = 0.20)

Short rate r(t)

0 0.5 1 15 2 25 3 35 4 4.5 5
Time (years)

Figure 2: Sample path of the simulated fractional Vasicek process with a = 0.20, used for
estimation of the Hurst index via the Whittle method.

Figure 2 shows a sample path of the simulated short rate process used for
the estimation, highlighting its persistent and smooth behavior characteristic of
long-memory dynamics.

5.5 Interpretation of Numerical Results

We begin our numerical analysis by examining the behavior of European call option
prices across varying strikes and maturities. Figure 3 displays the resulting call
price surface under the fractional Heston—Vasicek model, computed via the Fourier
inversion method described in Section 5.1.

As expected, the option price increases monotonically with the time to maturity
T and decreases with the strike price K. This is consistent with financial intuition:
longer maturities increase the probability of the option ending in-the-money, while
higher strikes reduce the likelihood of a profitable exercise.

The surface also displays curvature effects attributable to both stochastic volatil-
ity and long-memory in interest rates. In particular, the elevated values for deep
in-the-money options (low K) and long maturities reflect the compounding impact
of persistent interest rate fluctuations over time. These effects would be underrep-
resented in a Black—Scholes setting or even in standard Heston models without a
fractional rate component.

The smooth gradient along the maturity axis further suggests numerical stability
and coherence of the Fourier-based pricing algorithm, even in the presence of
fractional noise.

Figure 4 presents the implied volatility smile generated by the fractional Heston—
Vasicek model for a fixed maturity. The model successfully reproduces the well-known
smile effect observed in equity markets, with higher implied volatilities for deep
in-the-money and out-of-the-money options, and a trough near the at-the-money
strike.
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European Call Price Surface - Fractional Heston-Vasicek Model
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Figure 3: European call option price surface under the fractional Heston—Vasicek model.
The prices are shown as a function of strike K and maturity 7.

The implied volatilities are computed by inverting the Black—Scholes formula for
a range of strike prices using the model-produced option prices. The ATM strike,
indicated by a red marker, aligns closely with market-consistent levels, suggesting
that the model is well-calibrated at the central region of the smile. The upward
sloping wings of the smile are a result of the volatility-of-volatility component from
the Heston model, whereas the curvature is further affected by the long-memory
effects in the interest rate process.

26Implied Volatility Smile under Fractional Heston-Vasicek Model
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Figure 4: Implied volatility smile for maturity 7" = 1 under the fractional Heston—Vasicek
model.

In addition to the smile for a fixed maturity, we compute the full implied volatility
surface across a range of strikes and maturities. The result is shown in Figure 5.
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The surface confirms the model’s ability to jointly reproduce strike- and maturity-
dependent features of implied volatilities.

As maturity increases, implied volatilities tend to decline for at-the-money and
slightly out-of-the-money options, reflecting the mean-reverting nature of both the
variance and interest rate processes. The fanned shape at shorter maturities is
indicative of stronger effects from the fractional interest rate component, which
diminishes as maturity grows. This long-memory effect is thus more pronounced for
short-dated instruments, aligning with empirical findings in fixed income markets.

Overall, the model captures the essential skew and term structure observed in mar-
ket data, suggesting its practical utility for derivative pricing and risk management
tasks.

Implied Volatility Surface - Fractional Heston-Vasicek Model
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Figure 5: Implied volatility surface under the fractional Heston—Vasicek model.

5.6 Sensitivity Analysis with Respect to Model Parameters

To gain deeper insights into the influence of various model parameters on option
prices, we conduct a one-at-a-time sensitivity analysis. Specifically, we vary key
parameters of both the fractional Vasicek short rate process and the Heston variance
dynamics while holding all other parameters fixed at their baseline values (as
specified in Section 5.2).

This approach allows us to isolate the marginal impact of each parameter on
the European call option price, offering valuable intuition on model behavior and
guiding future calibration efforts. In each experiment, the option price is recomputed
across a grid of values for the parameter of interest, and the results are visualized
to highlight trends and nonlinearities in price response.

We begin with the fractional parameter «, which controls the strength of memory
in the short rate process.

Effect of the Hurst Parameter «. Figure 6 illustrates the sensitivity of the
FEuropean call option price to the fractional memory parameter «, which relates to
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the Hurst index as H = a + 0.5. As « increases from 0.05 to 0.45 (corresponding to
H ranging from 0.55 to 0.95), the option price exhibits a steadily increasing pattern.

This behavior reflects the long-memory nature of the fractional Vasicek process
governing the short rate. Larger « values imply greater persistence in the interest
rate path, which in turn increases the expected present value of the option’s payoff
due to more pronounced autocorrelation in the short rate path. The nonlinearity
observed in the curve suggests diminishing marginal effects of memory persistence
beyond H =~ (.85, indicating a saturation point in pricing sensitivity.

Sensitivity of Price to Fractional Memory (H)

Call Option Price

9.13
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Hurst Parameter H = o + 0.5

Figure 6: Sensitivity of the European call option price to the Hurst parameter H = a + 0.5.

Effect of the Smoothing Parameter e. The parameter € plays a technical but
important role in the numerical approximation of fBm used to model the long-
memory short rate dynamics. Smaller values of € correspond to a finer approximation
of fBm, but may introduce numerical instability, while larger values act as a
regularization, smoothing out the singularity in the fractional kernel.

Figure 7 shows the sensitivity of the European call option price to changes in e,
ranging from 1072 to 107!, The results exhibit a mild but consistent decrease in the
option price as € increases. This reflects the fact that higher smoothing dampens
the effective memory component in the short rate process, thereby reducing the
cumulative discounting effect associated with persistent low rates.

Overall, while the option price is relatively stable across reasonable values of e,
its sensitivity suggests that careful tuning of this parameter may be needed when
calibrating the model to real market data.
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Sensitivity of Option Price to Regularization Parameter ¢
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Figure 7: Sensitivity of the European call option price to the smoothing parameter e.

Effect of Interest Rate Volatility o,. The parameter o, governs the instantaneous
volatility of the short rate process and encapsulates how uncertain the future
evolution of interest rates is. As o, increases, the stochastic variation in the short
rate intensifies, leading to more dispersion in the stochastic discount factor.

Figure 8 presents the sensitivity of the European call option price with respect
to o, examined over a broader and more economically relevant range [0,0.5]. The
relationship is clearly nonlinear and strictly decreasing: higher interest rate volatility
leads to a systematic decline in the option price. This decline is particularly steep in
the lower range of o, and gradually levels off for large o, suggesting a diminishing
marginal impact.

This behavior aligns with financial intuition: greater interest rate uncertainty
tends to reduce the expected present value of future payoffs, particularly when the
option payoff is heavily discounted. Hence, o, exerts a pronounced effect on pricing,
especially for long-dated or interest rate-sensitive instruments such as callable bonds,
convertible securities, and long-maturity equity options.

Sensitivity of Option Price to Interest Rate Volatility o,

European Call Option Price

85

0 005 01 015 02 025 03 035 04 045 05
o, (Volatility of Interest Rate)

Figure 8: Sensitivity of the European call option price to the interest rate volatility parameter
or, examined over a broader range.
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Effect of Mean Reversion Speed a and Long-Term Level b. We now turn to the
classical parameters of the Vasicek short rate process: the speed of mean reversion
a and the long-term mean level b. These parameters jointly govern how quickly
the short rate reverts to its long-run average and what that average is. Figure 9
presents the sensitivity of the European call option price to variations in a and
b. In the left panel, we observe that increasing the mean reversion speed a leads
to a modest increase in the option price. This is because faster reversion reduces
the uncertainty in the interest rate path, effectively narrowing the distribution of
the discount factor and stabilizing its expectation. The right panel shows a much
stronger sensitivity to the long-term mean level b. As b increases, the option price
rises significantly. Since higher values of b raise the expected short rate over the life
of the option, this leads to higher discounting of the strike component Ke™ I Tads
reducing its impact and thereby increasing the net option price. The steepness of
this response confirms that b is a critical driver of pricing behavior in models with
stochastic interest rates.

Sensitivity to Mean Reversion Speed aSensitivity to Long-Term Rate Level b
9.168 10.2

9.166 10

9.164
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European Call Option Price
European Call Option Price

©
@
&

9.154 9

9.152 88
0 1 2 3 0 0.05 0.1 0.15
a (Speed of Mean Reversion) b (Long-Term Mean)

Figure 9: Sensitivity of the European call option price to the Vasicek parameters: mean
reversion speed a (left) and long-term mean b (right).

Sensitivity to Initial Short Rate ry. We also examine the impact of the initial
short rate rg on option pricing outcomes. Figure 10 illustrates how the European
call option price responds to variations in rg, holding all other parameters fixed.

The relationship is strongly positive and approximately linear: as r increases,
the option price rises noticeably. This reflects the direct role that rg plays in
the exponential discounting term e~ [ rsds, Higher values of rg shift the entire
short rate path upward, leading to increased discounting of the strike and hence a
higher present value of the call payoff. This finding emphasizes the importance of
accurately estimating current interest rate conditions when pricing under models
with stochastic rates.
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Sensitivity of Option Price to Initial Short Rate rq

European Call Option Price
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Figure 10: Sensitivity of European call option price to the initial short rate r¢.

5.7 Calibration to Market Data

To assess the empirical performance of the proposed Heston—fractional Vasicek
(HFV) framework, we calibrate the model to real call option prices on the S&P 500
Index at the close of trading on 7 August 2019. On this date, the index closed
at $287.97, and the prevailing risk-free rate was approximately r = 0.02. We
consider two maturities-7 = 100 days and T' = 237 days—chosen to highlight both
short- and medium-term behaviour of the model and to evaluate the impact of
long-memory interest-rate dynamics, which are expected to be more pronounced for
longer maturities.

Calibration Procedure. The model parameters are estimated by minimizing the
squared pricing error between market and model call prices. Given a set of observed
market prices {C™KY(K,, T)} Y| for strikes {K;}, the calibration problem is

N
.1 2
min 2} (CHFV(K;,T;60) — C™ " (K;,T))",

i—
where 6 denotes the vector of model parameters. The pricing function CHFV ()
is computed via Monte Carlo simulation under the affine-approximated Heston—
fractional Vasicek dynamics.

Parameterization. The calibrated parameter vector is

0= (U0>17»’€7777P17 a7ba O—Tap27a76)7

corresponding respectively to the initial variance, long-run variance, variance mean-
reversion speed, volatility of volatility, equity—volatility correlation, interest-rate
mean reversion and mean level, short-rate volatility, equity—rate correlation, frac-
tional memory parameter, and the smoothing parameter of the regularized fBm.

Stochastic Optimization via Adam. To solve the above nonlinear optimization
problem, we employ a stochastic gradient descent scheme with Adam updates. The
algorithm proceeds as follows:
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e Market strikes and prices are randomly shuffled, and small strike batches are
used to stochastically estimate the loss and gradients.

e Gradients are computed by symmetric finite differences:

aiL N L(ej =+ Efd) — L(Hj — Efd)
69j 26fd ’

with e¢g = 1074

e Adam first- and second-moment recursions are updated with parameters
(81, B2) = (0.9,0.999) and learning rate ay, = 0.02.

e Gradient steps are clipped to control instability and projected onto economi-
cally reasonable parameter bounds.

e An /y-regularization penalty )\mg”@Hz with Apeg = 103 is included to enhance
stability.

Training is performed for 35 epochs, with each epoch processing mini-batches of
six strikes and averaging Monte Carlo losses over multiple random seeds to reduce
variance. This procedure provides a robust and noise-tolerant calibration, especially
in the presence of Monte Carlo pricing noise.

Monte Carlo Pricing. Model prices within the optimization loop are computed
using a discretized simulation of the Heston—fractional Vasicek system under the
affine approximation. For each maturity T', paths for (S, vs, ) are simulated on
a uniform grid with ngteps = 200 time steps. Correlated Gaussian innovations are
generated via Cholesky factorization of the correlation matrix of (W, Wy, Wy).

The short-rate dynamics employ the regularized fBm approximation, producing
an effective interest-rate volatility o,.%. The discounted payoff

e foT rydt (ST _ K)+

is estimated across npatns = 6000-12000 Monte Carlo samples (depending on
context), and averaged across batches to yield the call price.

Final Parameter Selection. After the final epoch, the optimized parameter vector
0* is used to compute model prices across all strikes with a higher Monte Carlo
budget to generate the plotted calibration curves. These results form the basis of
the empirical comparison between the Heston—fractional Vasicek model and the
classical Heston model reported in Figures 11-12.

For the 100-day maturity (Figure 11), both the classical Heston model and the
Heston—fractional Vasicek (HFV) model capture the general shape of the market
price curve. However, the HF'V model provides a noticeably tighter fit across strikes.
The improvement is most evident in the intermediate-strike region, where the Heston
model systematically underprices options, while the HFV curve closely overlaps the
observed market prices.
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For the 237-day maturity (Figure 12), the difference between the two models
becomes significantly more pronounced. The Heston model exhibits a persistent
misfit, particularly for deep out-of-the-money strikes, where it underprices market
options and produces an overly flat price profile. In contrast, the HF'V model
reproduces the market curvature more accurately and remains close to observed
prices across the full range of strikes. This enhanced performance aligns with
the increasing impact of long-memory interest-rate dynamics over longer horizons.
Overall, the results demonstrate that incorporating fractional short-rate behaviour
improves calibration quality, especially for medium-term maturities.
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Figure 11: The comparison of the call option price estimated by the Heston (left) and the
Heston Fractional Vasicek (right) models (red dashed) and the market call price (blue
circles) for the time to maturity 7" of 100 days.
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Figure 12: The comparison of the call option price estimated by the Heston (left) and the
Heston Fractional Vasicek (right) models (red dashed) and the market call price (blue
circles) for the time to maturity T of 237 days.

6 Conclusion

In this paper we introduced a tractable framework for option pricing that couples
the Heston stochastic volatility model with an interest-rate process driven by a regu-
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larized fractional Brownian motion. By employing a semimartingale approximation
of fBm together with an affine approximation of the volatility—rate interaction, we
constructed an analytically convenient surrogate model that retains key long-memory
features while restoring an exponential-affine structure suitable for Fourier-based
pricing.

Our numerical analysis demonstrates that fractional interest-rate dynamics can
materially influence equity option values through their effect on the stochastic
discount factor. The sensitivity experiments highlight the role of the memory
parameter o and the short-rate volatility o, in shaping implied-volatility smiles and
term structures. Moreover, the empirical calibration results show that the proposed
Heston—fractional Vasicek model achieves a closer fit to market option prices than
the classical Heston model, particularly for longer maturities where persistent rate
dynamics become more influential.

It is important to emphasize that the pricing formulas derived here correspond to
the approximate affine surrogate model, not to the exact fractional Vasicek process
whose generator would require an infinite-dimensional Volterra state representation.
Constructing such a full Markovian lift remains an open challenge and a promising
direction for future work.

Finally, while the present study focuses on equity-style options, extending the
framework to fixed-income derivatives such as caps, floors, and swaptions remains
an important avenue for future research. This would require developing full term-
structure dynamics and calibration methodologies under the regularized fractional
Vasicek specification, which we leave for future investigation.
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