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Abstract:
Abstract:
We develop an option-pricing framework that couples the Heston stochastic volatility
model with a fractional Vasicek short-rate process to incorporate long-memory
effects in interest rates. Using a regularized semimartingale approximation of
fractional Brownian motion and an affine surrogate representation, we derive a
tractable pricing PDE and a semi-closed-form characteristic function suitable
for Fourier-based valuation. The numerical implementation employs adaptive
integration for fast and accurate pricing, and sensitivity analysis highlights the role
of the memory parameter α, the smoothing term ε, and the short-rate volatility
σr. Empirical calibration to S&P 500 option data demonstrates that the proposed
model improves the fit to market prices relative to the classical Heston model,
particularly for longer maturities. These results indicate that persistent interest-
rate dynamics can materially influence equity option valuation and motivate further
development of fractional interest-rate modelling.
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1 Introduction

Modern financial markets are increasingly shaped by the joint stochastic dynamics

of asset prices, volatility, and interest rates. Among the most influential models for

capturing such interactions is the Heston stochastic volatility framework [9], which

models the variance of asset returns as a mean-reverting square-root process and

accounts for empirically observed phenomena such as volatility clustering and the

leverage effect. While the Heston model has been extended in various directions to

improve empirical fit [5, 8, 12, 13, 17], many implementations retain the simplifying

assumption of constant interest rates or rely on short-memory dynamics such as the

Vasicek or CIR models when incorporating stochastic rates.

A growing body of empirical research indicates, however, that short-term interest

rates frequently exhibit long-range dependence, meaning that their autocorrelations

decay at a hyperbolic rather than exponential rate. This persistence implies that

shocks to interest rates may exert influence over extended horizons, a feature that
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standard Markovian specifications fail to capture. Evidence for such long-memory

behaviour has been documented across maturities, currencies, and market regimes:

[11] detect multifractal persistence in interest rate futures; [2] identify fractional

integration patterns in real interest rate differentials over 150 years; [1] note persistent

inflation uncertainty impacting the term structure; [3] find strong persistence in

European monetary policy spreads; and [15] show that real interest rates display

structural breaks and centuries-long persistence. These findings underscore the

relevance of incorporating long-memory features into models used for pricing interest

rate–sensitive derivatives.

One natural approach to modelling such persistence is to drive the short rate

with a fractional Brownian motion (fBm), leading to a fractional Vasicek process

[14, 16, 19]. The fBm-driven specification enriches the autocorrelation structure of

the short rate while preserving a familiar SDE framework. The degree of memory is

governed by the parameter α ∈ (0, 0.5), corresponding to a Hurst index H = α+0.5,

which offers a transparent interpretation of persistence intensity.

In this paper, we propose a hybrid model that couples the Heston stochastic

volatility dynamics with an fBm-driven, fractional Vasicek-type short rate. By

introducing a fractional component into the interest-rate process, the model aims

to capture the persistent effects of monetary policy and macroeconomic conditions

documented in empirical studies. Our framework builds on [7], which integrated

a classical Vasicek rate into the Heston model, and extends it by incorporating

fractional characteristics.

Importantly, the objective of this paper is not to derive pricing formulas for the

exact fractional Vasicek model, whose non-Markovian, Volterra-type structure ne-

cessitates an infinite-dimensional state augmentation to obtain a rigorous generator.

Instead, our aim is to construct a computationally efficient, approximately affine

surrogate model obtained through a regularized (semi-martingale) representation

of fBm and an affine approximation analogous to those used in hybrid Heston

interest-rate models. This approximation intentionally restores tractability, enabling

a semi-closed-form characteristic function and fast Fourier-based pricing. The result-

ing pricing formulas are therefore mathematically valid for the approximate affine

model, whose role is to provide a practical and numerically efficient framework for

incorporating long-memory effects into derivative valuation. All pricing results in

this paper apply to the regularized affine surrogate model and therefore are fully

compatible with the classical arbitrage-free, risk-neutral framework. Since the surro-

gate short-rate process is a semimartingale and Markovian, standard Feynman–Kac

arguments apply without modification. Our goal is therefore not to construct a full

interest-rate derivative calibration framework, but to study how persistent short-rate

dynamics affect equity option valuation.

Within this approximate setting, we derive a semi-analytical expression for

the characteristic function of the joint dynamics, facilitating efficient European

option pricing via Fourier inversion techniques [6]. We also develop a numerical



Paper 11: Heston–Fractional Vasicek Model for Options 227

implementation based on adaptive integration and conduct a detailed sensitivity

analysis to quantify the influence of the memory parameter α, the smoothing

parameter ϵ, and the short-rate volatility σr. Finally, we illustrate the practical

estimation of the memory parameter using the Whittle likelihood, a frequency-

domain method well suited for long-memory Gaussian processes.

The remainder of the paper is organized as follows. Section 2 reviews the mathe-

matical background on fractional Brownian motion and its smoothing approximation.

Section 3 presents the joint Heston–fractional Vasicek model. Section 4 derives the

option pricing formula and the associated characteristic function. Section 5 describes

the numerical scheme, validates it via convergence tests, and reports simulation

results. Section 6 concludes and outlines directions for future research.

2 Preliminaries

Fractional Brownian motion (fBm) with Hurst parameter 0 < H < 1 is a con-

tinuous, centered Gaussian process that generalizes classical Brownian motion by

capturing long–range dependence and self–similarity. Denoting the process by

BH = {BH(t), 0 ≤ t ≤ T}, its covariance structure is given by

RH(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
, t, s ∈ [0, T ].

For H = 0.5, fBm reduces to standard Brownian motion. When H > 0.5, the

increments exhibit positive long–range dependence, a feature that makes fBm

particularly relevant for modeling persistent temporal structures in financial time

series, including interest rates.

A significant challenge, however, is that BH is not a semimartingale when H ̸= 0.5.

Consequently, Itô calculus does not apply in its classical form, complicating any

attempt to incorporate BH directly into arbitrage-free asset–pricing frameworks.

To circumvent this issue, one strategy is to approximate fBm by a process that

belongs to the semimartingale class while retaining its long-memory characteristics

in an L2 sense. A widely used representation expresses fBm as

BH(t) =
1

Γ(H + 1
2 )

(
Ut +

∫ t

0

(t− s)H− 1
2 dWs

)
,

where W is a standard Brownian motion and Ut is an absolutely continuous process.

The Volterra integral term captures the persistent autocorrelation structure of fBm.

To obtain a tractable semimartingale approximation, Thao [18] introduced the

regularized process

BH,ε(t) =

∫ t

0

(t− s+ ε)H− 1
2 dWs, ε > 0.

Define α = H− 1
2 . The kernel Kε(t, s) := (t− s+ ε)α is smooth in t, and the process

BH,ε(t) =
∫ t
0
Kε(t, s)dWs falls within the class of Volterra Gaussian semimartingales.
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Since ∂tKε(t, s) = α(t− s+ ε)α−1 ∈ L2 for every fixed ε > 0, the stochastic Fubini

theorem yields the Itô differential (see, e.g., standard results on Volterra stochastic

integrals):

d

(∫ t

0

Kε(t, s) dWs

)
=

(∫ t

0

∂tKε(t, s) dWs

)
dt+Kε(t, t) dWt.

Substituting the explicit kernel derivatives,

∂tKε(t, s) = α(t− s+ ε)α−1, Kε(t, t) = εα,

we obtain the Itô differential of the regularized fBm:

dBH,ε(t) = α

(∫ t

0

(t− s+ ε)α−1 dWs

)
dt+ εα dWt.

Introducing the auxiliary Volterra process

φεt :=

∫ t

0

(t− s+ ε)α−1 dWs,

we finally arrive at the semimartingale representation:

dBH,ε(t) = αφεt dt+ εα dWt.

In the remainder of the paper, we adopt this semimartingale approximation

of fBm for modeling interest-rate dynamics with long–range dependence. This

formulation enables the use of classical Itô calculus under the risk-neutral measure,

facilitates numerical simulation, and avoids the theoretical difficulties associated

with the non-semimartingale nature of genuine fBm.

3 Model Setup

We consider a financial market over a finite time horizon [0, T ], consisting of a risky

asset with price process St and a stochastic short-term interest rate process rt. The

dynamics of the asset price are governed by a generalized Heston stochastic volatility

model, while the interest rate follows a fractional Vasicek process approximated via

a semi–martingale formulation.

Let (Ω,F ,F = {Ft}t≥0,P) be a filtered probability space satisfying the usual

conditions. The asset price process S = {St, 0 ≤ t ≤ T} satisfies the following

stochastic differential equation (SDE):

dSt = rtSt dt+
√
vtSt dW

S
t ,

where rt is the short-term stochastic interest rate, and vt denotes the stochastic

variance of the asset. The variance process vt evolves according to the classical

Heston dynamics:

dvt = κ(θ − vt) dt+ σ
√
vt dW

v
t , (1)
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where κ > 0 is the rate of mean reversion, θ > 0 is the long-run variance level, σ > 0

is the volatility of volatility, and WS
t , W

v
t are standard Brownian motions with

correlation E[dWS
t dW

v
t ] = ρ1 for some |ρ1| < 1.

The classical Vasicek model assumes a mean-reverting Ornstein–Uhlenbeck pro-

cess for the short-term interest rate rt. To account for long-range dependence

observed in empirical interest rate data, we extend this model by incorporating

a fractional Brownian motion (fBm) component with Hurst parameter H > 0.5.

However, since fBm is not a semi–martingale, we work with its semi–martingale

approximation BH,ϵ(t) as discussed in Section 2.

Accordingly, the fractional Vasicek interest rate dynamics are modeled as:

drt = a(b− rt) dt+ σr dB
H,ϵ(t),

where a > 0 is the speed of mean reversion, b is the long-term mean of the interest

rate, σr > 0 is the interest rate volatility, and BH,ϵ(t) is defined via the regularized

semi–martingale representation:

dBH,ϵ(t) = αφϵt dt+ ϵα dW r
t ,

with α = H − 1
2 and φϵt =

∫ t
0
(t− s+ ϵ)α−1 dW r

s .

Substituting this into the Vasicek model yields the following tractable formulation:

drt = (a(b− rt) + σrαφ
ϵ
t) dt+ σrϵ

α dW r
t .

Combining the Heston asset price model with the semi–martingale approximation

of the fractional Vasicek interest rate process, we obtain the full system:
dSt = rtSt dt+

√
vtSt dW

S
t ,

dvt = κ(θ − vt) dt+ σ
√
vt dW

v
t ,

drt = (a(b− rt) + σrαφ
ϵ
t) dt+ σrϵ

α dW r
t ,

(2)

where (WS
t ,W

v
t ,W

r
t ) is a three-dimensional Brownian motion with instantaneous

correlations:

E[dWS
t dW v

t ] = ρ1, E[dWS
t dW r

t ] = ρ2, E[dW v
t dW r

t ] = 0,

where |ρ1| < 1 and |ρ2| < 1.

This hybrid model captures both stochastic volatility in asset returns and long-

range dependence in interest rate dynamics, providing a richer framework for

derivative pricing and risk assessment in financial markets.
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4 Pricing Formula for European Options

European options, which may only be exercised at maturity, constitute some of the

most fundamental instruments in financial markets. Their valuation is essential for

hedging, risk management, and model calibration. In this section, we derive a semi-

analytical pricing formula for European options under the hybrid Heston–fractional

Vasicek model presented in Section 3.

We work under the risk-neutral measure Q and assume frictionless and arbitrage-

free markets. Let ϕ(x, v, r, t) denote the price at time t of a European contingent

claim written on the underlying asset St, where xt := logSt, vt denotes the instan-

taneous variance, and rt denotes the short-term interest rate. The latter evolves

according to the regularized fractional Vasicek specification discussed in Section 3.

The log-transformation xt = logSt is standard in stochastic volatility modelling

and is particularly convenient for Fourier-based valuation techniques. Formally,

ϕ(x, v, r, t) may be regarded as a sufficiently regular candidate solution to the

backward pricing equation under the relevant risk-neutral dynamics.

The pricing PDE under the full regularized fractional model

Applying Itô’s lemma to the function ϕ(xt, vt, rt, t) under the dynamics of the

system (2) yields the formal backward equation:

0 =
∂ϕ

∂t
+

(
r − 1

2
v

)
∂ϕ

∂x
+ κ(θ − v)∂ϕ

∂v
+ (a(b− r) + σrαφ

ϵ
t)
∂ϕ

∂r

+
1

2
v
∂2ϕ

∂x2
+ ρ1σv

∂2ϕ

∂x∂v
+

1

2
σ2v

∂2ϕ

∂v2
+

1

2
σ2
rϵ

2α ∂
2ϕ

∂r2
+ ρ2σrϵ

α
√
v
∂2ϕ

∂x∂r
− rϕ.

A key observation is that the PDE presented here does not represent the Kol-

mogorov equation associated with the full fractional Vasicek dynamics. The aux-

iliary process φεt is a Volterra-type Gaussian process and therefore inherently

non-Markovian. As a result, the augmented state vector (xt, vt, rt, φ
ε
t ) possesses

an infinite-dimensional memory structure. Consequently, a PDE posed solely in

the variables (x, v, r, t) cannot correspond to the generator of the original fractional

model, whose dynamics depend on the entire past history through φεt .

To retain analytic tractability, we therefore introduce an affine surrogate model

via structurally motivated approximations, following the methodology of Grzelak and

Oosterlee [7] and similar affine approximations used in hybrid Heston interest-rate

models.

Affine Approximation of Nonlinear and Non-Markovian Terms

Two specific simplifications are introduced:
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(i) The non-Markovian fractional term φεt appears only in the drift of rt. Since φ
ε
t

is a centered Gaussian Volterra process, we approximate its drift contribution

by zero, i.e.,

σrαφ
ε
t ≈ 0,

thereby removing path-dependence in the drift of rt. This step does not

render the original fractional model Markovian; rather, it defines a Markovian

approximate Vasicek-type model under which analytical pricing becomes

feasible.

(ii) The mixed second-order term ∂2ϕ/(∂x ∂r) contains the non-affine factor
√
v,

preventing closed-form Fourier methods. Following [7], we replace
√
vt by its

deterministic approximation Λ(t), constructed via moment-matching for the

CIR distribution: √
vt ≈ Λ(t) := E[

√
vt].

This preserves the affine form of the pricing operator while maintaining a

meaningful coupling between equity and interest-rate factors.

Under these approximations, the pricing equation corresponds to an affine Marko-

vian surrogate with generator:

0 =
∂ϕ

∂t
+

(
r − 1

2
v

)
∂ϕ

∂x
+ κ(θ − v)∂ϕ

∂v
+ a(b− r)∂ϕ

∂r
+

1

2
v
∂2ϕ

∂x2

+ ρ1σv
∂2ϕ

∂x∂v
+

1

2
σ2v

∂2ϕ

∂v2
+

1

2
σ2
rϵ

2α ∂
2ϕ

∂r2
+ ρ2σrϵ

α Λ(t)
∂2ϕ

∂x∂r
− rϕ. (3)

Equation (3) is therefore not the generator of the original fractional Vasicek

model, but the generator of the approximated affine hybrid model used for pricing.

This clarification resolves the issues related to mathematical consistency and the

rigorous applicability of the Feynman–Kac framework.

Characteristic-Function-Based Pricing

With the affine surrogate structure restored, we may apply transform techniques in

the spirit of Duffie et al. [6]. Let xt = log St, and define the conditional characteristic

function:

ϕ(u, τ) = EQ[eiuxT
∣∣xt = x, vt = v, rt = r

]
, τ := T − t.

Motivated by the affine form of (3), we postulate the exponential–affine representa-

tion:

ϕ(u, τ) = exp(A(u, τ) +B(u, τ)x+ C(u, τ)v +D(u, τ)r) ,

with terminal conditions A(u, 0) = 0, B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0.

Substituting this exponential–affine representation into (3) and matching coef-

ficients yields the usual Riccati and linear ODEs for (A,B,C,D), consistent with
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the affine structure. The resulting characteristic function enables efficient valua-

tion of European options via Fourier inversion. The explicit ODE system and its

closed-form solutions are presented below; their structure is unchanged from the

classical Heston model, except for the additional deterministic coupling term Λ(t)

in the coefficient of A(u, τ), which captures the (approximated) interaction between

the equity variance and the fractional interest-rate dynamics.

Since B(u, τ) does not depend on τ (as there is no second-order derivative in x

that depends on any state variable), we immediately find:

∂B

∂τ
= 0 ⇒ B(u, τ) = iu.

The ODE for C(u, τ) corresponds to the component associated with the stochastic

volatility vt, and takes the form of a Riccati equation:

∂C

∂τ
=

1

2
B(B − 1) + (ρ1σB − κ)C +

1

2
σ2C2.

Substituting B(u, τ) = iu and defining constants

c1 := −1

2
u(u+ i), c2 := ρ1σiu− κ, c3 :=

1

2
σ2,

the Riccati equation becomes:

∂C

∂τ
= c1 + c2C + c3C

2,

which admits the closed-form solution:

C(u, τ) =
−(c2 + d)

2c3(1− ge−dτ )
(
1− e−dτ

)
,

with

d :=
√
c22 − 4c1c3, g :=

c2 + d

c2 − d
.

Next, the ODE for D(u, τ) corresponds to the interest rate factor and is linear:

∂D

∂τ
= B − (aD + 1).

Using the initial condition D(u, 0) = 0 and solving by the integrating factor method

yields:

D(u, τ) =
iu− 1

a

(
1− e−aτ

)
.

The function A(u, τ) aggregates contributions from the drift and variance terms

and satisfies:

∂A

∂τ
= abD + κθC +

1

2
σ2
rϵ

2αD2 + ρ2σrϵ
αΛ(τ)BD,
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which integrates to:

A(u, τ) = abI1(τ) + κθI2(τ) +
1

2
σ2
rϵ

2αI3(τ) + ρ2σrϵ
αI4(τ),

where the integral terms are given explicitly as:

I1(τ) =

∫ τ

0

D(s) ds =
iu− 1

a

(
τ − 1− e−aτ

a

)
,

I2(τ) =

∫ τ

0

C(s) ds =
τ

σ2
(κ− σρ1iu− d)−

2

σ2
log

(
1− ge−dτ

1− g

)
,

I3(τ) =

∫ τ

0

D2(s) ds =
1

2a3
(i+ u)2

(
3 + e−2aτ − 4e−aτ − 2aτ

)
,

I4(τ) =

∫ τ

0

Λ(τ − s)D(s) ds = − iu+ u2

a

∫ τ

0

Λ(τ − s)(1− e−as) ds.

The function Λ(·) was defined earlier as the deterministic approximation to

E[
√
v(t)] and encodes the memory effects of the variance process. The integral I4

thus incorporates the fractional Vasicek memory structure into the pricing kernel.

The complete set of functions (A,B,C,D) fully characterizes the conditional

characteristic function of the log-asset price, and allows for efficient numerical pricing

of European-style derivatives via Fourier inversion techniques.

Financial Interpretation of long-memory Effects

The inclusion of a fractional Vasicek process for the short-term interest rate in-

troduces long-range dependence, a phenomenon widely documented in empirical

studies of financial time series. In contrast to classical Vasicek dynamics, which

model interest rates as Markovian Ornstein–Uhlenbeck processes with exponentially

decaying memory, the fractional variant exhibits power-law decay in the autocorrela-

tion structure. This means that shocks to the interest rate tend to persist for longer

periods, reflecting more realistic behavior of interest rates observed in practice,

particularly in low-rate or slowly adjusting economic environments.

From a financial perspective, this long-memory has critical implications for

the valuation of interest rate–sensitive securities. In standard models, the future

path of interest rates is largely independent of distant past behavior. However, in

the fractional Vasicek setting, past interest rate levels influence the present and

future values to a much greater degree. This persistence introduces a form of

path dependence into the model, where the interest rate’s historical trajectory can

significantly affect discounting and, thus, the present value of expected payoffs.

For European-style options, particularly those with longer maturities, the impact

of this memory becomes nontrivial. A more persistent (higher Hurst parameter)

interest rate process can lead to a slower mean reversion, often keeping rates lower

for longer periods. Since the risk-neutral discount factor is directly tied to the short

rate, this persistence translates into a smaller effective discount rate. Consequently,
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the expected present value of the option payoff increases, raising the overall price

of the option. This is consistent with the numerical results obtained in Section 5,

where higher values of the memory-related parameter α (equivalent to H − 0.5)

result in increased option prices.

Moreover, incorporating long-memory provides more robust modeling in environ-

ments characterized by economic inertia, such as during monetary policy transitions

or macroeconomic shocks. In such settings, traditional Markovian models may

underestimate the true risk or overstate the speed of reversion. The fractional Va-

sicek model addresses this by embedding a more flexible and empirically consistent

framework for interest rate dynamics, enabling better pricing, hedging, and risk

management of interest rate–sensitive derivatives.

5 Numerical Implementation and Empirical Analysis

In this section, we turn our attention to the practical implications of the model

developed in previous sections. Having derived the option pricing partial differential

equation and its solution via the characteristic function, we now focus on how

this theoretical framework can be utilized to compute option prices in practice.

Specifically, we derive a semi-closed-form expression for European option prices

via Fourier inversion techniques and discuss how the presence of fractional interest

rate dynamics influences numerical implementation. Following this, we present a

set of numerical experiments to assess the model’s pricing performance, sensitivity

to parameters, and its ability to capture market-implied volatility surfaces. The

results highlight both the benefits and limitations of incorporating long-memory

interest rate effects in the Heston-style stochastic volatility framework.

5.1 Pricing Formula via Fourier Inversion

After deriving the conditional characteristic function of the log-asset price process

xT = logST in exponential–affine form, we now proceed to compute European

option prices via Fourier inversion techniques. This approach is well suited to

models with (approximate) affine dynamics and was pioneered in the context of

stochastic volatility models by Heston [9], and generalized by Carr and Madan [4]

and Duffie et al. [6].

Under the risk-neutral measure Q, the price of a European call option with strike

price K, maturity T , and current time t is given by the discounted expected payoff:

C(St,K, τ) = EQ
[
e−

∫ T
t
rs ds (ST −K)+

∣∣∣St] ,
where τ = T − t is the time to maturity.

Due to the presence of stochastic interest rates rt governed by a fractional Vasicek

process, the discount factor e−
∫ T
t
rs ds is random and nontrivially correlated with ST .

However, since the model remains (approximately) affine, the joint characteristic
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function of xT := logST and the integral of rs over [t, T ] remains exponentially

affine. Thus, following standard methodology, we define:

C(St,K, τ) = St P1 −K EQ
[
e−

∫ T
t
rs ds

]
P2,

where P1 and P2 are risk-neutral probabilities defined as:

P1 = Q [logST > logK | Ft] ,
P2 = QT [logST > logK | Ft] ,

where QT denotes the T -forward measure. In affine models, these probabilities can

be computed via Fourier inversion of the characteristic function.

Following Carr and Madan (1999), we define a dampened option price function

to ensure integrability:

C̃(k) := eαkC(St,K = ek, τ), α > 0,

and compute its Fourier transform:

F [C̃](u) :=
∫ ∞

−∞
eiukC̃(k) dk.

Using the characteristic function ϕ(u, τ) derived in Section 4, the closed-form

representation of the call price is then given by:

C(St,K, τ) = St

(
1

2
+

1

π

∫ ∞

0

Re

[
e−iu logK ϕ1(u)

iu

]
du

)
−K EQ

[
e−

∫ T
t
rs ds

](1

2
+

1

π

∫ ∞

0

Re

[
e−iu logK ϕ2(u)

iu

]
du

)
, (4)

where ϕ1(u) and ϕ2(u) denote the characteristic functions of xT evaluated under

the risk-neutral and forward measures, respectively.

In our setting, due to the time-dependent discounting induced by rt, the exact

computation of EQ[e−
∫ T
t
rs ds] may not admit a closed-form expression. However,

under the affine approximation and the exponential–affine form of the solution, this

expectation can be computed using the function A(u, τ) derived earlier, evaluated

at u = 0:

EQ
[
e−

∫ T
t
rs ds

]
≈ eA(0,τ)+C(0,τ)vt+D(0,τ)rt .

In practical implementation, we perform numerical integration in Equation (4)

using quadrature methods such as the trapezoidal or Gauss–Laguerre rule, after

discretizing the integral over a suitably truncated domain [0, Umax] with step size

∆u. The choice of the damping parameter α, integration bounds, and discretization

scheme affects numerical stability and convergence and will be discussed in the next

subsection.
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5.2 Numerical Implementation Details

This subsection outlines the computational strategy employed to implement the

option pricing methodology developed in the preceding sections. The analytical

tractability of the model hinges on the availability of a closed-form expression for

the characteristic function of the log-asset price under risk-neutral dynamics, which

enables efficient pricing via Fourier inversion.

The pricing algorithm is implemented in MATLAB, utilizing numerical quadra-

ture to evaluate the relevant integrals. Specifically, we employ adaptive integration

routines to ensure stability and accuracy when computing oscillatory Fourier inte-

grals. The formulation accommodates both the stochastic volatility of the Heston

model and the long-memory effects introduced by the fractional Vasicek interest

rate process.

All numerical experiments are based on a consistent baseline parameter set,

calibrated according to representative values from the literature on stochastic

interest rate and volatility models. The model inputs include the parameters

governing the variance process (κ, θ, σ, ρ1), the interest rate process (a, b, σr, ρ2),

and the fractional parameters (α, ϵ).

To assess the sensitivity of the option price to individual parameters, we perform

a series of one-at-a-time experiments in which a single parameter is varied while all

others are held constant. These include variations in the Hurst-related parameter α,

the smoothing parameter ϵ, the initial short rate r0, and the interest rate volatility

σr. The goal of this sensitivity analysis is to isolate and understand the marginal

effects of each modeling component on European call option prices.

All numerical results are presented graphically and discussed in the following

subsection.

Under the baseline parameter values specified in Section 5.2, the European call

option price is computed to be approximately 9.1565. This result is obtained using

a Fourier inversion technique with adaptive integration, and the computation time

is reasonably fast (under 0.01 seconds). This suggests that our implementation is

both efficient and suitable for practical pricing applications.

5.3 Convergence Analysis of Fourier Integral

The Fourier inversion method used in pricing relies on numerical integration over

a truncated domain. To ensure accuracy and efficiency, we investigate how the

integration upper bound U affects the computed option price.

Figure 1 shows the convergence behavior of the call option price as U increases

from 20 to 200. As expected, the price gradually stabilizes, with diminishing

improvements for larger values of U . This supports our choice of U = 200 in

all subsequent experiments, as it strikes a good balance between accuracy and

computational speed. This analysis confirms that the Fourier inversion method

is numerically stable and convergent under the fractional Heston–Vasicek model,
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thereby validating its use in the subsequent pricing and sensitivity experiments.
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Figure 1: Convergence of the option price with respect to the upper integration bound U in
the Fourier inversion method.

5.4 Estimation of the Memory Parameter α

The fractional parameter α governs the degree of long-range dependence in the

short rate dynamics of the fractional Vasicek model. Specifically, it determines the

Hurst index H = α+ 0.5, which measures the degree of memory and persistence

in the underlying process. For α > 0 (i.e., H > 0.5), the process exhibits positive

long-range dependence, meaning that shocks to the short rate decay slowly over

time. Accurately estimating α is therefore crucial for calibration, pricing, and risk

management applications.

Despite its importance, the estimation of α is often neglected in theoretical

modeling. To address this gap, we conduct a numerical experiment to evaluate the

feasibility of recovering α from simulated data. In our experiment, we simulate

sample paths of the short rate under the fractional Vasicek model over a five-year

horizon, using N = 10,000 time steps and the smoothing approximation method

described in Section 3. This approach approximates the fractional kernel via a finite-

memory expansion, enabling tractable numerical simulations of the non-Markovian

short rate process.

For each simulated path, we estimate the Hurst index H using the Whittle esti-

mator—a widely used frequency-domain method that approximates the Gaussian

maximum likelihood estimator [20]. The Whittle method is particularly well suited

for stationary Gaussian processes and long-memory time series, offering desirable sta-

tistical properties such as asymptotic unbiasedness and consistency under standard

regularity conditions. The Whittle likelihood function is given by:

LW (θ) =

∫ π

−π

[
log fθ(λ) +

I(λ)

fθ(λ)

]
dλ, (5)

where fθ(λ) denotes the parametric spectral density of the process, indexed by the

parameter θ (here related to H), and I(λ) is the periodogram of the observed data.
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The estimator minimizes LW (θ) with respect to θ, producing an efficient estimate

of the memory parameter.

The following pseudocode outlines the steps used in our MATLAB implementation

to estimate α from a simulated path of the fractional Vasicek short rate process:

Algorithm 4 Estimation of α via the Whittle Estimator

1: Simulate a path {rt}Tt=0 of the fractional Vasicek model using a smoothing
approximation.

2: Remove deterministic trend: r̃t = rt − E[rt].
3: Estimate the Hurst index H using a spectral method (e.g., MATLAB’s wfb-

mesti).
4: Compute the memory parameter as α = H − 0.5.
5: Return α̂ as the estimated fractional parameter.

In our context, we apply the Whittle estimator to the simulated short rate path

and compute α via the identity α = H − 0.5. Table 1 reports the results from three

representative simulation trials, all based on a true value of α = 0.20.

Table 1: Whittle-based estimation of the Hurst index and the memory parameter α.

Trial Estimated H Estimated α = H − 0.5

1 0.6831 0.1831

2 0.6869 0.1869

3 0.6998 0.1998

The results demonstrate that the Whittle estimator is capable of producing highly

accurate estimates of the Hurst index even in relatively short sample sizes, provided

that the sampling frequency is sufficiently high. The recovered values of α lie within

a small neighborhood of the true parameter, with absolute errors below 0.017 in all

three cases. This supports the practical viability of using spectral-domain techniques

for estimating long-memory effects in interest rate modeling.
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Figure 2: Sample path of the simulated fractional Vasicek process with α = 0.20, used for
estimation of the Hurst index via the Whittle method.

Figure 2 shows a sample path of the simulated short rate process used for

the estimation, highlighting its persistent and smooth behavior characteristic of

long-memory dynamics.

5.5 Interpretation of Numerical Results

We begin our numerical analysis by examining the behavior of European call option

prices across varying strikes and maturities. Figure 3 displays the resulting call

price surface under the fractional Heston–Vasicek model, computed via the Fourier

inversion method described in Section 5.1.

As expected, the option price increases monotonically with the time to maturity

T and decreases with the strike price K. This is consistent with financial intuition:

longer maturities increase the probability of the option ending in-the-money, while

higher strikes reduce the likelihood of a profitable exercise.

The surface also displays curvature effects attributable to both stochastic volatil-

ity and long-memory in interest rates. In particular, the elevated values for deep

in-the-money options (low K) and long maturities reflect the compounding impact

of persistent interest rate fluctuations over time. These effects would be underrep-

resented in a Black–Scholes setting or even in standard Heston models without a

fractional rate component.

The smooth gradient along the maturity axis further suggests numerical stability

and coherence of the Fourier-based pricing algorithm, even in the presence of

fractional noise.

Figure 4 presents the implied volatility smile generated by the fractional Heston–

Vasicek model for a fixed maturity. The model successfully reproduces the well-known

smile effect observed in equity markets, with higher implied volatilities for deep

in-the-money and out-of-the-money options, and a trough near the at-the-money

strike.
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Figure 3: European call option price surface under the fractional Heston–Vasicek model.
The prices are shown as a function of strike K and maturity T .

The implied volatilities are computed by inverting the Black–Scholes formula for

a range of strike prices using the model-produced option prices. The ATM strike,

indicated by a red marker, aligns closely with market-consistent levels, suggesting

that the model is well-calibrated at the central region of the smile. The upward

sloping wings of the smile are a result of the volatility-of-volatility component from

the Heston model, whereas the curvature is further affected by the long-memory

effects in the interest rate process.
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Figure 4: Implied volatility smile for maturity T = 1 under the fractional Heston–Vasicek
model.

In addition to the smile for a fixed maturity, we compute the full implied volatility

surface across a range of strikes and maturities. The result is shown in Figure 5.
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The surface confirms the model’s ability to jointly reproduce strike- and maturity-

dependent features of implied volatilities.

As maturity increases, implied volatilities tend to decline for at-the-money and

slightly out-of-the-money options, reflecting the mean-reverting nature of both the

variance and interest rate processes. The fanned shape at shorter maturities is

indicative of stronger effects from the fractional interest rate component, which

diminishes as maturity grows. This long-memory effect is thus more pronounced for

short-dated instruments, aligning with empirical findings in fixed income markets.

Overall, the model captures the essential skew and term structure observed in mar-

ket data, suggesting its practical utility for derivative pricing and risk management

tasks.
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Figure 5: Implied volatility surface under the fractional Heston–Vasicek model.

5.6 Sensitivity Analysis with Respect to Model Parameters

To gain deeper insights into the influence of various model parameters on option

prices, we conduct a one-at-a-time sensitivity analysis. Specifically, we vary key

parameters of both the fractional Vasicek short rate process and the Heston variance

dynamics while holding all other parameters fixed at their baseline values (as

specified in Section 5.2).

This approach allows us to isolate the marginal impact of each parameter on

the European call option price, offering valuable intuition on model behavior and

guiding future calibration efforts. In each experiment, the option price is recomputed

across a grid of values for the parameter of interest, and the results are visualized

to highlight trends and nonlinearities in price response.

We begin with the fractional parameter α, which controls the strength of memory

in the short rate process.

Effect of the Hurst Parameter α. Figure 6 illustrates the sensitivity of the

European call option price to the fractional memory parameter α, which relates to
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the Hurst index as H = α+ 0.5. As α increases from 0.05 to 0.45 (corresponding to

H ranging from 0.55 to 0.95), the option price exhibits a steadily increasing pattern.

This behavior reflects the long-memory nature of the fractional Vasicek process

governing the short rate. Larger α values imply greater persistence in the interest

rate path, which in turn increases the expected present value of the option’s payoff

due to more pronounced autocorrelation in the short rate path. The nonlinearity

observed in the curve suggests diminishing marginal effects of memory persistence

beyond H ≈ 0.85, indicating a saturation point in pricing sensitivity.
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Figure 6: Sensitivity of the European call option price to the Hurst parameter H = α+0.5.

Effect of the Smoothing Parameter ϵ. The parameter ϵ plays a technical but

important role in the numerical approximation of fBm used to model the long-

memory short rate dynamics. Smaller values of ϵ correspond to a finer approximation

of fBm, but may introduce numerical instability, while larger values act as a

regularization, smoothing out the singularity in the fractional kernel.

Figure 7 shows the sensitivity of the European call option price to changes in ϵ,

ranging from 10−3 to 10−1. The results exhibit a mild but consistent decrease in the

option price as ϵ increases. This reflects the fact that higher smoothing dampens

the effective memory component in the short rate process, thereby reducing the

cumulative discounting effect associated with persistent low rates.

Overall, while the option price is relatively stable across reasonable values of ϵ,

its sensitivity suggests that careful tuning of this parameter may be needed when

calibrating the model to real market data.
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Figure 7: Sensitivity of the European call option price to the smoothing parameter ϵ.

Effect of Interest Rate Volatility σr. The parameter σr governs the instantaneous

volatility of the short rate process and encapsulates how uncertain the future

evolution of interest rates is. As σr increases, the stochastic variation in the short

rate intensifies, leading to more dispersion in the stochastic discount factor.

Figure 8 presents the sensitivity of the European call option price with respect

to σr, examined over a broader and more economically relevant range [0, 0.5]. The

relationship is clearly nonlinear and strictly decreasing: higher interest rate volatility

leads to a systematic decline in the option price. This decline is particularly steep in

the lower range of σr, and gradually levels off for large σr, suggesting a diminishing

marginal impact.

This behavior aligns with financial intuition: greater interest rate uncertainty

tends to reduce the expected present value of future payoffs, particularly when the

option payoff is heavily discounted. Hence, σr exerts a pronounced effect on pricing,

especially for long-dated or interest rate-sensitive instruments such as callable bonds,

convertible securities, and long-maturity equity options.
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Figure 8: Sensitivity of the European call option price to the interest rate volatility parameter
σr, examined over a broader range.
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Effect of Mean Reversion Speed a and Long-Term Level b. We now turn to the

classical parameters of the Vasicek short rate process: the speed of mean reversion

a and the long-term mean level b. These parameters jointly govern how quickly

the short rate reverts to its long-run average and what that average is. Figure 9

presents the sensitivity of the European call option price to variations in a and

b. In the left panel, we observe that increasing the mean reversion speed a leads

to a modest increase in the option price. This is because faster reversion reduces

the uncertainty in the interest rate path, effectively narrowing the distribution of

the discount factor and stabilizing its expectation. The right panel shows a much

stronger sensitivity to the long-term mean level b. As b increases, the option price

rises significantly. Since higher values of b raise the expected short rate over the life

of the option, this leads to higher discounting of the strike component Ke−
∫ T
t
rsds,

reducing its impact and thereby increasing the net option price. The steepness of

this response confirms that b is a critical driver of pricing behavior in models with

stochastic interest rates.
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Figure 9: Sensitivity of the European call option price to the Vasicek parameters: mean
reversion speed a (left) and long-term mean b (right).

Sensitivity to Initial Short Rate r0. We also examine the impact of the initial

short rate r0 on option pricing outcomes. Figure 10 illustrates how the European

call option price responds to variations in r0, holding all other parameters fixed.

The relationship is strongly positive and approximately linear: as r0 increases,

the option price rises noticeably. This reflects the direct role that r0 plays in

the exponential discounting term e−
∫ T
t
rs ds. Higher values of r0 shift the entire

short rate path upward, leading to increased discounting of the strike and hence a

higher present value of the call payoff. This finding emphasizes the importance of

accurately estimating current interest rate conditions when pricing under models

with stochastic rates.
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Figure 10: Sensitivity of European call option price to the initial short rate r0.

5.7 Calibration to Market Data

To assess the empirical performance of the proposed Heston–fractional Vasicek

(HFV) framework, we calibrate the model to real call option prices on the S&P 500

Index at the close of trading on 7 August 2019. On this date, the index closed

at $287.97, and the prevailing risk-free rate was approximately r = 0.02. We

consider two maturities–T = 100 days and T = 237 days–chosen to highlight both

short- and medium-term behaviour of the model and to evaluate the impact of

long-memory interest-rate dynamics, which are expected to be more pronounced for

longer maturities.

Calibration Procedure. The model parameters are estimated by minimizing the

squared pricing error between market and model call prices. Given a set of observed

market prices {Cmkt(Ki, T )}Ni=1 for strikes {Ki}, the calibration problem is

min
θ

1

N

N∑
i=1

(
CHFV(Ki, T ; θ)− Cmkt(Ki, T )

)2
,

where θ denotes the vector of model parameters. The pricing function CHFV(·)
is computed via Monte Carlo simulation under the affine-approximated Heston–

fractional Vasicek dynamics.

Parameterization. The calibrated parameter vector is

θ = (v0, v̄, κ, η, ρ1, a, b, σr, ρ2, α, ε),

corresponding respectively to the initial variance, long-run variance, variance mean-

reversion speed, volatility of volatility, equity–volatility correlation, interest-rate

mean reversion and mean level, short-rate volatility, equity–rate correlation, frac-

tional memory parameter, and the smoothing parameter of the regularized fBm.

Stochastic Optimization via Adam. To solve the above nonlinear optimization

problem, we employ a stochastic gradient descent scheme with Adam updates. The

algorithm proceeds as follows:
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• Market strikes and prices are randomly shuffled, and small strike batches are

used to stochastically estimate the loss and gradients.

• Gradients are computed by symmetric finite differences:

∂L

∂θj
≈ L(θj + εfd)− L(θj − εfd)

2εfd
,

with εfd = 10−4.

• Adam first- and second-moment recursions are updated with parameters

(β1, β2) = (0.9, 0.999) and learning rate αlr = 0.02.

• Gradient steps are clipped to control instability and projected onto economi-

cally reasonable parameter bounds.

• An ℓ2-regularization penalty λreg∥θ∥2 with λreg = 10−3 is included to enhance

stability.

Training is performed for 35 epochs, with each epoch processing mini-batches of

six strikes and averaging Monte Carlo losses over multiple random seeds to reduce

variance. This procedure provides a robust and noise-tolerant calibration, especially

in the presence of Monte Carlo pricing noise.

Monte Carlo Pricing. Model prices within the optimization loop are computed

using a discretized simulation of the Heston–fractional Vasicek system under the

affine approximation. For each maturity T , paths for (St, vt, rt) are simulated on

a uniform grid with nsteps = 200 time steps. Correlated Gaussian innovations are

generated via Cholesky factorization of the correlation matrix of (WS
t ,W

v
t ,W

r
t ).

The short-rate dynamics employ the regularized fBm approximation, producing

an effective interest-rate volatility σrε
α. The discounted payoff

e−
∫ T
0
rtdt (ST −K)+

is estimated across npaths = 6000–12000 Monte Carlo samples (depending on

context), and averaged across batches to yield the call price.

Final Parameter Selection. After the final epoch, the optimized parameter vector

θ∗ is used to compute model prices across all strikes with a higher Monte Carlo

budget to generate the plotted calibration curves. These results form the basis of

the empirical comparison between the Heston–fractional Vasicek model and the

classical Heston model reported in Figures 11–12.

For the 100-day maturity (Figure 11), both the classical Heston model and the

Heston–fractional Vasicek (HFV) model capture the general shape of the market

price curve. However, the HFV model provides a noticeably tighter fit across strikes.

The improvement is most evident in the intermediate-strike region, where the Heston

model systematically underprices options, while the HFV curve closely overlaps the

observed market prices.
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For the 237-day maturity (Figure 12), the difference between the two models

becomes significantly more pronounced. The Heston model exhibits a persistent

misfit, particularly for deep out-of-the-money strikes, where it underprices market

options and produces an overly flat price profile. In contrast, the HFV model

reproduces the market curvature more accurately and remains close to observed

prices across the full range of strikes. This enhanced performance aligns with

the increasing impact of long-memory interest-rate dynamics over longer horizons.

Overall, the results demonstrate that incorporating fractional short-rate behaviour

improves calibration quality, especially for medium-term maturities.
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Figure 11: The comparison of the call option price estimated by the Heston (left) and the
Heston Fractional Vasicek (right) models (red dashed) and the market call price (blue
circles) for the time to maturity T of 100 days.
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Figure 12: The comparison of the call option price estimated by the Heston (left) and the
Heston Fractional Vasicek (right) models (red dashed) and the market call price (blue
circles) for the time to maturity T of 237 days.

6 Conclusion

In this paper we introduced a tractable framework for option pricing that couples

the Heston stochastic volatility model with an interest-rate process driven by a regu-



248 Journal of Mathematics and Modeling in Finance

larized fractional Brownian motion. By employing a semimartingale approximation

of fBm together with an affine approximation of the volatility–rate interaction, we

constructed an analytically convenient surrogate model that retains key long-memory

features while restoring an exponential–affine structure suitable for Fourier-based

pricing.

Our numerical analysis demonstrates that fractional interest-rate dynamics can

materially influence equity option values through their effect on the stochastic

discount factor. The sensitivity experiments highlight the role of the memory

parameter α and the short-rate volatility σr in shaping implied-volatility smiles and

term structures. Moreover, the empirical calibration results show that the proposed

Heston–fractional Vasicek model achieves a closer fit to market option prices than

the classical Heston model, particularly for longer maturities where persistent rate

dynamics become more influential.

It is important to emphasize that the pricing formulas derived here correspond to

the approximate affine surrogate model, not to the exact fractional Vasicek process

whose generator would require an infinite-dimensional Volterra state representation.

Constructing such a full Markovian lift remains an open challenge and a promising

direction for future work.

Finally, while the present study focuses on equity-style options, extending the

framework to fixed-income derivatives such as caps, floors, and swaptions remains

an important avenue for future research. This would require developing full term-

structure dynamics and calibration methodologies under the regularized fractional

Vasicek specification, which we leave for future investigation.
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