Journal of Mathematics and Modeling in Finance (JMMF) ATU
Vol. 6, No. 1, Winter & Spring 2026 N | Press

Research paper

A New Clusterless DEA Cross-Efficiency Evaluation in the
Presence of Negative Data and its Application in Portfolio
Selection

Kumari, Reenu’

! Maharaja Surajmal Institute of Technology, Janakpuri, Delhi, India
reenu_kumari@msit.in

Abstract:

This study examines the impact of clustered Decision-Making Units (DMUs) in
DEA cross-efficiency evaluation, taking into account variables with both positive
and negative values. The Range Directional Measure (RDM) model is often used
when DMUs have both positive and negative data. However, its application
frequently results in clustered DMUs, where multiple units obtain identical RDM
cross-efficiency scores, thereby reducing discriminatory power and limiting the
reliability of rankings. To overcome this drawback and enhance ranking reliability,
we characterize clustered DMUs as scenarios in which identical scores lead to
groups of DMUs being termed as ‘clustered’. The necessity of this research lies
in improving the robustness of efficiency analysis, especially in situations where
both positive and negative data are involved. We then present an algorithm to
identify potential clusters and propose a novel clusterless cross-efficiency evaluation
method, which restores discrimination and provides more credible performance
analysis in decision-making contexts. To demonstrate the practical relevance and
advantages of the proposed method, a case study on stock selection in Iran’s stock
market portfolio is provided.
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1 Introduction

The cross-efficiency technique, proposed by Sexton et al. [1], is a powerful method-
ology to rank the DMUs. This allows the assessment of DMUs’ overall efficiencies
through both self-assessment and peer evaluation. Self-assessment enables the DMUSs’
efficiencies to be assessed using the most beneficial weights, allowing each DMU to
attain its highest relative efficiency. Conversely, peer evaluation assesses each DMU’s
efficiency using weights determined by the other DMUs. Despite its widespread
application, the method has several drawbacks, including the non-uniqueness of the
DEA optimal weights, which may limit the utility of cross-efficiency assessment.
Doyle and Green [2] address the non-uniqueness issue and propose several secondary
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goals to resolve it. They present aggressive and benign formulations, which represent
opposing strategies. The benevolent formulation aims to determine optimal weights
that maximize the efficiency of the DMU in question and the average efficiency of
the other DMUs. In contrast, the optimal weights for the aggressive angle seek to
maximize the efficiency of the evaluated DMU while reducing the average efficiency
of the other units. More detailed literature on the DEA cross-efficiency and its
extensions can be found in [3-5].

The above literature ignores an inherent flaw in the cross-efficiency assessment.
The cross-efficiency assessment relies on the CCR model introduced by Charnes et al.
[6], which prevents it from handling negative inputs or outputs. Yet many practical
contexts include negative values in either inputs or outputs. For example, when we
evaluate the operational efficiency of bank branches, we typically use staff count as
an input and transaction volume as an output, and both variables are positive for
every branch. However, other outputs like changes in accounts and deposits may
be negative for certain banks [7]. Portela et al. [7] proposed a range directional
measure (RDM) using the directional distance function (DDF). The RDM model
can manage inputs and outputs with both positive and negative values by using the
range of possible improvement as the direction vector, i.e., the difference between
the initial evaluated value and the maximum or minimum value. Lin [8] introduced
a method for cross-efficiency evaluation using the DDF, leveraging the RDM model
as presented by Portela et al. [7] and duality theory within the context of VRS
technology. The approach by Lin [8] is adept at handling scenarios where negative
values exist in the input—output data, and it effectively resolves the challenge of
negative cross-efficiency. Soltainfar and Sharafi, [9] initially introduced a new non-
radial model to assess the performance of DMUs when negative data is present.
Subsequently, using this model, they proposed a hybrid MADM-DEA approach that
incorporates the fuzzy VIKOR method. Chen et al. [10] integrated prospect theory
to formulate a novel cross-efficiency aggregation method, referred to as the APC
method. Chen et al. [11] extend DEA cross-efficiency by incorporating prospect
theory and a distance entropy function to capture subjective risk preferences. Kao
and Liu [12] proposed the slacks-based efficiency measure to address the problem of
negative cross-efficiencies in conventional cross-efficiency evaluation.

DEA cross-efficiency can be applied in portfolio selection to determine an optimal
distribution of assets, with the objective of reducing risk while attaining a desired
level of expected return. Initially, Lim et al. [13] suggested combining DEA cross-
efficiency with the MV model to create the DEA M-V cross-efficiency model and
address the problem of ganging of DMUs. Gong et al. [14] presented the regret
cross-efficiency model to assess the DEA cross-efficiency scores of assets within a
fuzzy multi-objective framework. Amin and Hajjami [15] explore the significance of
alternative optimal solutions in DEA cross-efficiency evaluation for portfolio selection.
They demonstrate that integrating alternative optimal solutions into the construction
of a cross-efficiency matrix enhances the outcomes of the MV (mean-variance)
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portfolio selection method. Kumari et al. [16] introduced a novel method for
cross-efficiency aggregation and applied the method to portfolio selection problems.
Shrivastava et al. [17] integrate cross-efficiency with cumulative prospect theory to
explore the psychological facets of decision-makers in portfolio selection. Deng and
Feng [18] concentrate on integrating DEA prospect cross-efficiency assessment into
fuzzy portfolio optimization within a new mean-variance-maverick (MVM) model.
Banihashemi and Sanei [19] used RDM cross-efficiency in portfolio selection by
using OWA operator weights for aggregation of cross-efficiencies. Kumari et al. [20]
proposed a method for stock categorization using the column and row average value
of the cross-efficiency matrix.

While the DEA cross-efficiency technique has been used effectively in ranking
DMUs, there are still some limitations that restrict its application. One such
well-known problem is the ganging-together issue of cross-efficiencies as discussed
by Amin and Oukil [21]. They show that the ganging phenomenon can significantly
influence the cross-efficiency evaluation in favor of some DMUs. Therefore, it would
be unjust to use these cross-efficiency scores as a basis for any decision-making. We
extend the idea of clustered or ganged DMUs presented by Amin and Oukil [21] for
problems where positive as well as negative data can be present.

1.1 Research Gap and Motivation

To the best of our knowledge, this is the first study to examine the impact of clustered
DMUs in the context of negative input—output data. We illustrate this through
a practical application that highlights how clustered cross-efficiency assessment
impacts the stock selection. To address this issue, we propose a novel cross-
evaluation approach in which cross-efficiency values are computed after excluding
the clustered DMUs/stocks from the calculation. Furthermore, we provide an
algorithm to systematically detect and identify such clustered DMUs.

In summary, this study highlights the following research gaps:

(i) Limited attention has been given in the literature to cross-efficiency analysis
when negative data are involved.

(ii) Conventional DEA cross-efficiency suffers from the drawback that clustered
DMUs can distort cross-evaluation results.

(iii) From a practical perspective, investors and decision-makers require reliable
evaluation tools that not only identify the most efficient stocks/DMUs but
also ensure fairness in rankings, unaffected by distortions caused by clustering.
Existing methods do not fully satisfy this requirement.

The remainder of this study is structured as follows: Section 2 discusses the DEA
technique, which effectively handles negative data. Section 3 outlines the RDM cross-
efficiency evaluation designed to address negative data. Section 4 introduces the
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concept of clustered DMUs, along with an efficient algorithm for cluster identification
and an evaluation method for clusterless cross-efficiency. In Section 5, we discuss
the impact of the introduced clusterless cross-efficiency assessment on the top-
performing stocks in the Tehran stock market. Finally, Section 6 provides the
concluding remarks.

2 DEA in the presence of negative input-output

In conventional DEA methods, each DMU is represented by non-negative input
and output vectors, where inputs are transformed into outputs. However, these
methods are not applicable when DMUs involve both positive and negative input
and/or output values. To address this issue, Portela et al. [7] introduced the RDM
model. Their approach is defined by an ideal point and a directional vector, where
the directional vector is constructed from the possible improvement range—i.e., the
difference between the initial evaluated value and its corresponding maximum or
minimum. Building on the ideas underlying the RDM model, Sharp et al. [22]
developed a modified slack-based measure (MSBM) model, and Emrouznejad et
al. [23] introduced the semi-oriented radial measure (SORM) model, which are
specifically designed to manage datasets containing both positive and negative
inputs and outputs. It is important to note that the MSBM model was developed
specifically for “naturally negative” inputs, as defined by Sharp et al. [22]. Because
of this narrow focus, its applicability is more limited compared to the RDM and
SORM models. Furthermore, a limitation of SORM relative to RDM is its tendency
to increase the dimensionality of the model by treating the negative component of
a variable as a separate dimension, which can make the evaluation process more
complex and computationally demanding. Therefore, in this study, we employ the
RDM model to assess the performance of the DMUs, as presented below.

Consider a set of n DMUs, denoted by DMU;; for j = 1,2, ..., n, where each DMU
utilizes m inputs x;; (¢ = 1,2,...,m) to produce s outputs y,; (r =1,2,...,s). Let
DMU; (k=1,2,...,n) represent the specific DMU under evaluation. The RDM
(Range Directional Measure) model can then be formulated as:
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Where d;; and d:rk are the potential improvement of non-negative ranges for inputs
and outputs is represented as direction vectors and defined as follows:

d; = xi —min{x;;}, i=1,2,...,m and df, =max{y,;j} — Yk, r=12,...,5
j j

The value S, represents the inefficiency of DMUy. Thus, (1 — ) is the efficiency
measure, indicating the distance between the observed and the desired input.

3 RDM cross-efficiency assessment

To evaluate the cross-efficiency of DMUs in the presence of negative data, determining
optimal weight values is essential. Hence, to establish a cross-efficiency structure
analogous to classical DEA, the RDM model is converted into its dual form. Based
on standard linear programming duality and normalization using direction vector
constraints, Lin [8] proposed a DDF-based cross-efficiency evaluation method capable
of handling negative input-output variables. The formulation of Lin’s model [8] is
presented as follows:

Model IT

m S
min Y wik (@i +di) = Y per(Yer — ) + 9
i=1 r=1

m s
s.t. szkxw _Zﬂrky’r‘]—’_w > 03 j = 1,2,...,’)’L,
=1

r=1
m s
Zwlkdz_k —+ Z'U'de:_k = ].,
i=1 r=1
Wik, Hrk > Oa '(/J eR.

Where w;j, and ji,, are the weights for the i*" input and r* output, of k*» DMU.
The optimal solution of Model II provides the optimal weights corresponding to k"
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DMU, denoted as w};, and p),. These weights are used to obtain the cross-efficiency
of DMU; and are defined as follows:

Sy Wi (=ma + dg) + 200y i (v + ) — W_

Doy Wi, + Dy i

O1j =

A matrix of cross-efficiencies is obtained as E = (0y;), k,j = 1,2,...,n, where
0y, is the cross-efficiency of DMU; evaluated using the optimal weights of DMUy.
The final assessment of each DMU is determined by averaging the cross-efficiency
scores across each column of the cross-efficiency matrix F, and is defined as:

_ 1 & '
9.7':529/”‘, 7=12,...,n
k=1

It is important to note that each 6y is referred to as a cross-efficiency score, while
the average, 0;, is also termed as cross-efficiency in the literature. Generally, “cross-
efficiency” refers to the average score. Hence, éj is the final RDM cross-efficiency
value.

Remark 3.1. The step-by-step derivations underlying Model II—including the dual
transformation, the normalization of directional weights, and the establishment of
Pareto—Koopmans efficiency conditions—are fundamental to the theoretical structure
of the range-based DEA framework. Lin [8] provides the complete theoretical
development linking Model I to the normalized cross-efficiency formulation presented
as Model II. In order to remain concise and avoid repeating these well-established
derivations, the present study relies on Lin’s formulation and uses Model II directly
as the adopted cross-efficiency measure.

One drawback of using DEA cross-evaluation is the occurrence of clustering
or ganging DMUs. The clustered DMUs can significantly bias the cross-efficiency
evaluation in favor of specific DMUs [21]. Thus, it would be unsuitable to utilize
these cross-efficiency scores for cross-evaluation purposes. We will define the concepts
of clustered DMU and clusterless cross-efficiency assessment in the next section.

4 Proposed Methodology: The clusterless cross-efficiency
assessment

In this section, we formally define clustered DMUs and present an algorithm for
cluster detection. Subsequently, we compute the clusterless cross-efficiency scores of
DMUs for performance evaluation. The proposed methodology involves three main
steps: (i) detection of clusters, (ii) evaluation of clusterless cross-efficiency, and (iii)
Statistical validation of clusters.
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4.1 Detection of Clusters

Let C' ={1,2,...,c} represent a set of possible clustered DMUs. The purpose of
this step is to identify groups of DMUs that demonstrate identical cross-efficiency
scores. Such DMUs are said to be clustered, as their performance evaluations are
indistinguishable across all peer appraisals.

Definition 4.1 (Clustered DMUs). A group of at least two DMUs indexed in C' is
said to form a cluster if and only if their cross-efficiency values are identical across all
evaluations. More formally, for any pair of DMUs p,q € C : 0,; =0,; Vj=1,2,....
In this case, DMU, and DMU, belong to the same cluster.

This definition implies that clustered DMUs behave identically under the cross-
efficiency evaluation. Therefore, retaining all of them in the ranking process may
bias the results by overweighting their identical performance. To avoid this, it
becomes necessary to detect clusters and treat them appropriately. We propose
an algorithm to detect all clusters, with its flowchart shown in Figure 1 and the
step-by-step procedure detailed in Algorithm 1.

Step 1: Initialization

(List, detectors, count=0)

Step 2: Construct S
(Comparison Matrix)

[Step 3: Count zero rows in S)

Step 4: Evaluation

count = z jcount = ¢

Subset rows zero? All rows zero? Only one row zero?
— Form cluster Gz — One cluster — Outlier removed
— Return to Step 1 — Exit — Return to Step 1

Step 5: Display clusters

Figure 1: Flowchart for Cluster Detection

This algorithm systematically partitions the set of DMUs into one or more
clusters, depending on their similarity patterns.

Remark 4.2. The proposed process is independent of the presence of multiple optimal
solutions, as clustering is determined by the relative efficiency values rather than
by the multiplicity of optimal weight vectors. It is important to note, however,
that under one optimal solution, a particular cluster may exist, whereas under
another optimal solution, the identified clusters may differ or may not appear at all.
Therefore, careful consideration of clusters is essential in the analysis
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Algorithm 2 Cluster Detection Algorithm

Input :Sub-matrix Mo = (R:)iec, where Ry is the t-th row of the cross-efficiency
matrix R.

Output: A list of clusters of DMUs.

Step 1: Initialization

Set List < C, assign detector D(%) for i =1,...,c, initialize count « 0.
Step 2: Construct Comparison Matrix
Construct matrix S, where each row is the difference between a candidate row and
the reference row.
Step 3: Count Matches
Set count <— number of rows in S that are identically zero.
Step 4: Evaluation
while List # () do
if count = c then
‘ Form one cluster with all DMUs in List and exit.
else
if count =1 then
‘ Remove the outlier DMU: List « List \ {i}, ¢ < ¢ — 1.
else
Identify subset of z identical rows, form cluster G, remove them: List <
L List \ G, ¢ + ¢ — z.

Step 5: Display
Output the list of all identified clusters.

4.2 Evaluation of Clusterless Cross-Efficiency

Once clusters are detected, the next step is to compute clusterless cross-efficiency
scores. The purpose of this step is to prevent clusters of identical DMUs from
disproportionately influencing the performance evaluation. If all members of a cluster
were retained, their repeated presence could bias the overall average, leading to
unfair rankings. For a cluster containing ¢ DMUs, we retain only one representative
DMU and exclude the remaining ¢ — 1 DMUs from the evaluation. This procedure
is repeated across all clusters, such that exactly one representative from each cluster
is included. DMUs that do not belong to any cluster are automatically considered
in the calculation. Finally, the cross-efficiency scores are averaged over the set of
selected representative DMUs and the non-clustered DMUs. The resulting values
represent the clusterless cross-efficiency scores, which are then used for ranking
and performance analysis. This procedure ensures that each distinct performance
pattern is represented exactly once, thereby improving fairness and reducing bias in
the final ranking. The detailed procedure is presented as a flowchart in Figure 2,
while Algorithm 2 outlines the computational steps for the cluster detection process.

Algorithm 2 generates unbiased cross-efficiency scores by selecting a single repre-
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Clusterless Cross-Efficiency
Evaluation

!

Step 2: Representative Selection
Pick one DMU per cluster.
Remove others

!

Step 3: Include Non-clustered
DMU
S

s
Add any DMUs left out of cluster

!

Step 4: Compute Cross-Efficiency
Use the reduced set J

Step 5: Display
clusters

Figure 2: Flowchart for clusterless evaluation

sentative from each cluster while including all non-clustered DMUs. This approach
ensures fair and balanced evaluation, with the final scores accurately reflecting the
relative performance of all DMUs and reducing the impact of cluster size dominance.

4.3 Statistical validation of clusters

To ensure the reliability of the obtained clusters, the Silhouette score proposed by
[24] is employed as the primary statistical validation metric. The Silhouette Score
evaluates the degree of separation and cohesion among clusters by comparing the
average distance of each DMU to other members of its own cluster with the distance
to the nearest neighbouring cluster.

The Silhouette Score for each DMU}, is computed using two distance measures:
the intra-cluster dissimilarity and the nearest-cluster dissimilarity. First, the average
distance between DMU; and all other DMUs within the same cluster is calculated
and denoted as a(k). Next, for every other cluster, the average distance between
DMUy, and all DMUs in that cluster is computed; the smallest of these values is
taken as b(k), representing the dissimilarity to the nearest neighbouring cluster.
The following steps describe the computation of the silhouette coefficient s(k) for
each DMUy.

Step 1. Compute the Euclidean distance between DMU and DMU; as
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Algorithm 3 Clusterless cross-efficiency evaluation
Input: Clusters C,Cy, ..., C; identified by Algorithm 1
Output: Clusterless cross-efficiency scores for all DMUs

Step 1: Representative Selection

For each cluster C; containing ¢ DMUs:
Select one representative DMU
Discard the remaining ¢ — 1 DMUs

Step 2: Inclusion of Non-clustered DMUs
Include all DMUs not belonging to any cluster

Step 3: Aggregation

Compute the average cross-efficiency scores using the reduced set of representatives
DMUs and non-clustered DMUs

Step 2. Calculate within-cluster dissimilarity of DMUy as

1 .
a(k) = m Z d(k, j),

JEC(K)
Jj#k

where C'(k) denotes the cluster containing DMUy,.

Step 3. The between-cluster dissimilarity is obtained by computing the average
distance from DMUy, to each external cluster and selecting the minimum as

1
b(k) = min — d(k,j
)= min |O,‘J€ZC/ (k.5)

Step 4. The silhouette value of DMUy, is then given by

bk —a(k)
*8) = alal®), B}

A value of s(k) ~ 1 indicates that DMUy, is well aligned with its assigned cluster
and clearly separated from all other clusters, thereby supporting the validity of the
clustering structure.

In the subsequent section, we demonstrate the proposed methodology using
stock market data. We first detect clusters among the stocks to identify identical
performance patterns. Then, using the clusterless cross-efficiency approach, we
evaluate the performance of the representative stocks. This allows us to examine
the impact of clustering on the final ranking.
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5 An application to the Iranian stock Market

In portfolio selection, diversifying investments across a wide range of stocks is
essential to reduce risk and avoid significant losses. This requires an accurate
ranking of stocks to ensure balanced and effective portfolio construction. However,
the presence of clustered stocks in cross-efficiency evaluation weakens discrimination,
creating ambiguity in rankings and increasing the risk of misjudgment. This section,
therefore, highlights the influence of clustered stocks on portfolio selection and
underscores the need for methods that ensure fairer and more reliable rankings to
support diversification.

We utilize a dataset of 20 Iranian Stock companies from Banihashemi and Sanei
[19] with one input as variance and one output as a return. The mean return is
taken as an output, as the goal is to maximize gains, while variance is treated as an
input, reflecting risk that should be minimized. The input-output data of stocks
taken from [19] are presented in Table 1.

Table 1: Input and output values of stocks from [19].

Stocks 1 2 3 4 5 6 7 8 9 10
Input 6.534 10474 3.720 4.256  32.259 70.764 57.497 19.609 21.496 67.378
Output | 7.285  7.388 -2.193 10.853 12.517 9.052 52.511 -3.676  3.537  7.570
Stocks 11 12 13 14 15 16 17 18 19 20
Input | 14.171 29.002 42.133 12420 1.611 11.429 25.358 4.856 28.464 1.560
Output | 6.896 1.888 18.737 1.302 1.231 14.741 3.896 2.967 32.677 2.022

5.1 Results and Discussion

First, we solve Model I and then apply equation 1 to construct the RDM cross-
efficiency matrix. The resulting cross-efficiency matrix is presented in Table 2. This
matrix provides the basis for assessing the relative performance and benchmarking
of the decision-making units. All computations are performed in MATLAB 2022a,
selected for its reliability, efficient handling of large-scale numerical operations, and
availability of built-in optimization toolboxes that facilitate precise and reproducible
results

To compute the RDM cross-efficiency (traditional) for each DMU, we take the
simple average of each column in the cross-efficiency matrix. Because the matrix
contains DMUs that form clusters of similar or highly correlated stocks, the resulting
efficiency values are referred to as clustered cross-efficiency scores. These clustered
scores reflect both the individual performance of each DMU and the influence of its
cluster, capturing patterns of similarity among the DMUs.

As previously highlighted, clustered cross-efficiency can bias the evaluation
process and may lead to misjudgments if directly applied in portfolio selection.
Since clustered DMUs tend to dominate the efficiency scores, relying on them could



218

JOURNAL OF MATHEMATICS AND MODELING IN FINANCE

Table 2: The RDM cross-efficiency matrix

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0945 0.629 0.840 1.000 0.873
2 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
3 0.821 0.679 0.817 1.000 0.359 0.187 0.276 0.438 0.442 0.194 0.581 0.359 0.303 0.582 0.981 0.720 0.399 0.837 0.468 1.000
4 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
5 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
6 0.786 0.746 0.680 0.878 0.627 0.421 1.000 0.558 0.611 0.425 0.705 0.551 0.621 0.652 0.745 0.858 0.589 0.738 1.000 0.757
7 0.786  0.746 0.680 0.878 0.627 0.421 1.000 0.558 0.611 0.425 0.705 0.551 0.621 0.652 0.745 0.858 0.589 0.738 1.000 0.757
8 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0945 0.629 0.840 1.000 0.873
9 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
10 | 0.786 0.746 0.680 0.878 0.627 0.421 1.000 0.558 0.611 0.425 0.705 0.551 0.621 0.652 0.745 0.858 0.589 0.738 1.000 0.757
11 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
12 | 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
13 | 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
14 | 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
15 | 0.821 0.679 0.817 1.000 0.359 0.187 0.276 0.438 0.442 0.194 0.581 0.359 0.303 0.582 0.981 0.720 0.399 0.837 0.468 1.000
16 | 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
17 | 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
18 | 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
19 | 0.887 0.829 0.778 1.000 0.652 0.417 0.874 0.608 0.659 0.423 0.774 0.585 0.627 0.723 0.859 0.945 0.629 0.840 1.000 0.873
20 | 0.821 0.679 0.817 1.000 0.359 0.187 0.276 0.438 0.442 0.194 0.581 0.359 0.303 0.582 0.981 0.720 0.399 0.837 0.468 1.000
distort the true performance of individual assets. Therefore, it becomes crucial
to identify such clusters and carefully assess their impact before making portfolio
decisions.

To achieve this, we employ Algorithm 1 (presented in Section 4) on the RDM
cross-efficiency matrix to systematically detect all existing clusters. When Algorithm
1 is applied to the RDM cross-efficiency matrix, the following three distinct clusters
are identified:

(i) €y ={1,2,4,5,8,9,11,12,13,14, 16,17, 18,19}
(ii) Oy
(i) Cs

{6,7,10},
{3,15,20}.

The categorization of stocks into these clusters is visually represented in Figure
3, which clearly illustrates the groupings based on their similarities in the RDM
matrix.

To compute the clusterless cross-efficiency of stocks, we propose the removal of
¢ — 1 clustered DMUs, as described in Algorithm 2, before calculating the column-
wise averages of the cross-efficiency matrix, where ¢ denotes the number of stocks
in a given cluster. From each identified cluster, only one stock is retained as the
representative stock, and its cross-efficiency score is used in place of the entire
cluster. Thus, the selected representative captures the performance of all stocks
within the same cluster. In contrast, stocks that do not belong to any cluster
represent only themselves. For example, in the RDM cross-efficiency matrix, cluster
Cy = {1,2,4,5,8,9,11,12,13,14,16,17,18,19} consists of 14 stocks. Instead of
including all 14 rows, we retain only one representative (say stock 1), and eliminate
the remaining (14 — 1 = 13) rows corresponding to the other stocks in Cy. Similarly,
for cluster Co = {6,7,10}, we retain stock 6 and remove 2 rows, while for cluster
C3 = {3,15,20}, stock 3 is chosen as the representative.
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Figure 3: Stock categorization based on different clusters

After this reduction, the clusterless cross-efficiency is computed by averaging
each column of the modified matrix. The results are illustrated in Table 3. For
ease of comparison, both the clustered (traditional) cross-efficiency values and the
clusterless cross-efficiency values are reported side by side in Table 4.

Table 3: Clusterless cross-efficiency scores based on representative stocks

cluster stocks
Representative Stocks | i 2 3 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 920
1 0887 0829 0778 1000 0.652 0417 0874 0608 0659 0423 0774 0585 0.627 0723 0859 0945 0629 0841 1000 0873
3 0821 0679 0817 1000 0359 0187 0276 0438 0442 0194 0581 0359 0303 0582 0981 0720 0399 0837 0468 1.000
6 0786 0.746 0.680 0.878 0.627 0421 1.000 0558 0611 0425 0705 0.551 0.621 0652 0.745 0858 0589 0738 1.000 0.757
Clusterless cross efficiency | 0.831  0.752  0.759 0960 0.546 0342 0717 0.535 0570 0347 0.686 0498 0.517 0.652 0862 0.841 0539 0805 0823 0877

As shown in Table 4, the values of clusterless cross-efficiency are lower than
those of the traditional clustered cross-efficiency. This reduction arises because, in
the clusterless approach, the supportive influence of multiple clustered stocks is
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removed, leaving only one representative from each cluster.

Table 4: Clustered and clusterless cross-efficiency values of the stocks

Stocks 1 2 3 4 5 6 7 8 9 10
Clustered cross-efficiency ~ 0.862 0.794 0.769 0.982 0.604 0.383 0.803 0.575 0.619 0.389
Clusterless cross-efficiency 0.831 0.752 0.759 0.960 0.546 0.342 0.717 0.535 0.570 0.347

Stocks 11 12 13 14 15 16 17 18 19 20
Clustered cross-efficiency  0.734 0.546 0.577 0.691 0.860 0.892 0.589 0.824 0.920 0.875
Clusterless cross-efficiency 0.686 0.498 0.517 0.652 0.862 0.841 0.539 0.805 0.823 0.877

These results demonstrate that the cross-efficiency—based distance structure
leads to highly distinct and well-separated clusters, supporting the suitability of
cross-efficiency scores as an effective basis for unsupervised grouping of DMUs.

5.2 Impact on portfolio selection

In addition, we conduct a comparative analysis of the top five stocks identified
for portfolio inclusion under both evaluation approaches—clustered cross-efficiency
and clusterless cross-efficiency. Stocks with higher clustered cross-efficiency scores
are assigned higher rankings, with the top five stocks corresponding to those with
the highest clustered cross-efficiency values. A similar procedure is applied for
selecting the top five stocks based on clusterless cross-efficiency. This comparison
highlights the differences in stock selection when the influence of clustered DMUs
is considered versus when it is mitigated. The detailed results of this comparison
are reported in Table 5, providing insights into how cluster adjustment can alter
portfolio composition and lead to a more balanced selection of assets. From Table

Table 5: Top 5 stocks identified using clustered and clusterless cross-efficiency

Rank | Stocks | Clustered cross-efficiency | Stocks | Cluster | Clusterless cross-efficiency
1 4 0.982 4 C1 0.960
2 19 0.920 20 C2 0.877
3 16 0.892 15 C2 0.862
4 20 0.875 16 C1 0.841
5 1 0.862 1 C1 0.831

5, it is evident that the 4th stock consistently retains its leading position in both
evaluation scenarios. However, its efficiency decreases slightly from 0.982 under
clustered cross-efficiency to 0.960 in the clusterless evaluation, reflecting the loss
of supportive influence from other clustered stocks. In contrast, the 19th stock,
which initially had an efficiency of 0.920, experiences a notable decline to 0.823 once
cluster support is removed, resulting in its exclusion from the top five rankings. The
20th stock shows only a marginal change in efficiency between the two approaches,
since it belongs to a relatively small cluster of just three stocks, thereby limiting
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the impact of cluster removal. Interestingly, the 15th stock appears among the top
five in the clusterless cross-efficiency ranking, whereas it does not hold a top-five
position in the clustered evaluation, highlighting the shifts in stock selection that
arise when cluster effects are eliminated.

Furthermore, investors may also choose stocks from different clusters when
constructing portfolios. It is important to note that a stock’s cross-efficiency score
generally decreases once the supportive influence of its clustered DMUs is removed.
Conversely, stocks that are not part of any cluster may gain relative importance in
the clusterless cross-efficiency evaluation.

Remark 5.1. In the illustrative example, each stock attains a silhouette score of 1,
the maximum possible value of the silhouette coefficient, indicating perfect clustering
quality. This result shows that every stock is optimally aligned with its assigned
cluster and is maximally separated from the other clusters. For instance, the
members of cluster 2 (3,15,20) have identical cross-efficiency vectors, which yields
a within-cluster distance of a(k) = 0. In contrast, the nearest-cluster distances
remain strictly positive because the cross-efficiency profiles of the clusters differ
substantially. For stock 3, the distance to cluster 1 is 1.1332, while the distance to
cluster 3 is 0.34618. Therefore, the silhouette coefficient is computed as

CbB)—a(3)  034618—0
) = ax{a(3), 0(3)]  max(0, 0.31618)

By applying the same procedure, all 20 stocks in the dataset obtain a silhouette
coefficient of 1, confirming that the detected clusters are perfectly validated.

In the illustrative example, each stock received a silhouette score of 1, the
maximum possible value of the silhouette coefficient. This outcome indicates that all
stocks are perfectly matched to their assigned clusters and are maximally separated
from other clusters. Specifically, the within-cluster distance for each stock is zero
because, for example, the members of Cluster 2 (DMU 3, 15, and 20) have identical
cross-efficiency scores. As a result, the average distance between a DMU and all
other DMUs in its own cluster, denoted as a(k), becomes zero. Meanwhile, the
nearest-cluster distance, denoted by b(k), remains positive because the clusters’
efficiency profiles differ substantially.

Therefore, the clustered cross-efficiency framework provides a statistically reliable
foundation for ranking stocks and constructing diversified portfolios.

5.3 Comparative Analysis and Limitation

In this section, we present a comparative analysis of the proposed clusterless cross-
efficiency approach against existing studies on portfolio selection problems.
Cross-efficiency has been applied to portfolio selection in various ways throughout
the literature. However, our proposed clusterless cross-efficiency evaluation offers
a distinct and straightforward alternative compared to existing approaches. For
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instance, Amin and Oukil [21] examine portfolio selection using gangless cross-
evaluation, yet their method does not account for cases involving negative data.
Similarly, Wu [25] adopts a different framework based on row and column efficiency
evaluations, categorizing stocks according to these measures. Given the fundamental
differences between Wu’s approach and ours, a direct comparison is not appropriate.
Lim et al. [13] introduce a unique application of cross-efficiency in portfolio selection
by integrating the MV portfolio optimization model with cross-efficiency. Their
model aims to identify stocks (or DMUs) that minimize risk while achieving a
predetermined expected return. Amin and Hajjami [15] employ DEA MV cross-
efficiency evaluation and discuss the impact of alternative optimal solutions in
portfolio selection. In contrast to [13, 15], where the presence of clustered DMUs
can influence the cross-efficiency used, our proposed method demonstrates that
portfolio selection can be affected when clusterless cross-efficiency is employed. It
would be interesting to investigate how the clusterless cross-efficiency and MV model
can be combined for more effective portfolio selection, which is a matter of future
research. Several authors apply cross-efficiency in fuzzy multi-objective frameworks,
including Mashayekhi and Omrani [26], Chen et al. [27], and Chen et al. [28],
among others. In the future, the proposed clusterless cross-efficiency values could
be utilized in fuzzy multi-objective portfolio selection.

While our proposed method offers both simplicity and robustness, it is not
without limitations. First, the approach identifies which stocks should be included
in a portfolio, but does not determine the optimal allocation or percentage of
investment for each stock. This limitation may be addressed by integrating the
derived cross-efficiency values with the Markowitz Mean—Variance (MV) model,
which we leave as a direction for future research. Second, when clusters contain an
equal number of DMUs, the elimination of clustered DMUs inevitably reduces the
cross-efficiency scores. Moreover, based on our extensive review of the literature, we
find no existing methodology that allows for a direct comparison with the outcomes
of the approach proposed in this study.

6 Conclusion

This study addressed a critical limitation in DEA cross-efficiency evaluation, namely
the formation of clustered DMUs, which undermines the discriminatory power
and ranking reliability of efficiency assessment. To overcome this drawback, we
proposed the clusterless cross-efficiency evaluation method. By removing the effect
of clustering, the technique ensures fairer comparisons among DMUs, reduces the
possibility of misjudgment, and generates rankings that are both reliable and diverse.
This advancement enhances the decision-making process by providing a stronger
basis for identifying top-performing units. The superiority of the proposed approach
is particularly evident in portfolio selection, where accurate ranking of stocks is
crucial.
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Although the proposed method successfully addresses the clustering problem,
certain limitations remain. In particular, the current study focuses primarily on
clustered DMUs defined within efficiency-based evaluations, and further exploration
is required to incorporate both efficient and inefficient units into this framework.
Extending the clusterless evaluation method to broader decision-making contexts
also holds promise for producing unique and more robust rankings across diverse
applications. Furthermore, a preliminary integration of the proposed method with
mean-variance optimization could significantly enrich its contribution, offering a
hybrid framework that balances efficiency with risk-return trade-offs. This direction
represents a valuable avenue for future research, ensuring the continued relevance
and practical utility of the method.
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