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Abstract:
Abstract:
Determining the optimal selling price for different commodities has always been
one of the main topics of scientific and industrial research. Perishable products
have a short life and due to their deterioration over time, they cause great
damage if not managed. Many industries, retailers, and service providers have
the opportunity to increase their revenue through optimal pricing of perishable
products that must be sold within a certain period. In the pricing issue, a seller
must determine the price of several units of a perishable or seasonal product to
be sold for a limited time. This article examines pricing policies that increase
revenue for the sale of a given inventory with an expiration date. Booster learning
algorithms are used to analyze how companies can simultaneously learn and
optimize pricing strategy in response to buyers. It is also shown that using
reinforcement learning we can model a demand-dependent problem. This paper
presents an optimization method in a model-independent environment in which
demand is learned and pricing decisions are updated at the moment. We compare
the performance of learning algorithms using Monte Carlo simulations.
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1 Introduction

It can be noted that the decisions made in the field of inventory are very directly

related to the type of business. A business model that is very common in everyday

life is a group of companies that work in the field of selling seasonal products (for

example, we can refer to the existing business market in the field of fruit supply).

Accordingly, in many inventory models, a limited time horizon is assumed, and

after this time horizon, it is not possible to buy during the period.

Another important feature in this area is the uncertainty in demand. Demand

2Corresponding author

Received: 2020-08-29 Approved: 2020-10-16

http://dx.doi.org/10.22054/jmmf.2020.54852.1013



28 Journal of Mathematics and Modeling in Finance

uncertainty rarely occurs in reality, and demand as an external variable usually

has a potential behavior that may follow a known or empirical distribution. In

order to model and price real-time inventory systems, it is necessary to consider

the possible demand behavior in such models. For pricing such products, where

demand is uncertain and seasonal and have a limited lifespan, implementing a

dynamic pricing policy can increase revenue and reduce waste. In the subject

literature, different methods have been used to deal with this issue. As far as it is

shown in the subject literature, reinforcement learning methods are one of the new

and very effective methods in the field of dynamic decision making. Achieving the

expected total revenue is assessed using the reinforcement learning method.

1.1 Objectives and importance of doing the problem

This article examines the issue of single-product pricing, which was first studied by

Galgo and Van Raisin [21]. Proper demand forecasting is essential when developing

a pricing policy. In practice, the decision maker rarely has complete information

about demand performance. For this reason, imposing a structural form on the

performance of demand can lead to the definition of a model that naturally causes

income losses. The main purpose of this paper is to present a model-independent

approach that does not specify the probability of its transfer between modes (ie de-

mand behavior) with a particular distribution. Reinforcement learning techniques

such as Q-learning and Q-learning with proper Q (λ) routing are proposed to solve

the problem of optimizing the dynamic pricing of perishable products when there

is random demand with unknown characteristics. The purpose of this paper is to

propose an evaluated computational method (e.g., reinforcement learning) to solve

the problem of income management when information is incomplete and demand

is unstable. In this article, we use two popular methods of learning Q [17, 23] and

Q-learning with the right path, that these concepts were proposed by Peng and

Williams [17,23].

In this study, the aim is to obtain an optimal dynamic pricing strategy for perishable

goods, so that the seller’s income is maximized. Also, due to the fact that not all

perishable products can be used after a limited period of time and are completely

discarded, in this study, a specific expiration date has been considered for the

products. Implementing a dynamic pricing strategy for commodities with these

conditions can lead to better decisions and greater profitability.

1.2 Research questions

1) How to price a perishable product?

2) What is the mechanism for maximizing profits?

3) How does product life and inventory affect the price?
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1.3 Pricing according to inventory

From the past to present, the issue of inventory control and management has been

of great importance and inventory management and control have a significant role

in the profitability and loss of an economic center and the development of correct

policies and methods has always been considered by economic enterprises. Inven-

tory costs usually account for 20 to 60% of the company’s total costs [18, 19, 21].

Therefore, proper pricing of inventory for timely sale and as much as products at

the right time is very important and should be considered. This article distinguishes

itself from the existing dynamic pricing literature by using reinforcing literature on

pricing perishable products with unstable demand. Therefore, this article is the

first study on this issue. Table 1 summarizes the research that has been done in

recent years on the dynamic pricing of perishable products by category, in which

the various cases studied in this study are presented and compared with the present

study. According to the table of items such as product type, the number of prod-

ucts studied, the expiration date of products, the solution method, and technique

used, none of them have studied the topics covered in this article.

2 Research Methods

2.1 problem definition

In this paper, the dynamic pricing problem of a perishable product is modeled

on finite and discrete horizons. The model under study in this issue has several

features, including:

1) limited horizon to sell the product;

2) interdependent demand;

3) inability to buy during the product sales period;

4) limited life and perishability;

5) Dynamic pricing noted.

Dynamic pricing problem is formulated as a Markov decision-making process be-

cause pricing is an instant decision-making problem in a random environment. De-

mand is learned over time and prices are updated instantly. The purpose of this

paper is to estimate a pricing policy that maximizes revenue for the sale of inven-

tory of products with a specified expiration date. In practice, because it is difficult

to present a price change at a continuous time, the price review is used periodically

in which the price changes at discrete times. Here is a basic model for a certain

number of identical products or services. The price in each given time period is

determined by the remaining capacity and the time (ie number of days) remaining
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Table 1: Compare our work with the works done

products Expiration Single Multi Demand Method

Reference perishable Definite Indefinite products products stochastic

[u2] * * * *

[u3] * * * *

[u4] * * * *

[u5] * * *

[u6] * * *

[u7] * * *

[u8] * * *

[u9] * * * *

[u10] * * *

[u11] * * * *

[u12] * * * *

[u13] * * *

[u14] * * * *

[u15] * * * * *

[u16] * * * *

[u17] * * *

[u18] * * * * *

[u19] * * * * *

[u20] * * * *

[u21] * * * * *

[u22] * * * *

This paper * * * * *
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before expiration. In this article, the approach and models of article [21] are used

to model this problem.

The key parts of Markov’s decision-making process are:

(i) State space: x ∈ X = {0, 1, . . . , n} Indicates the remaining capacity.

(ii) The time horizon t ∈ T = {0, 1, . . . ,m} is a discrete set of finite times per-

formed in each pricing operation.

(iii) Xt Shows the remaining capacity (state of the system) at time t.

(iv) A(xt) The set of prices that the seller can choose when capacity x remains at

time t. at ∈ A(xt) is a price for capacity at time t.

(v) R The revenue function is defined for each decision step.

The Q-learning and Q(lambda) roughly solve large-scale Markov decision process

problems. In the context of the Markov decision-making process: V represents

the sum of the rewards expected when starting with xtand following a policy

(ie at = π(xt) where (s) is the selected action in s when the policy Shows

adopted). Q(xt, at) shows the total discount discount expected when starting from

xt performing the action atand following the policy. Q is the function of the state-

action value for the policy at time t. µ discount factor, 0 < µ <1. Under Belman’s

optimal function, Equation (1) is defined for an arbitrary xt ∈ X where Q∗(xt, at)is

the optimal value function for each state-action pair.

Q∗ (xt, at) =
∑

xt+1ϵX

pt(xt+1 |xt, at )[r (xt, at, xt+1)

+ µ max
at+1∈A(xt+1)

Q∗
t+1(xt+1, at+1) ] (1)

In T0-learning and Q(lambda) example, the decision-maker reacts to the environ-

ment during a set of actions. The modified environment then sees a new mode

agent and a reward signal at any point in time. In this process, learning takes

place during trial and error in a dynamic environment.

During the learning process, Q values are stored and updated from each Q(xt, at)

state-action pair. A value of Q indicates the usefulness of performing a pricing

operation when the environment is in the xt state. This paper considers a dynamic

pricing model of identical items on a given sales horizon that allows the value of

action-pair pairs to be learned from a sales horizon onwards. Suppose k represents

the sales horizon and each sales horizon is divided into m time intervals. The

sales horizon section addresses several issues of dynamic pricing in consecutive

time horizons, and the transfer probabilities are the same for different segments

but are unstable during each segment. These algorithms include updating Qk
t ,

Q values on each sales horizon k for time t, which provides an approximation of

Q∗
t . The optimal Q values are the currently observed transitions and the rewards
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< xkt , a
k
t , x

k
t+1, r

k
t > where xkt , a

k
t , , r

k
t are the remaining capacities, respectively.

The remainder, price action, is the current reward observed at time t in k and xkt+1

is the new residual capacity at time t + 1. Note that rkt depends on xkt , a
k
t and

xkt+1 : rkt ≡ r(xkt , a
k
t , x

k
t+1). An updated rule of the Q learning method in Equation

(2) shows that α
(
xkt , a

k
t

)
is the learning rate and 0 < µ <1 for t = 1,2,. . . , m.

Qk
t+1

(
xkt , a

k
t

)
=
(
1− α

(
xkt , a

k
t

))
Qk

t

(
xkt , a

k
t

)
+ α(xkt , a

k
t )( r

k
t + µ)

max
at+1∈A(xt+1)

Qk
t+1(x

k
t+1, at+1) (2)

The Q (λ) algorithm is a generalization to the one-step Q-learning algorithm. The

value of Q is approximated by the value of all up-to-date state-action pairs. The idea

of decent routing Q(λ) is very simple: each time a mode-action pair is selected in a

segment, a short-term memory (known as tracking) is allocated, which disappears

as the sales horizon moves. The amount of traceability determines the suitability

of a mode-action pair for learning. The recently visited mode-action pair is more

worthy. Properly reinforced learning has the important potential of learning on

a non-fixed sales horizon, especially in situations where demand is interdependent

between consecutive times (such as days), as it can reveal hidden states in the

decision-making process.

The transfer information available to the decision maker in k at time t is <

xkt , a
k
t , x

k
t+1, r

k
t >. The proper path of the function is shown in part k at time

t with ekt . In the transfer experience < xkt , a
k
t , x

k
t+1, r

k
t > the following updates

are made to be traceable: ekt
(
xkt , a

k
t

)
= 1, ∀i < t, ekt (xi, ai) if Qk

t

(
xkt , a

k
t

)
=

maxat∈A(xt)Q
k
t

(
xkt , at

)
, Otherwise ekt (xi, ai) = 0. For all mode-operation pairs,

routing decreases by λ, except for the last mode-operation visited, where the proper

path increases by one unit. Tracking can be updated in two ways. If a greedy

choice is made, then all traces of the action-pair pairs are viewed in a discount

parameter λ. If an exploratory action is performed, the results of the worthy

path are set to zero. In k, for each time t, the error is approximately equal to

δkt = rkt maxat+1
Qk

t

(
xkt+1, at+1

)
−Qk

t

(
xkt , a

k
t

)
. And is assigned to each of the pre-

vious state-action pairs that have been visited in section k according to their track-

ing properties. The error is calculated at any time t, and its value and the value

of the action-pair pairs previously visited in that section are updated. The initial

state-of-action pairs visited are given less credit for the current error. The pricing

operation in the earlier stages receives a lower reward or penalty for time error t.

Learning is accelerated by proper navigation. The goal of the learning strategy is

to train decision-makers on optimal pricing policy. The algorithm Q (λ) calculates

the desired value function iteratively: for each case x at any time t, the optimal

value of Q∗
t (xt, at) from each operation a t is estimated based on the simulated

transitions. When all these values are approximated correctly, the optimal policy

is obtained from Equation (2): ∀t ≤ m, ∀x ∈ X, π∗
t (xt) = maxat∈A(xt)Q

∗
t (xt, at) .
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2.2 Algorithm expression

The purpose of this algorithm is to obtain an accurate estimate of the optimal pol-

icy based on observations in the exploration phase while keeping the exploration

rate small to limit the loss of income in this phase of learning. The selected ex-

ploration rate (ε) is a greedy policy at the 1/k rate, so that learning progresses

as the exploration rate decreases. The result of this assumption is that the more

knowledge the decision-maker acquires, the less sub-optimal prices are explored.

The learning rate is adjusted similarly and also decreases over time. The learning

rate for each state-action pair is denoted by α(xkt , a
k
t ). The amount of learning is

equal to α(xkt , a
k
t )., which is equal to 1/(nk(xt, at)), which (nk(xt, at))is equal to

1 plus the number of times that the (xt, at)mode-action pair is visited by process

(xkt , a
k
t )before time k.

The algorithm starts with the initial value of Q and the following steps are

repeated for each part of Q. All eligible tracks are set to zero at the beginning

of the selling horizon for all action-pair pairs. Initial mode, (xkt ) (total inventory

number) and (akt ) (product price) are selected. After selecting this price, the next

state (xkt+1) (remaining capacity) and the instantaneous income obtained (rkt ) will

be observed. The (akt+1) value is then selected using the π (non-greedy) policy. The

time difference error (δ ) is calculated and the ekt (x
k
t , a

k
t ) routing is updated to 1.

All Q-values of the action-pair pairs is then updated using the tracking property.

All traces are updated: if the value of (akt+1) is a greedy action (so far desirable),

then all traces are multiplied by a parameter λ, if (akt+1) is an exploratory action

then all traces are set to zero. Then the next state (xkt+1) at time t+1 and operation

(akt+1) becomes the new (xkt ) and (akt ). This process is repeated until the last time

m for each part.

2.3 Solving Method

Reinforcement learning (RL) is an area of machine learning concerned with how

software agents ought to take actions in an environment in order to maximize the

notion of cumulative reward. Reinforcement learning is one of three basic ma-

chine learning paradigms, alongside supervised learning and unsupervised learning.

Reinforcement learning differs from supervised learning in not needing labelled

input/output pairs be presented, and in not needing sub-optimal actions to be ex-

plicitly corrected. Instead the focus is on finding a balance between exploration

and exploitation.

Temporal difference (TD) learning refers to a class of model-free reinforcement

learning methods which learn by bootstrapping from the current estimate of the

value function. These methods sample from the environment, like Monte Carlo

methods, and perform updates based on current estimates, like dynamic program-

ming methods. While Monte Carlo methods only adjust their estimates once the

final outcome is known, TD methods adjust predictions to match later, more accu-
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rate, predictions about the future before the final outcome is known.

3 Being independent of the model versus the para-
metric structure

Here, the model-independent method is compared with the parametric learning

algorithm. It starts with a one-step process in which Q-learning and Q (λ) are

equally effective. The performance of three algorithms is examined: (a) learning

algorithm Q (b) learning algorithm Q in which the values of Q are estimated to be

the best function of demand and (c) a learning algorithm in which the parametric

structure is known but the parameter values (adjustment parameters) ) Is unknown.

The exponential demand model(1), θ = l1 exp(1) , λ (a) = θexp (−l2a) and the

linear demand model λ (a) = h1−h2a, the values of the parameter used are different.

Here represents the pricing action. The Q learning algorithm does not make any

assumptions about the structure of the demand function. Learning Q with the

Best Estimated Demand Function Algorithm (Best Q-Learning Estimation) gives

the initial values of Q of a demand function that the decision-maker believes is

reasonable. For the exponential demand model, the initial values of Q are performed

using the demand function λ (a) = 15exp (−0. 5a) And for the linear model with

λ (a) = 30-5a. Table 2 shows the performance of the three algorithms for the two

basic demand models for different parameter values. In the first set of experiments,

the parametric algorithm first assumes an exponential parametric structure for

the demand function, , θ = l1 exp(1), λ (a) = θexp (−l2a) but the basic demand

model is linear λ (a) = h1 − h2a. In the second set of experiments, the parametric

algorithm is assumed to be linear, but the main demand model is assumed to be

exponential by the parametric algorithm.

3.1 Comparison of Q-learning and Q (λ)

In the next step, the performance of Q-learning algorithms, Q learning with the

best estimate, Q (λ), Q (λ) with the best estimate, parametric (well-defined), and

parametric (incorrect) algorithms are compared. Consider the issue of an orange

warehouse that the wholesaler does not know the customer demand, that is, has

no explicit model of customer buying behavior and only sees the realized demand

after the pricing operation in different cases. Demand data is generated using the

following hypotheses:

(i) Time-dependent Poisson distribution. The customer entry rate is a Pois-

son distribution with discrete times with average mean µ (t). It is assumed

that the average entry rate decreases with the linear rate µ (t) -5t. This

assumption is random and has an element of demand correlation. The initial

customer entry rate randomly follows a uniform distribution [b, c]. For these

experiments b = 50 and c = 100.
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Table 2: The performance of the algorithms is measured as a percentage of the
optimal policy for the various demand functions

The right Parametric Q-Learning Q - learning

demand (incorrect) best estimates

Linear

h1=42,h2=2.5 83 93.4 92.6

h1=20,h2=1.5 83.1 95 94.1

h1=55,h2=5 81 94.5 94.5

h1=25,h2=0.5 81.4 93.4 92.3

h1=20,h2=0.4 82.2 94.8 94.4

Exponential

l1=15,l2=1 64.5 93.2 93.4

l1=20,l2=3 62.9 94.5 92.1

l1=25,l2=4 63.1 93.6 90.4

l1=30,l2=3 65.4 94.4 93.4

l1=15,l2=0.5 62.3 93.1 92.2

(ii) The customer purchase price for services increases exponentially as the deci-

sion time approaches the expiration time. Customers who do not buy this

product do not expect a cheaper price. The time horizon is considered as the

discrete set T = {1,10} and the set of feasible prices {70,100}.. Inventory is

a discrete set of {10,100}.

The performance of these algorithms is measured by the percentage of deviation

from the optimal policy. The optimal policy is a policy that is under full in-

formation about demand. The results presented here are based on the results

of the implementation of 103independent simulations from which the average in-

come was calculated. The best-estimated demand for learning Q and Q (λ) is de-

fined as 75− 5t.exp(2/t.a/100) the good parametric definition is defined as µ (t)−
β1t.exp(−β2/t.a/100), and an incorrect parameter is defined as µ (t) exp(β1).exp(−
β2/t.a/100) . Table 3 shows a summary of the performance of the algorithms. Next,

the learning algorithms Q and Q (λ) are examined in more detail. To compare the

performance of the Q (λ) algorithm with simple Q-learning, the total expected

revenue generated by both algorithms along with their confidence intervals for the

entire sales horizon is calculated. And begins in a specific mode-action pair: Q

values are compared for a capacity of 100 units at the time of decision making,

which is 10 days and the unit price is 70. Figure 1 shows that Q (λ) generates more

revenue than the learning algorithm Q is simple. The model was run 1000 times
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based on the previously defined example for 2000 units. Samples were generated

for both algorithms to test the significant difference between the total expected

revenue for a different number of iterations. 95% for total revenues Losses were

calculated for 50, 500, 1000, and 2000 episodes, respectively.

The convergence of the algorithm in Figure 1 begins with the decision-maker as-

suming that there is no prior knowledge of demand. In Figure 1, the decision-maker

learns how he can earn more than 60% of his profits in the first 50 episodes. This

demand information can be used to generate a demand function, and if this de-

mand function is correct, an optimal policy can be established after a few more

parts. The two algorithms are executable simultaneously. The first case assumes a

demand function based on the information obtained in the first 50 parts from which

it can then learn the parameter values of the demand function. In the second case,

it can learn Q values using simulated data without assuming the model; Therefore,

by implementing both algorithms, the risk of not determining the demand model is

eliminated. In Table 4, LC and UC show the low and high values of the confidence

interval, respectively.

From Table 5 it can be concluded that for 500, 1000 and 2000 parts the confidence

intervals for the algorithms are not too much, so it shows that there is a significant

difference between the total expected revenue for these two algorithms. In iteration

number 50, the algorithm produces similar results because initially the speed of

exploration is higher and decreases with an increasing number of iterations. Q (λ)

When the exploration rate is high, it updates in a similar way to the Q-learning

track. The total expected revenue Q (λ) is consistently higher. For this example,

it is obvious that the Q (λ) algorithm performs better than the simple Q learning

algorithm and therefore offers higher expected revenue.

The sensitivity of the algorithms according to the level of exploration was also

investigated. A sensitivity analysis was performed to elucidate the experimental

performance (Q) λ and compare it with the standard Q learning algorithm. Figure

2 shows the performance of the two exploration rates, 0.01 and 0.5.

Figure 1: Compare the expected income from Q-learning and Q (λ) as a function
of the number of parts
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Table 3: The performance of the algorithms is measured as a percentage of the
optimal policy

Algorithm Percentage of optimality

Q- Learning 72.1

Learn Q with the best estimates 74

Q (λ) 91.3

Q (λ) with best estimate 94

Parametric (correct definition) 97.1

Parametric (incorrect) 59.8

Table 4: Expected revenue in different iterations for the Q-learning and Q (λ)
algorithm

Episodes

Average

Q (λ)

Average

Q-learning

LC

Q (λ)

UC

Q (λ)

LC

Q-learning

UC

Q-learning

50 4966 4532 3800 5672 4211 4102

500 8934 6042 8100 9620 5623 6515

1000 9290 6610 8431 10150 6040 7121

2000 9660 7100 8822 10521 6531 7635

Figure 2: Compare the expected income from Q- learning and Q as a function of
capacity Convergence occurs for a case, type of decision stage, practical measures
with an exploration rate of 0.01
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Figure 3: Compare the expected income from learning Q and Q (λ) as a function of
capacity Convergence occurs for a case, type of decision stage, practical measures
with an exploration rate of 0.05

In Table 5, total revenue for 2000 units with different exploration rates is reported

as a percentage. The maximum result is set to 100%. The results show that a lower

exploration rate produces a higher expected total revenue. Q (λ) gives better results

when the exploration rate is lower. This is because when the amount of exploration

is high, it does the updates in a similar way to Q-learning. The sensitivity analysis

discussed above shows that the Q (λ) algorithm is better than the standard Q

learning algorithm for all detection rates tested. Another reason for the difference

in total expected revenue between the learning algorithm Q and the algorithm Q

(λ) is that demand shows a correlation between consecutive days. Customer entry

rates are randomly assumed to be uniformly distributed in the initial case. As time

goes on, the number of customers entering decreases exponentially.

Table 5: Percentage of highest receipts at different exploration rates

Algorithm 1/k 0.01 0.05 0.1 0.5

Q-learning 92.1 92.1 92.1 90.5 81.5

Q (λ) 100 99.7 99.8 94.1 84.7

By comparing the average learning performance of Q and Q (λ) in different fields,

as reported in Tables 3-5 and in Figures 1-3. We now consider two very specific

examples of the behavior of algorithms in pricing different units. To this end, Figure

3 reports the revenue for each of the 2000 units generated using the Monte Carlo

simulation. The specific revenues reported for each of the 2000 units are random

because the customer entry rate is generated randomly.

4 Conclusion

In this paper, reinforcement learning is used to solve the problem of dynamic pricing

with specific inventory and unstable demand. The Q (λ) algorithm was used to solve

Markov’s unstable decision-making process. We have shown analytically, using
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simulations, that Q (λ) converges, creating a better policy than the standard Q

learning algorithm.

In this paper, it is shown that the parametric algorithm is better than the non-

parametric algorithm as long as the assumed parametric model is consistent with

the actual demand function, otherwise the parametric model leads to a loss due to

a model error error. In addition, decisions made using demand at the moment are

used because inventory is tracked at the moment and used to determine current

demand levels. This article analyzes how companies can both learn and optimize

their pricing strategies in the face of the customer. The Q (λ) algorithm in par-

ticular performs well, especially when demand is correlated between consecutive

days.

In this article, dynamic pricing of single products was considered, which can be

proposed simultaneously for several products and the selection of the best pricing

strategy.Pricing for non-perishable products such as cereals and wheat using the

method used in this issue.In this paper, time is considered discretely that continuous

time can be used in future studies.
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