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Abstract:
Abstract:
Noise presence in financial series, often as a result of existence of fraudulent
transactions, arbitrage and other factors, causes noise in financial data, which
will lead to a false estimation of the parameter and hence distorts the portfolio
allocation strategy. In this paper, wavelet transform is used for noise reduction
in mean-variance portfolio theory. I apply conditional estimation of the mean
and variance of returns along with the simple one obtaining ”optimal weights” is
applied which later combines with smooth and non-smooth series, result in four
optimal portfolio weights and therefore four portfolio returns. After this, the
non-negativity constraint (for weights) deduced from the Kuhn-Tucker approach
is imposed to Exchange. Weights and portfolio returns changed dramatically in
this step but the main result (which asset to hold) did not. Comparing Sharp
ratios, it is observed that Regardless of the psychological characteristics of the
investor, holding the risk-free asset is almost the optimal choice in this case.
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1 Introduction

It has been said that the goal of any government is to reach a higher rate of economic

growth (Tobin, 1964) which is the key to higher levels of welfare. Investment is one

of the most important roads for increasing GDP and economic growth because of

the necessities of infrastructures and facilities which only investment can bring. It is

important to any investor to be able to choose the correct allocation of wealth and

have the opportunity to profit the most from his investment while minimizing the

risk associated with it. Stock markets are one of the most important institutions

for both individuals and corporations to take part in, in order to reach their goals

(maximizing profit and financing projects). To benefit from the diversification, in-

vestors normally invest in a portfolio consists of risky and risk-free securities. And

for more discretion, they usually choose securities that are less dependent to each

other. This idea seems very logical and simple now but when Harry Markowitz
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(1952) published his paper of Portfolio Selection it was an interesting idea which

changed the financial world from then on. It was in Markowitz’s work (1959) and

(1952) that the distinction between asset risk and portfolio risk was clarified for the

first time; He is known as the founder of modern portfolio theory, as Rubinstein

(2002) argues, because the idea of diversification was explained in a mathematical

approach for the first time in his paper of Portfolio Selection. His theory is also

known as the Mean Variance Portfolio Theory and it leads to the optimal portfolio

which is in fact based on the expected return of each security, variance of securi-

ties, and correlation among securities. In fact, the classical framework of modern

portfolio theory is based on the assumption that the investor only cares about the

first two moments of the return distribution: mean and variance (Rigamonti, 2020).

Markowitz believed that an investor should:

”Consider the expected return a desirable thing and the variance of return an

undesirable thing.”

In other words, at a given risk one should maximizes the profit and for a given

profit one should minimizes the risk. The most important point in his work was

that an asset cannot be chosen only because of its own characteristics, in fact co-

movements and correlations among securities must also be taken into account and

a portfolio must be built based on mean and variance of the portfolio not on the

one of the very single asset individually. When combining the portfolio of interest,

we need to estimate the efficient weights, choosing a combination of assets and

their fraction, in a way that as possible maximizes portfolio return and minimizes

its risk. Using mean and variance of the portfolio is just due to its simplicity and

if we use other moments of return, like skewness, it would help the description of

the return distribution to be more realistic but we are not sure about the efficiency

of the final portfolio and that’s why the mean variance portfolio theory is still the

basis for new theories.

In order to estimate the expected return and variance of securities, one can apply

many approaches. One approach is based on the historical mean and variance of

securities. Since calculating the correlation coefficients in large portfolios is very

inefficient, and leads to a very huge correlation matrix, estimation of correlation co-

efficients among securities is difficult (Behradmehr,2010). To palliate this problem,

Elton and Gruber (1973) propose several efficient models for computing correlation

coefficients between securities and full historical model, using past data to estimate

future correlation coefficients, is one of them.

These models made estimating the correlation coefficients among a set of securi-

ties, more efficient however Laloux, Cizeau, Bouchaud, and Potters (1999) showed

that high amounts of noise are present in covariance and correlation matrix esti-

mations and this renewed the quest for better modeling. They argue that they

can treat an empirical correlation as a random matrix since the amount of noise

is high. Therefore, as they note, one should take into consideration the effect of

noise present in the empirical correlation and covariance of the financial models
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(like mean variance portfolio theory). So, for obtaining more accurate results, one

could minimize the noise present in the financial series.

Every market has its own characteristics and Tehran Stock Exchange (TSE)

from which my data sets are obtained, is no exception. For example, exerting a

price limit is one of these characteristics which can affect statistical characteristics

of the financial series and hence the portfolio allocation decisions. Some kind of

regulatory limitations related to short-selling is another difference between TSE

and other stock markets. Short-selling, selling the asset we do not have in order

to benefit from further price reduction in the future, is one of the commonly used

financial instruments which causes the weights to be negative in estimations. In

most of the papers the weights are automatically set to be some specific amount

(mostly a positive amount) but we are going to investigate in how imposing the no

short selling constraint affect efficient weight matrices and hence the combination

of the efficient portfolio.

In this paper the wavelet transform is applied to smooth the financial series and

minimizing the noise. Then the effect of noise reduction on the mean, correlation

and variance matrices of the financial series and therefore, the effect of noise re-

duction on the allocation of the portfolios based on the mean-variance portfolio

theory is studied. Furthermore, to investigate the main source of changes in alloca-

tion of portfolios, different combinations of raw and smooth series and simple and

conditional estimations are applied to acquire the mean and variance used in esti-

mating the optimal portfolio. To investigate the impact of no short-selling, weight

constraints are imposed and the study is done with and without weight constraints

using Kuhn-Tucker approach. Results reveal that regardless of the psychological

characteristics of the investor, holding the risk-free asset is almost the optimal

choice in this case. The remainder of this paper is organized as follows. Section

2 discusses wavelet transform, and reviews proper financial literature relating to

wavelet transform. Section 3 elaborates the methodology used in employing the

wavelet transform to increase the portfolio return and how weight constraints were

imposed using Kuhn-Tucker approach. Section 4 describes the data sets as well as

the evaluation results following by a conclusion in Section 5.

2 Wavelet Transform

It has been well appointed that by representing time series in other domains (i.e.

frequency, wavelet, Z transform, etc.), certain characteristics which are invisible

in the time domain are highlighted. Such characteristics can be used to better

understand the underlying time series. For example, it is difficult to describe a

complex time series created by the superposition of a few sine series. However, by

illustrating this complex time series in the frequency domain, one could observe

simply the frequency of the sinusoidal components, which form such a series. With

wavelet analysis and by observing frequency characteristics in different time resolu-
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tions, we obtain an additional level of insight into the characteristics of the signal.

This is contrary to simple frequency analysis in which one observe the frequency

characteristics over the entire time series (Behradmehr, 2010). This very wavelet

transform of course does not change the information of the time series (signal) and

for this reason, wavelets are considered a powerful tool for time series analysis as

observed by Ramsey (1999) and Ramsey (2002). Fourier transform is considered

to be the basis for the rest of the transforms. Using Fourier transform our infor-

mation (data) would be a function of frequency and therefore there would be no

time information so this transform is better to be used for nonstationary time se-

ries. However, with wavelet transform we have the analysis of different frequencies

at different scale (Resolution) using multi-resolution techniques so the analysis of

the time series which are nonstationary in different frequencies will be done with

high efficiency. In the following section I point out the basic concept of wavelet

transform and after that some of the related work in the economic literature which

have employed wavelets and weight analysis will be discussed.

2.1 Wavelet Theory

Unlike the Fourier transform, where sine is the only basis function, there are many

wavelet basis functions with different shapes all of which are compactly supported

with finite energy. Wavelet transform converts a time series to the frequency do-

main, using these very basis functions, and represents the series at different time

and scale resolutions. As noted above, these characterizes make dealing with non-

stationary and transient series possible for wavelet transform in addition to the

ability to decompose time series to different components at different scales. The

basis function is called the mother wavelet and other bases are obtained from the

dilation (size) and the translation (location) of the mother wavelet. For a continues

time series, one would employ the continuous wavelet transform (CWT). Accord-

ing to Kvasnicka (2015), the most used wavelet transforms are Continuous Wavelet

Transform (CWT), Discrete Wavelet Transform (DWT) and Maximum Overlap

Discrete Wavelet Transform (MODTW). Genay et.al. (2001) represent the contin-

uous wavelet transform, W(u, s) as:

W (u, s) =

∫ +∞

−∞
x(t)ψu,s(t)dt (1)

and the continuous mother wavelet, ψu,s , as:

ψu,s =
1√
s
ψ(
t− u

s
) (2)

As shown in equation 1, continuous wavelet transform W (u, s), a projection of

time series x(t) on to the basis wavelet (i.e.ψu,s), is a function of two continuous

variables s and u. The size of wavelet (dilation) is described by the parameter s, and

u is a parameter for its translation (location). The wavelet transform decomposes
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the time series into a different scale and time resolution components by obtaining

the wavelet with different dilation and translation values. There are two kinds

of basis functions for wavelets; scaling function also known as father wavelet (ϕ)

and mother wavelets (ψ). Equations 3 and 4 show father and mother wavelets for

continuous wavelet, respectively.

ΦJ,K = s−
J
2 Φ(

t− sJk

sJ
) (3)

Ψj,k = s−
j
2Ψ(

t− sjk

sj
), j = 1, ..J (4)

Discrete wavelet transform is more useful because most financial series are in dis-

crete form. Putting S=2 in equations 3 and 4 , father and mother wavelets (equa-

tions 5 and 6) for discrete wavelet are obtained

φj,k(t) = 2
−j
2 φ(2−jt− k) j, k ∈ Z (5)

ψj,k(t) = 2−
j
2ψ(2−jt− k) j, k ∈ Z (6)

where j is the index for dilation (size) and scale parameter in the Jth level of

decomposition and k is the index for translation (location) of the wavelet. For

example, as j increases, the wavelet becomes more compact (i.e. smaller in length),

hence the time resolution will increase since smaller time durations are analyzed.

Apparently, s parameter is the difference between wavelet and fourier analysis;

changing j in 2
−j
2 , suitable scale will be obtained (Abassi Nejad & Mohammadi,

1385). The set of two dimensional discrete wavelet transform coefficients, dj,k, can

be obtained by the inner product of series x(t) and mother wavelet ψj,k(t), as in

equation 7:

dj,k =< X(t), ψj,k >=

∫
X(t)ψj,k(t)dt (7)

Furthermore, Mallat (1989) proposes the multiresolution analysis, applying which

a time series can be decomposed to an approximation and detailed components at

various resolutions. In order to demonstrate multiresolution analysis of a time

series, besides the mother (basis) wavelet function, which capture the detailed com-

ponent, one need another function to capture the approximation component and

scaling function, φj,k(t) in equation 5, represented by Burrus and Gopinath (1997),

is that another function. Scaling functions always satisfy the following condition:

φj,k(t) = 1 (8)

Therefore, any square integrable function, g(t) ∈ L2(R), can be expressed as a

combination of the scaling functions and mother wavelets.

g(t) =
∑

cj.(k)Φcj.k(t) +
∑
k

∞∑
j=j.

dj.(k)Ψcj.k(t) (9)
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where dj(k) represents the detailed coefficients (noisy) and cj(k) donates the ap-

proximation coefficients (smooth). So far, I have presented a brief review of wavelet

transforms and different functions. In what follows in this section, a review of the

corresponding economic and financial literatures that have employed wavelet trans-

form and weight analysis as part of their work, will be conducted.

2.2 Related works

Wavelets and the idea of noise reduction using different functions, have been em-

ployed in a number of research literature. In this research wavelet transform is

used as a tool for data preparation. On the contrary, the number of researches

investigating on the impact of weight on the results, is really limited. In what

follows, I first review related literatures in which the wavelet transform is used and

afterwards, I cover works in which weight analysis have been employed.

Wavelet Analysis

Understanding the relation between variables in economic and financial models has

always been important. Wavelet transform can provide researchers with a tool to

understand the relation between variables in the short and the long periods using

the ability to decompose the time series into different components.

Ramsey (1999) notes that we can use wavelets for noise smoothing and denoising

but denoising is done by thresholding the wavelet coefficients before reconstructing

the time series which is in contrast to smoothing. In smoothing only the smooth

coefficients are used to reconstruct the time series and the detailed coefficients are

removed. Ramsey notes that when the underlying time series includes regime shifts

and discontinuities, denoising would be the better approach rather than smoothing.

Dajcman (2013) investigate in the Interdependence Between Some Major Euro-

pean Stock markets using a Wavelet Lead/Lag Analysis.

Ramsey and Lampart (1998) employ wavelet decomposition to study the relation

between consumption and income. They found that the relation between money

and income at different level of time series decomposition is not the same hence

arguing the wavelet transform is beneficial in capturing these variations.

Ramsey (2002) defines the difference between denoising and smoothing and ex-

plaines useful applications of wavelet in current financial and economic literature

to predict possible inventions in future.

Behradmehr (2007) uses wavelet for minimizing the noise present in financial

data (smoothing) along with different methods for estimating moments of return.

The result of this research is that the most efficient model is obtained applying

AR(1)-GARCH(1,1) and smoothing can improve the results taking into account

it’s sensitivity to the level of smoothing.

Abassi nejad &Mohammadi (1386), applied wavelet analysis along with Artificial

Neural Network (ANN) to predict exchange rate. They found out that using this



Paper 7: Impacts of no short selling and noise reduction on portfolio allocation 69

combination of methods (for 1-5 step predictions) would result in better predictions

rather applying just the ANN or ARIMA.

Weight Analysis

Roncalli (2010) analyzes the impact of weight constraints on the difference be-

tween the optimal weight deduced from Markowitz optimization and the one ob-

tained from constrained optimization. By comparing mean and variance-covariance

matrixes and using quadratic programming, he finds out that implying weight con-

straints would dramatically affect the optimal variance-covariance matrix and in

turn optimal portfolio.

Jagannathan & Ma (2002) try to explain why implying weight constraints can

help the efficiency of the results. They believe that although this could cause

specification error, as Green et.al. (1999) say, the benefits of the reduction in

sampling error may cover that. Using simulation technique, they find that implying

non negativity constraints is equal to the applying shrinkage estimation.

3 Methodology

In the previous section I discussed the wavelet transform and a brief review of the

in hand literature. In this section I will discuss the methodology applied to ap-

praise the effect of noise reduction using wavelet smoothing on the combination of

portfolios. First, I review the framework of the modern portfolio theory, and the

process of obtaining the optimal portfolio weights; The very process is conducted

through a number of models I consider for estimating the parameters used to calcu-

late the portfolio weight. Besides, there is a need to consider parameters required

for the smoothing operation and the level of smoothing employed. In addition

to the models used for estimating the parameters of interest, section 3.1 reviews

mean-variance portfolio theory and section 3.2 elaborates the methodology used for

smoothing financial series.

3.1 Mean-Variance Portfolio Theory

The Mean-variance portfolio theory also known as modern portfolio theory was in-

troduced by Markowitz (1952). He believed that investors must maximize expected

return while minimizing variance of the portfolio. Researchers (e.g, see Levy and

Markowitz (1979)), have shown that the optimal portfolio in this framework could

be obtained by solving an optimization problem, assuming that the distribution

of asset returns is normal or using a quadratic utility function. The optimization

problem using Okhrin and Schmid (2007) notations is

max
w

EU(Rp), s.t.w
′
1 = 1, (10)
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where Rpis the portfolio return which is formed by combination of risky assets and

a risk-free asset:

Rp = w
′
(X − rf1) + rf (11)

and X denotes the normally distributed ( X ∼ N(µ,Σ)) of K-dimensional vector

of asset returns and rf is a risk-free asset; Furthermore w denotes the vector of the

portfolio weights. Then the maximization problem of 10, using quadratic utility

function, is transformed to

max
w

E(Rp)−
γ

2
V ar(Rp), s.t.w

′
1 = 1 (12)

where γ > 0 is the risk aversion coefficient which measures the attitude of the

investor towards risk and by substituting Rp from equation 11 to equation 13, the

maximization problem can be rewritten as:

max
w

w
′
(µ− rf1)−

γ

2
w

′
Σw (13)

Therefore, the optimal weight of a risky asset is

wop =
µ− rf1

γΣ
(14)

Hence the weight of a risk-free asset is wrf = 1− 1
′
wop.

As shown in equation 14, the optimal portfolio weight depends on the inverse

of the mean and variance covariance matrix of assets. Below two different models

used to estimate the mean and covariance matrix are reviewed.

Benchmark Model

Using the historical mean (sample mean) and sample covariance matrix of each

series, as well as the sample mean of the risk-free asset, a simple benchmark model

is built to first estimate portfolio weights and then the its returns. This simple

model is used for comparative purposes basically.

Conditional Mean & Variance

Secondly, applying the Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) model, introduced by Bollerslev (1986), conditional mean and condi-

tional variance matrices are obtained. For efficiency’s sake, the AR(1)-GARCH(1,1)

model is used in this step.

3.2 Smoothing Financial Series

As mentioned before, the wavelet transform can be used as a tool for either smooth-

ing or denoising time series and in this paper, wavelet smoothing is employed instead

of wavelet de-noising to avoid any further complications; when applying wavelet de-

noising, extra parameters need to be estimated (i.e. denoising threshold). I have
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experimented with different basis wavelets such as Haar, Daubechies, and Symlet,

and have observed better results with the Daubechies wavelet which is one of the

most important and applicable basis wavelets. The time series are first decomposed

to detail and approximate coefficients, using the Daubechies wavelet, and then to

reconstruct the series I use the wavelet synthesis function. In this step, the recon-

struction is done from only the approximate coefficients i.e. I remove the second

part of the equation 9 (9), which represents the detail (noise) coefficients.

4 Data Set and Empirical Analysis

The data sets are obtained from the Tehran Stock Exchange website (tse.ir)

amongst companies from different industries, which their corresponding assets and

shares are among the ones with the most trade volumes in the desirable period and

also with the most compatible trading halts. The stock prices of these six com-

panies which cover the period of last days of March2006 through 2013 are chosen,

which consist a total of 1400 daily observation for each series turning into weekly

observations later (weekly returns). A five-year deposit in government (state) banks

is chosen as a risk-free asset and its rate is gotten (for the same period) from the

Central Bank of Iran website (cbi.ir). Annually rates converted to weekly rates

using:

(1 +Annualrate)
1
52 − 1 = weeklyreturn

I use the simple mean of this series as a risk-free rate. Name and index of the

six companies can be seen in table (1).

Table 1: Selected companies and their symbols

Symbol Company

STEH1 Tehran Cement

SNMA1 Ind. & Mine Inv

PARK1 Shazand Petr.

NOVN1 EN Bank

IKCO1 Iran Khodro

FAJR1 Amirkabir Steel

So, our final portfolio is a combination of six companies’ stock, noted in table

(1) and a risk-free asset.

Table 2 reports the summary statistics for the raw weekly returns obtained using

Matlab software and I will decompose and smooth the data using wavelet transform

in what follows.

The mean of all weekly returns are positive and small amounts, except for the

returns of the 1,2 ,&5thcomapies which are negative. The maximum and minimum

 tse.ir
cbi.ir
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Table 2: Statistical characteristics of companies’ raw return (Source: Research
findings)

Data Mean Standard kewness Kurtosis Maximum Minimum

Error Amount Amount

STEH1 -0.0027 0.0463 -0.0760 10.8169 0.2307 -0.2076

SNMA1 -0.0018 0.0527 -0.2760 19.2502 0.3307 -0.3561

PARK1 0.0006 0.0646 -2.7486 28.5239 0.3506 -0.5724

NOVN1 6.5e5 0.0681 2.0718 57.0451 0.7391 -0.5493

IKCO1 -0.0029 0.0596 -1.8919 17.1331 0.2111 -0.4562

FAJR1 0.0045 0.4077 0.1004 165.4577 5.2989 -5.2628

amount of return of the 6th company are respectively the highest (5.29) and the

lowest (-5.26) and it also has the highest amount of mean and standard deviation.

The kurtosis statics of all returns are more than three meaning that their distri-

butions are taller than normal; The assumption that can be relaxed according to

Beyhaghi & Hawley (2012) and as Bradly & Taqqu (2003) argue it is commonly

accepted that financial asset returns are, in fact, heavy-tailed. In what follows, the

effect of wavelet smoothing on the statistics of the data sets used will be discussed

and then the impact of wavelet smoothing on the combination of portfolios will be

detected.

Wavelet Decomposition of Financial Series

As discussed before in Section 3.2, in order to decompose the raw data into detail

and approximate coefficients, the Daubechies1 wavelet is used as the basis function

(mother wavelet) and afterwards, the smooth series are reconstructed by using only

the approximate coefficients. The smooth series are reconstructed from the approxi-

mate coefficients obtained at different levels of decomposition to scavenge the effect

of different levels of smoothing. At first, raw series are decomposed by one level, and

the smooth series are reconstructed from only the approximate coefficients. Then,

for approximate coefficients obtained from the first level decomposition resulting in

the second level detail and approximate coefficients, wavelet decomposition is used

and after that smooth data are reconstructed; The reconstruction is based on only

the second level approximation coefficients (Behradmehr, 2010). I do not go any

further for next levels of smoothing since in third level, I observed that the mean

of the time series is changing meaning data are over-decomposed because noise

generally has a zero mean and therefore its reduction should not impact the mean

of the series. Table 3, reports summary statistics of the two-level smooth series.

Comparing sample means in Table 2 and Table 3, it is observed that the sample

mean for all six returns remain unchanged, as expected, with respect to the sample

mean of the raw series. Now comparing estimated standard deviations in Table 2
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Table 3: Statistical characteristics of companies’ smooth return (Source: Research
findings))

Data Mean Standard kewness Kurtosis Maximum Minimum

Error Amount Amount

STEH1 -0.00274 0.0229 0.276332 4.59742 0.07673 -0.06571

SNMA1 -0.00188 0.0262 -0.01154 4.22161 0.07307 -0.08931

PARK1 0.00069 0.0353 -1.13801 6.18588 0.08248 -0.13565

NOVN1 6.6e-5 0.0347 1.214301 13.3163 0.18510 -0.13789

IKCO1 -0.00299 0.0302 -0.07748 6.04831 0.09352 -0.11274

FAJR1 0.00455 0.0293 0.940046 4.95490 0.10141 -0.06608

and Table 3, it is observable that as the data is smoothed the estimated standard

deviations decreases in a way that the average standard deviation for raw series

is 0.116 while for the second level smooth series the average standard deviation

decreases to 0.029. This clearly points to a reduction of noise in the data and

in fact is the reason we apply wavelets. Furthermore, it is observed that sample

kurtosis clearly decreases through smoothing; It may seem that return distributions

are getting closer to a normal one. Figure 1 plots the multiresolution analysis of the

first company’s weekly returns using Daubechies1 wavelet. Top panel plots the raw

serie and the second panel plots the second level smooth serie (the general trend).

The third panel plots the residual (noise) from the first level decomposition and

the fourth panel plots the noise extracted from the second level of decomposition.

Figure 1: Raw serie STEH1’s return

Since not all the economic variables and parameters are stationary therefore it

is suggested that we run the Augmented Dicky Fuller (ADF) test and examine the

stationarity unless, the results may not be valid enough. A time series is stationary

if it’s mean, variance and auto-covariance are time independent and because this

might not be the case for many financial time series, I applied the Augmented Dicky

Fuller (ADF) test. Table 4 reports the results.

As it is observable from Table 4, all the time series are stationary and differenti-
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Figure 2: Second level smooth serie (the general trend STEH1’s return

Figure 3: Residuals from the first level decomposition STEH1’s return

Figure 4: Noise extracted from the second level of decomposition STEH1’s return

Figure 5: Multiresolution analysis using Daubechies1 wavelet STEH1’s return
(Source: Research findings

ation is not necessary. Obviously, noise series are stationary too since they are all

residuals.
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Table 4: Augmented Dickey-Fuller test for raw returns (Source: Research findings)

STEH1 SNMA1 PARK1 NOVN1 IKCO1 FAJR1

t -14.64 -17.71 -16.65 -17.82 +16.12 -13.58

Significance 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4.1 Weight Estimation

As noted above, the estimation of the efficient weight matrices (equation 14) is

necessary in order to obtain the proper portfolio allocation and in this research

this estimation is done applying not just one approach. For comparison purposes,

I decided to form a portfolio of the underlying assets with equal weights. In other

words, each of the risky and risk-free assets will get a fraction of 1/7 of the final

portfolio. Table 5 reports the summary statistics of this portfolio.

Table 5: Equal weights- portfolio’s parameters (Source: Research findings)

Return Standard error Sharp ratio

0.050 0.061 0.762

As we can see in Table 5, sample mean, standard deviation and sharp ratio of

the corresponding portfolio is positive. Based on the benchmark and conditional

estimation models, discussed in Section 3.1, and using wavelet transform, I am going

to estimate the efficient weight in four scenarios (cases). In other words, the simple

and estimated conditional mean and variance values are obtained independently

from both the raw and smooth series, resulting in four cases of interest:

• Case one: both the simple mean and the variance are estimated from raw

series.

• Case two: both simple mean and simple variance are estimated from the

smooth series.

• Case three: both the conditional mean and the conditional variance are esti-

mated from raw series.

• Case four: smooth series are used to estimate the conditional mean and vari-

ance.

Note that before applying GARCH estimation, existence of ARCH effect was tested

and the results are reported in table 6.

As it is shown in table 6, ARCH effect is observed but not for all the companies

which is due to some conditions with tse data, for example applying maximum and

minimum amount for price volatilities, price limit, in a way that real volatilities

cannot be seen causing results to be biased. But since there are two kinds of assets
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Table 6: ARCH test (Source: Research findings)

Symbol STEH1 SNMA1 PARK1 NOVN1 IKCO1 FAJR1

Significance Level 0.91 0.002 0.92 0.82 0.69 0.0000

in the portfolio, applying GARCH for risk index estimation is appropriate. Best

results can be obtained by employing GARCH(1,1).

Estimations Without Weight Constraint

In order to estimate portfolio parameters, weight matrixes must be estimated first

(equation 14). With the first 341 observations weight matrix will be estimated and

then using the last observation the mean of the return will be estimated. In order to

estimate weight matrix, risk aversion coefficient (γ) is needed. In references as we

looked there is no specified limit for γ (Paolo Brandimarte, (2002)) but it is common

to define γ as an amount between one to five. We applied different amounts of γ

(γ = 1, 3, 5 ). Since the main results of this research did not change with different

γ , estimations with γ = 1 are reported only. Table 7 reports the efficient weight

matrices for the six companies and Table 8 reports portfolio parameters considering

risk-free asset.

Table 7: Weight estimations without constraint with γ = 1 (Source: Research
findings)

STEH1 SNMA1 PARK1 NOVN1 IKCO1 FAJR1

Weight Weight Weight Weight Weight Weight

Case 1 -2.714 -1.0556 -0.1839 -0.7007 -1.5436 0.0051

Case 2 -23.2295 -6.2408 3.2102 -0.3831 -10.8445 8.8884

Case 3 -45063.9 -6566.41 294742.4 -272627 -28711.8 -2925.35

Case 4 -1.2e13 1.76e13 3.67e13 -4.5e12 -2.2e13 -2.7e13

Table 8: Portfolio parameters - no constraint , γ = 1 (Source: Research findings)

Return Standard error Sharp ratio

Case 1 -5.16E-01 0.1857 -2.7918

Case 2 -3.49E+00 3.8874 -0.8996

Case 3 -6.03E+03 2.65E+04 -2.28E-01

Case 4 -3.42E+12 1.12E+13 -3.06E-01

As it is shown in tables 7 and 8, all the returns and sharp ratios are negative.

Negative sharp ratio means that the risk-free rate is greater than portfolio return

and therefore holding risk-free asset is the optimal choice. Standard divisions are



Paper 7: Impacts of no short selling and noise reduction on portfolio allocation 77

also large amounts and almost all of the weights are negative meaning short- selling.

In addition to the tse’s inherent problem, as mentioned in Okhrin & Schmid (2007)

negative weights or weights greater than one occurs because of using historical data

in estimating moments of return, in fact, it is completely predictable. So Okhrin

& Schmid (2007) propose a solution which we discuss in the next section.

Estimations with weight constraint

One of the solutions suggested for solving the weight estimation issue (discussed

in previous section) is imposing some weigh constraints. One of the most common

constraints is the non-negativity one along with the equalization of the sum of the

weight to one. The first one is no short selling constraint. As mentioned earlier, the

impact of this rule on weight and portfolio estimations in Tehran Stock Exchange

is investigated in this paper. For this purpose, I use Matlab software. At first,

constraints should be defined along with the efficient frontier which is built using

a few numbers of portfolios. The allocation decision consisting of risky assets is

chosen from these portfolios which are on the efficient frontier in a way that it has

the minimum variance for a given mean. Then, risk-free rate (rf) is entered in the

calculations. By drawing Capital Market Line (CML), the line drawn from rf to

the efficient frontier, and then the tangency point of these two (CML & efficient

frontier), our portfolio allocation strategy will be determined consisting of risky

portfolio and a risk-free asset (the efficient allocation between risky portfolio and

rf) moving along CML when γ changes, getting closer to or farther from rf. In other

words, it is γ (risk aversion coefficient) deciding how much rf should be involved,

higherγ means that the investor is more risk averse and the allocation decision

would be closer to rf. Estimations are done like pervious section; Table 9 reports

the efficient weights for all of the γs.

Table 9: Weight estimations with weight constraint and γ = 1, 3, 5 (Source: Re-
search findings)

STEH1 SNMA1 PARK1 NOVN1 IKCO1 FAJR1

Weight Weight Weight Weight Weight Weight

Case 1 ∼= 0 0 0 0 0 1

Case 2 ∼= 0 0 0 0 0 1

Case 3

Case 4

As it is shown, estimated weights for case one and case two are exactly the same.

We can say smoothing in constrained situations does not affect weight matrices

estimated with simple estimators. In these cases, almost all of the wealth will

be invested in sixth company (Fajr) and therefore there will be no diversification.

Before justifying cases three and four, another result must be presented: Risky
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Fraction is the fraction of Optimal Risky Portfolio in Optimal Overall Portfolio.

Optimal Overall Portfolio is the investor’s final choice consisting of risk-free asset

and Optimal Risky Portfolio (explained before). Table 10 reports Risky Fraction

for all the cases and different levels of risk aversion coefficient.

Table 10: Risky fraction for all the cases and different levels of risk aversion coeffi-
cient (Source: Research findings)

γ = 1 γ = 3 γ = 5

Case 1 0.0082 0.0027 0.0016

Case 2 2.97 0.99 0.59

Case 3 ∼= 0 ∼= 0 ∼= 0

Case 4 ∼= 0 ∼= 0 ∼= 0

As it is obvious, this fraction is very small (almost zero) for cases three and four.

This amount is greater than one for the second case (γ = 1) which means borrowing.

Considering 3th and 4th rows of the Table 10, we can justify the results of Table

9. When applying conditional moments of returns for either of the raw or smooth

data, weights of the risky asset would be equal to zero and therefore the portion of

the risky portfolio is indefinable in cases three and four (table 9) and the investor

will be better off holding just the risk-free asset in his optimal overall portfolio. As

we can see, the results of the first and second case in Table 10 is changing when γ

changes and we will explain this in what follows.

Table 11: Portfolio parameters with constraint, γ = 1 (Source: Research findings)

Return Standard error Sharp ratio

Case 1 0.0031 0.0034 0.0034

Case 2 0.0071 0.0638 0.0638

Case 3 0.0031 ∼= 0 0

Case 4 0.0031 ∼= 0 0

In Table 11 portfolio parameters are reported and as we can see portfolio return

in three cases is the same and equal to 0.0031 which is rf and this is completely

as we expected due to the results of Tables 9 and 10. In other words, because

no fractions were assigned to the risky portfolio, optimal overall portfolio return

is the same as the risk-free rate. Likewise, because case two has greater fraction

of risky portfolio it has a different return, 0.0071 which is higher than rf. Note

that standard deviation of this case is also higher than the rest of the cases which

does not cause its sharp ratio to be any lesser than other sharp ratios of other

cases. Clearly this parameter (sharp ratio) for the cases three and four is zero

knowing that portfolio return in these cases is equal to rf and we hold just the risk-

free asset in our final portfolio. Generally speaking, implying weight constraints
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causes both portfolio return and sharp ratio to be higher and get improved in

comparison to unconstrained situation. Figure 2 plots CML and efficient frontier

and the position of the optimal risky and overall portfolios for case one (γ = 1)

which helps understanding latter results better. Efficient frontier is the lower curve

and the tangency point of CML and this curve shows the optimal risky portfolio.

We can see that Optimal overall portfolio is almost on the vertical axe, near to rf.

Figure 6: CML, efficient frontier and the position of the optimal risky and overall
portfolios with constraint Case 1 (γ = 1)

From Table 10, as γ increases and becoming more risk averse (moving horizon-

tally) risky fraction is decreasing noticeably which means the investor is holding

lesser and lesser of risky portfolio and therefore more and more of the risk-free

asset each time. For more clarification, figure 3 and figure 4 plot the second case in

constrained estimation for γ = 3 and γ = 5 respectively. As it is shown in figure 3,

γ = 3 , optimal overall and risky portfolios are almost in the same position. Next,

putting γ = 5 and getting more risk averse, the position of the optimal overall

portfolio got closer to rf on CML while optimal risky portfolio did not move. This

shows the impact of risk aversion coefficient on choosing among risky portfolio and

risk-free asset which in this very situation the investor invests mostly in the risk-free

asset.

5 Conclusion

In order to form a portfolio, one can employ the mean-variance portfolio theory

which would further need an investor to estimate a set of statistical characteristics

in the portfolio of interest. But it not as simple as this because the noise present in

the underlying securities may affect the estimated parameters (statistical character-

istics), as it has been shown, and therefore affect the resulting portfolio allocation

strategy (Behradmehr, 2010). Also, the impact of any weight constraints on the

portfolio allocation strategy has not been clearly demonstrated yet.

In this research, as noted above, the wavelet transform was employed to inves-
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Figure 7: CML, efficient frontier and the position of the optimal risky and overall
portfolios with constraint Case 2 (γ = 3)

Figure 8: CML, efficient frontier and the position of the optimal risky and overall
portfolios with constraint Case 2 γ = 5

tigate the effect of noise through a set of empirical experiments. This purpose

was accomplished by minimizing the effect of noise in the financial series before

estimating their statistical characteristics. Afterwards, the smoothed statistics are

used to estimate the optimal portfolio weights along with the noisy ones. In other

words, as part of the investigation, the effect of noise reduction when the mean and

variance matrices are obtained from smooth or raw datasets was evaluated indepen-

dently. More specifically I investigated four cases of raw mean and variance/simple

estimation, smooth mean and variance/simple estimation, raw mean and variance/-

conditional estimation, and smooth mean and variance/conditional estimation. All

the noted process is done once with and again without weight constrains in order

to understand the effect of no short selling condition; Imposing weight constraints

is also one of the solutions suggested for solving weight estimation issue which is

negative weights or weights greater than one predictably occurring because of using

historical data in estimating moments of return.

Results reveal that the standard deviation estimates are changed after reducing
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the noise present in the financial series. In fact, as observed in the Section 4.2

these adjusted statistics affect the allocation of the portfolio. In the best case, it

is observed that using the AR(1)-GARCH(1,1) model is the best decision. Clearly,

this indicates that the accuracy of our variance estimates has improved by the

smoothing operation.

The impact of smoothing on weight estimations and portfolio return are as fol-

lows: If we use simple estimation and imposing weight constraints, then we can

say smoothing will result in choosing risky portfolio, although this may seem to be

sensitive to data, risk aversion coefficient and the desirable period. So, it can be

deduced that noise effects in this market is deniable and the main reason for that

is the limits for daily price changes present in tse.

The impact of constraints on efficient weights and portfolio return are also as

follows: improvement in efficient weights (0 or one), increase in portfolio returns

(almost the same as rf for most cases) and positive sharp ratios. Because of the

nearly zero risky fractions in the constrained approach like the unconstrained one,

holding risk-free asset is suggested.

One interesting result in this paper is that if we assign all the assets the same

and equal weight, what most of the amateur investors do, we even get better results

(portfolio returns and sharp ratios increase). In other words, with this data and

this period of investigation, if we want to allocate the wealth among risky assets,

it would be better to do so without any estimation and just simply put every asset

the same weight!

The estimation method of mean and variance in weight matrices affect (not

strongly) the allocation of the wealth and how much risk-free asset we hold. Another

important result in this paper is that implying weight constraints, would change

the weights in the way that it will be positive or zero (risk-free asset has the biggest

portion) and sharp ratio will increase and become positive and this has nothing to

do with the risk aversion coefficient (results do not change in respect to γ).
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