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Abstract:
Abstract:
This study emphasizes on the mathematical modeling procedure of stock price
behavior and option valuation in order to highlight the role and importance of
advanced mathematics and subsequently computer software in financial analysis.
To this end, following price process modeling and explaining the procedure of
option pricing based on it, the resulting model is solved using advanced numerical
methods and is executed by MATLAB software. As derivatives pricing models
are based on price behavior of underling assets and are subject to change as a
result of variation in the behavior of the asset, studying the price behavior of
underlying asset is of significant importance. A number of such models (such as
Geometric Brownian Motion and jump-diffusion model) are, therefore, analyzed
in this article, and results of their execution based on real data from Tehran
Stock Exchange total index are presented by parameter estimation and simulation
methods and also by using numerical methods.

Keywords: Stochastic Differential Equations, Stocks, Options, Finite Difference,
Monte Carlo Simulation.

1 Introduction

A topic of interest to financial analysts and economists is the valuation and analysis

of securities price behavior. In modern financial science, however, accurate anal-

ysis of securities price behavior without a quantitative model is not possible. On

the other hand, in the field of risk management, risk factors such as price volatil-

ity can also be identified and controlled using quantitative models (Brownlees and

Galo, 2009). Even in other related fields to finance, such as accounting and au-

diting we can find many quantitative models (Laura-Diana. (2009)). Fortunately,

current financial science researchers have acknowledged the importance of quanti-

tative models to the extent that a great volume of research has been conducted

in this area in universities and reputable investment companies, and several books

have been published in this area.

One of the most important applications of mathematical modeling of financial

variables which can also be localized in Iran is modeling spot and derivatives mar-
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kets such as oil spot prices or futures (such as Karimnejad Esfahani et al (2020)),

short interest rates (Peymany and Hooshangi, 2017) and of course new market of

stock options in Tehran stock exchange. Accordingly, the main object of this article

is highlighting the procedure of modeling asset price behavior and solving option

pricing equations. As the price of each option depends on the value of its under-

lying asset (such as a particular stock), the underlying assets price behavior is the

main determinant of the option value. Therefore, at the first stage, the process of

stock price behavior modelling is explained, thereafter, option valuation method

is elaborated. Finally, the numerical solution of the valuation model is described.

In any section, if necessary, the procedures of executing the introduced items is

explained using MATLAB software. Thus, the following sections first introduce

the principles of mathematical modeling, types of quantitative models and their

application in financial sciences and next, Geometric Brownian Motion is discussed

separately as one of the most widely used stochastic quantitative models in finan-

cial sciences. Due to certain shortcomings of the model, jump-diffusion models are

also described as new practical models in this field. Furthermore, the parameters

of both models are estimated based on real data from total index of Tehran Stock

Exchange, and the index is simulated based on the data. Additionally, the appli-

cation of quantitative models in option pricing are explicated. Finally, a general

numerical solution is provided to solve option pricing models, and the step-by-step

implementation algorithm of the solution is explained.

2 Quantitative Financial Modeling and the Required
Tools

Advanced mathematical, financial and economic methods are essential for modeling

and solving financial problems, and mathematical, statistical and computer meth-

ods required in this field are based on high-level of mathematical knowledge. The

basis of modeling a financial or economic quantity is to first examine a financial

variable (for example, pricing an option bond ), and identify the factors influencing

that quantity (such as interest rate, underlying asset price, etc.). Next, by perform-

ing mathematical and statistical calculations, it is necessary to locate the desired

quantity in one or multiple mathematical equations which is referred to as a model.

Finally, using mathematical and computer methods, the designed model is solved

and applied. For example, fixed income securities, stocks and derivatives prices can

be modeled using different methods such as ordinary or partial differential equations

An option bond is a type of derivative, and derivatives are securities whose value is derived
from another underlying asset such as stock. Call (put) option bonds refer to those which give
the holder the right to purchase (sell) a certain amount of underlying asset (such as the stock of
a particular company) at a specified price (strike price) and a specified time (maturity). There
are many types of option bonds, two of which are European and American bonds. A European
option may be exercised only at the expiration date of the option while an American option may
be exercised at any time before the expiration date (Hull, 2018).
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in deterministic or stochastic environments. It is, therefore, essential for a financial

researcher to become familiar with certain concepts as the main tools of modeling

in order to perform financial quantitative modeling. These tools can be divided

into three categories. First, there are financial concepts such as risk, interest rate,

securities, portfolios, options, etc., which no comprehensive model can be designed

without understanding them. The second category comprises topics in mathematics

and statistics such as ordinary differential equations, integral equations, partial dif-

ferential equations, stochastic differential equations, stochastic partial differential

equations, and stochastic processes that provide quantitative account of financial

concepts. Finally, the third category includes quantitative modeling tools, namely

mathematical and computer methods which are required to implement the designed

model. Among this type of tools, numerical methods are the most popular ones as

in most financial models, due to the presence of a stochastic sentence, no complete

analytical answer can be found and, therefore, numerical methods (such as the

finite difference method and Monte Carlo simulation method, etc.) are mostly em-

ployed to solve such models. Because heavy and lengthy calculations are required

to perform numerical methods, it is impossible to perform them manually, thus it

is necessary to use a computer programming language.

Although there is numerous software in this field, one of the most widely used

ones is MATLAB software. This is due to the fact that the software, in addition to

enjoying a two-way practical programming environment, has a powerful and spe-

cialized toolkit (such as partial differential equation toolbox, statistical toolbox, op-

timization toolbox, and toolboxes specific to financial calculations and derivatives)

for solving such problems. The software, therefore, is used to perform calculations

in this research.

3 Stock Price Behavior Modeling

As mentioned earlier, price of derivatives depends on the price of the underlying

asset. (Hull, 2018). Meanwhile, of all various securities in Iran capital market,

ordinary stocks are more popular than other securities. Therefore, stock is focused

on in this article as the underlying asset (and the total index of Tehran stock

exchange which is the general estimation of stock price volatility is selected as its

general index). The following parts will focus on this type securities, and it should

be noted that the main topics discussed in the following sections can be easily

generalized to other types of securities.

To explicate the modeling procedure of financial variables, first non- stochastic

variables and ordinary differential equations are used, and then stochastic variables

such as stocks are addressed. Meanwhile, of all quantitative models, the stochastic

model of Geometric Brownian Motion is introduced to explain stock price behavior

(due to its popularity after being applied in the Black and Scholes (1973) and

Merton (1973) models), and in addition to explaining it, the model is solved through
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a practical example using numerical methods and MATLAB software. Also, by

combining this model with Compound Poisson process, a stochastic model including

a jump sentence is suggested for pricing high-risk stock that eliminates some of the

inefficiencies of the Brownian Motion model. To achieve these goals, mathematical

and statistical basics should be introduced which will be described in each section.

3.1 Ordinary Differential Equations in Financial Sciences

If y = y(t) is a single-variable function, then any equation with y (t), t and y (t)

derivatives is called an ordinary differential equation. Most desired differential

equations in financial modeling are in the form of dy/dt = ay + f .Here, if f and

a functions are in terms of y (t) with its derivatives, then the equation is nonlinear

and has generally no analytical answer. To solve the problem, numerical methods

should be applied, but if the functions are in t terms, it is proved that the equation

has the following answer (Birkohff, 1988):

y (t) = y0e
A(t) +

t∫
0

eA(t)−A(s)f(s)ds

where A (t) =
t∫
0

a(η)dη. This equation can also be solved using MATLAB software

as follows:

Gray dsolve(Dy=ay+f,y)
Among the financial variables that can be modeled using ordinary differential

equations, bond price is noteworthy. For example, suppose B (t) and k (t) are bond

price and its risk-free coupon rate (interest), respectively. The final condition is

also given at time T of the bond with B (T ) = P where P is the par value of the

bond. At the infinitesimal time of dt from the present time of t, change in the

value of the bonds is dB
dt dt, and the received coupon is k (t) dt. In the absence of

arbitrage, the sum of the above equation should be equal to the risk-free interest

rate of r (t) B (t) dt. That is, for t < T the equation is as follows:

dB

dt
dt+ k(t)dt = r(t)Bdt,

and by dividing it into dt, the following will be obtained:

dB

dt
+ k(t) = r(t)B, t < T

The above equation is a linear equation with the following answer:

B(t) = e−
∫ T
t

r(s)ds

[
P +

∫ T

t

k(u)e
∫ T
u

r(s)dsdu

]
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3.2 Stochastic Differential Equations in Financial Sciences

An equation whose coefficients, data or conditions are stochastic or under the in-

fluence of an external stochastic factor is called a stochastic equation. Stochastic

equations are divided into two groups according to the characteristics of the sample

paths of the effective process as follows:

Group 1: Ideal Random Equations

This group of equations are solved through path to path method, and by fixing

the path, they become similar to ordinary differential equations. In such equations,

the noise sentence is in the form of colored noise, and the system can be converted

to the ideal system (noise-free system). This is why this group of equations is

called ideal random equations. If there are ordinary derivatives in such equations,

the ideal random equation is called the ideal random differential equation. For

instance, in the following equation:

ds

dt
= a (ω) s+ b (t, ω)

s0 (ω) = s0

where s is the asset price under study. An example of random differential equation

is the ideal linear equation. Now, if ω path in relation to t is constant, the answer

to the equation is as follows:

x (t, ω) = x0 (ω) e
a(ω)t +

t∫
0

ea(ω)(t−s)b (s, ω) ds

Where sample paths of the answer are derivative functions in relation to t. Such

equations have little application in financial sciences, and therefore, will not be

addressed further.

Group 2: Stochastic Differential Equations

Stochastic differential equations are ones in which the response process is not

differentiable, and apply when there is a specific, out-of-rule stochastic process

in the equation, such as white Gaussian noise (Oksendal, 1998). In stochastic

equations, differential and derivative symbols are used symbolically and outside

of their conventional meaning, and the integration of these symbolic differentials

is carried out through special methods such as Ito or Stratonovich integrals. If

the derivative in these equations is ordinary, such equations are called stochastic

differential equations. A general example of these equations is as follows:

dSt

dt
= b (t, St) + σ (t, St)Wt,

where white noise Wt is one-dimensional, and:

b (t, St) , σ (t, St) ∈ ℜ
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The above equation can be converted to the following stochastic differential equa-

tion (Oksendal, 1998):

dSt = b (t, St) dt + σ (t, St) dBt

In fact, to obtain the above equation, white noise Wt is replaced with dSt

dt and then

the two sides are multiplied by dt. In the equation, b (t, S) and σ (t, S) functions

are called coefficients, and are named as thrust (transfer) and diffusion (volatility)

coefficients, respectively.

4 Geometric Brownian Motion Model

A simple example of stochastic differential equations which is also widely used to

model stock price is the Geometric Brownian motion. By choosing b (t, St) =

µSt, σ (t, St) = σSt we have the following:

dSt = µStdt + σStdBt

which has the following answer using Itos Lemma:

St = S0e
(r− 1

2σ
2)t+σzt

where St is the asset price (positive numerical), S0 is the asset price at time zero,

µ is the thrust sentence, σ is the return volatility rate, and zt≥0 is the standard

Brownian motion.

5 Jump-Diffusion Model

A special mode in price behavior procedure of securities is when there are large

jumps in price that disrupt the process. This section focuses on explaining models

with jump sentence, and describes the mathematical explanation of it. In this

group of models, the initial model is completed by adding the jump sentence to the

original diffusion equation as follows:

dSt = jump + diffusion

The mentioned jump sentence is mainly derived from a Poisson distribution (Klug-

man Willmott, 2005), and in practice too, indicates the greater power of these

models in describing the price behavior of risk assets (Andersen and Andersen,

2000). Although the models usually enjoy constant thrust rate and volatility sen-

tence, this condition is not required, and there can be cases in which a nonlinear

stochastic differential equation comes along with the jump sentence. Of course, in

this case, it is often impossible to obtain an analytical answer for St, and there-

fore, it is necessary to use numerical methods to solve such a stochastic differential
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equation. One of the most popular jump diffusion models among researchers can

be described in general terms as follows:

dSt

St
= rdt+ σdBt + d(

N(t)∑
i=1

Yi)

where Yi is the percentage of jump size with similar independent deterministic

distributions, and N(t) is a counting process that in a particular mode, is a Poisson

random variable. That is:

P (N (t) = n) = e−λt
(λt)n

n!

N(t) can also be considered as a negative binomial distribution. Here, Yi is typically

a random variable, but in a special mode of it, Yi = r where r is a constant

value. In this paper, it is assumed that Yi is a random variable i.i.d with a definite

distribution.

So far, several advantages of the jump diffusion model have been enumerated.

First, the model is able to justify certain important observed characteristics such

as skewness or smiling of fluctuations. Second, the jump process can explain the

phenomenon of investors failure in the financial market, which means that in real

market, it is impossible to react in a short time to avoid loss. The model can also

take into account unexpected events (such as market collapse) which play an im-

portant role in investors analysis in the real world (Jin-Chuan, et al., 2003and Kou,

2003) or jump diffusion terms in other variables such as interest rate (Mohamadine-

jad, 2020).

Most of the studied jump diffusion models enjoy acceptable results based on real

data. For this type of models, it is assumed that risk assets operate in the form of a

linear stochastic differential equation (continuous component) and a Poisson process

(jump or discontinuous component). Kou and Wong (2003) for instance, studied

a jump-diffusion model for option pricing, based on which it was assumed that

the size of jump percentage follows a double exponential function with a probable

combined value. As per the results presented by Kou, it can be argued that jump

diffusion models can be highly useful for determining option price. By solving this

particular model of jump diffusion density, Kou was able to suggest the first-passage

time problem for the model.

6 Executing Stochastic Models Using Monte Carlo
Simulations

In this section, it is attempted to execute the most important items mentioned in

the previous sections based on data related to Iran capital market, and present

the results. The variable employed is, therefore, the total index of Tehran Stock

Exchange. It should be noted that as the index was modified since 6 December,
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2008, price and cash return index refer to the previous period whereas total index

is used from this date onwards. Since the data content employed in both of these

indicators is similar (price changes and cash dividends) and the only difference lies

in the base number, the two indicators have been aligned to solve the problem. In

view of the above and the fact that the data related to price and cash return has

been calculated since 25 July, 1999, based on the period under study in this article,

the number of data used is 2988 daily observations.

The following table provides descriptive statistics of the logarithmic return of

this index along with the corresponding histogram.

Table 1: Descriptive statistics and histogram of logarithmic return of the total
index

Mean 0.001286

Median 0.000986

Maximum 0.06424

Minimum -0.05450

Standard devia-
tion

0.00556

Skewness 0.9167

Kurtosis 20.7789

Jarque-Bera
Prob.

0.000

6.1 Executing Geometric Brownian Motion Model

Consider the Geometric Brownian stochastic model for asset price S(t) with thrust

sentence µ and volatility σ as follows:

dS = µSdt+ σSdz

where dz is the standard Brownian process (or Wiener). This equation can be

rewritten as follows:

dlnS = (µ− 1

2
σ2)dt+ σdz

If ν = µ− σ2

2 , then

S (t) = S(0)e
(νt+σ

t∫
0

dz)

To perform the asset price simulation over a period of (0, t), time should be dis-

cretized in time steps of δt. To this end, using the last equation as well as the
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properties of the standard Wiener process, the following is obtained:

S (t+ δt) = S(t)exp(νδt+ σ
√
δtε)

where ε ≈ N(0, 1) is the standard normal random variable.

According to the above equation, it is possible to generate sample paths for asset

price using MATLAB software. This plan is introduced in the following profile to

produce asset price sample paths:

Gray function SPaths=AssetPaths(S0,mu,sigma,T,NSteps,NRepl)

Gray SPaths=zeros(NRepl,NSteps);

Gray SPaths(:,1)=S0;

Gray dt=T/NSteps;

Gray sidt=sigma*sqrt(dt);

Gray for i=1:NRepl

Gray for j=1:NSteps

Gray Gray SPaths(i,j+1)=SPaths(i,j)*exp(nudt+sidt*randn);

Gray end

Gray end

Gray end

Gray

The above plan, with the initial price (S0), thrust (µ) , volatility (σ), execution

time (T ), time step (NSteps) and number of repetitions (NSteps), considers the

displacement parameter (µ) as input, and then calculates v parameter and simulates

the sample paths of Geometric Brownian motion. Thus, to perform Monte Carlo

Simulation for a financial random variable, the only computational parameters are

thrust (µ) and volatility (σ). To estimate the two parameters using Maximum

Likelihood Estimation (MLE), the following equations will be obtained:

µ̂ =

n∑
i=1

xi/n, σ̂
2 =

n∑
i

(xi − µ̂)
2
/n

where xti := logSti − logSti−1 is the logarithmic return efficiency of the variable

under study, and is the number of data. Based on this, the estimated values of

thrust and volatility parameters for the total index of Tehran Stock Exchange are

0.001286 and 0.005599, respectively. Now, using these estimated parameters, the

total index can be simulated for the desired number of periods as well as for the

number of sample paths. For example, 5 annual paths from the sample paths for

this index with an initial value of 25905.6 (index value at the end of 2011) and a

one-day time are simulated and displayed in the following figure. To do this, the

following instructions should be simply followed:
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Gray randn(’seed’,0);

Gray paths=AssetPaths(25905.6,0.001286,0.005599,1,365,5);

Gray plot(paths’)

Gray

By following the above instructions, the sample paths are drawn as follows:

Figure 1: Simulation result of five sample paths of Geometric Brownian Motion for
the total index

It should, however, be noted that although in the above figure only five paths

were simulated for better representation, to use simulation techniques in practice,

a large number of sample paths are created, and decisions are made based on the

final results. For example, the following figure depicts the distribution function of

the final simulation results of 10,000 one-year sample paths which can be easily

used for future calculations such as pricing of derivatives, forecasting the desired

variable, and risk management (for example calculating Value at Risk (VaR), etc.).

6.2 Executing Jump-Diffusion Model

One of the most widely used jump-diffusion models is the Merton model introduced

in 1976. The model is a combination of Geometric Brownian model and a jump
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Figure 2: Distribution of the simulation of 10,000 sample paths of Geometric Brow-
nian motion for the total index

sentence as follows:

dSt = µStdt+ σStdWt + StdJt

where Jt is a univariate jump process as follows

dJt = (YNt − 1)dNt

where (Nt)T≥0 has Poisson distribution with density of λ. Also, Yj indicates the

size of the −jth jump. Mertons model is based on the assumption that Yj has a

distribution of i.i.d and a logarithm of -normal. In other words:

Yj ∼ exp(N(µY , σ
2
Y ))

which is also independent of W . Maximum Likelihood Estimation (MLE) can

also be used to estimate the parameters of the model. Results of estimating the

parameters of the above model for the Tehran stock exchange total index are as

follows:

Table 2: Descriptive statistics and histogram of logarithmic return of the total
index

σY µY λ σ µ

0.00829 0.001346 0.277616 0.003049 0.001285

Based on these figures, the total index simulation operation can be performed

for later use. The following figure demonstrates the distribution diagram obtained
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Figure 3: Distribution of simulation of 10,000 jump-diffusion sample paths for the
total index

from the simulation of 10,000 sample paths of the model based on the estimated

parameters of the total index.

As can be seen, the fat tail phenomenon is well observed in the distribution

diagram thanks to the presence of jump sentence in the underlying jump diffusion

process use to simulate the paths. Again, results of this distribution can be applied

for further calculations, such as derivative pricing and risk measurement methods.

7 Option Pricing

In 1973, Black and Scholes and Merton revolutionized applied mathematical finance

by introducing option pricing theory. Inspired by the idea of portfolio risk insur-

ance using option bond, they provided a model for pricing European call option. To

better understand this, consider the issuer of a European call option. If the under-

lying asset price is higher than the agreed price, the issuer will be exposed to risk,

and as a result, he can purchase a certain amount of the underlying asset to cover

the risk. On this basis, Black and Scholes demonstrated that through a special

combination of underlying asset and call option in a portfolio, a risk-free portfolio

can be created which in an efficient market based on the principle of no-arbitrage

opportunity, will have returns equal to risk-free returns (interest rate).
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By explicating the Black, Scholes and Merton model in this part, this article

aims at suggesting a numerical method to solve the model, and implement it using

MATLAB software.

7.1 Black, Scholes and Mertons Mathematical Model

As mentioned above, this section describes the Black, Scholes and Mertons model

from mathematical perspective. To this end, let us suppose that function C is

the price of a call option or a derivative, and St comprises its underlying asset.

Therefore, should be a function based on the price of each stock in time t, i.e.

C = C(St, t). Also, let us assume that the underlying asset price St follows the

stochastic Brownian motion process below:

dSt = µStdt+ σStdzt

where σ is the price volatility of each stock, µ is the return rate of the item, t is

time, is time change, and is the standard Wiener or Brownie process. In addition,

suppose that both parameters of and are constant. Now, in a portfolio with the sale

of a unit of European stock call option and the purchase of underlying asset units

of ∆t, the value of this portfolio is denoted by Π (St, t) symbol which is calculated

in time t as follows:

Π = −C +∆tSt

where C = C(St, t) is the call option value. Note that ∆t changes at time t. In

this case, the value change of this portfolio is as follows:

dΠ(St, t) = −dC +∆tdSt

Without going into details and eliminating the time index to facilitate the process,

it can be proved that the European call option price applies to the following model

(Wilmott, 2006)

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = ◦ , ◦ < S <∞ , ◦ < t < T,

and
C(S, T ) = max (S −X, ◦) = (S −X)+ , ◦ < S <∞,

C(◦, t) = ◦ , ◦ < t < T,

C(S, t) ∼ S −Xe-r(T−t) , ◦ < t < T .

The above equation is a second-order linear partial differential equation known as

the Black and Scholes partial differential equation. The equation, along with the

initial and boundary conditions, is an initial and boundary value problem which

is solved in the next section using finite-difference numerical method. Also, the

proposed method is used for hypothetical data, and the results are presented.
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7.2 Numerical Solution of Black and Scholes Pricing Model

While Black and Scholes equation has an analytical answer, through small changes

in the equation such as changing the behavior model of underlying asset from

Geometric Brownian motion model to a more complex one, the resulting equation

will hardly have any analytical answer. Therefore, using numerical methods in such

cases is necessary. Accordingly, in this section the Black and Scholes equation is

solved using these methods.

To this end, first the scope of problem definition is written as follows:

D = {(S, t) |◦ < S < Smax, ◦ < t < T}

where Smax is a supremum for S (the highest observed stock price in the market)

and T is the maturity time. Now, the [◦, Smax] interval is divided by N subintervals,

each with the length of h = Smax

N , and k which denotes time step length. The

domain above is then reticulated as follows:

Figure 4: Price-time reticulation method

Now, using Taylor series expansion, derivatives in the differential equation of

Black and Scholes at point (Si, tj) is approximated as follows:

∂C

∂t
=
C (Si, tj+1)− C (Si, tj)

k
− k

2

∂2C

∂t2
(Si, ηj)
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Also, ∂C
∂S and ∂2C

∂S2 are calculated using the central formula as follows:

∂C

∂S
=
C (Si+1, tj)− C (Si−1, tj)

2h
− h2

6

∂3C

∂S3
(ξi, tj)

∂2C

∂S2
=
C (Si+1, tj)− 2C (Si, Cj) + C (Si−1, tj)

h2
− h2

12

∂4C

∂x4
(ςi, tj)

where ςi , ξi and ηj are dependent variables. Finally, by rewriting the Black and

Scholes equation at point (Si, tj), the following is obtained:

∂C (Si, tj)

∂t
+

1

2
σ2S2 ∂

2C (Si, tj)

∂S2
+ rS

∂C (Si, tj)

∂S
− rC (Si, tj) = ◦

and by placing the above differential equations for the derivatives and eliminating

error sentences, the following differential order is achieved:

⌢

Ci,j+1 = −(λS2
i + γSi)

⌢

Ci−1,j + (1 + 2λS2
i + rk)

⌢

Ci,j − (λS2
i + γS)

⌢

Ci+1,j

where i = 1, 2, 3, ..., N , j = 1, 2, 3, ... and λ = k
2h2σ

2 and γ = rk
2h . Moreover,

⌢

Ci,j is

the approximation of C (Si, tj) with the following error:

τij = −k
2

∂2C

∂t2
(Si, ηj)−

1

2
σ2S2h

2

12

∂4C

∂x4
(ξi, tj)− rS

h2

6

∂3C

∂S3
(ςi, tj)

In conclusion, hypothetical data are applied to implement the method provided

above through MATLAB software. For example, consider a put option with the

initial price of 50 and the agreed price of 60 units, an interest rate of 0.06%, volatility

of 0.2 and maturity of 3. By dividing the axes of and into 100 and 250 parts using

the method above, a price equal to 6.94 units is obtained for this option. The

relationship between price of option bond and time and price of the underlying

asset is displayed in the following figure:

8 Conclusion and Suggestions

This study solved certain financial quantities using advanced mathematical methods

and modeling as well as employing numerical concepts and MATLAB software. It

was also demonstrated that the models were inefficient in certain cases, and methods

to solve such inefficiencies were introduced through an example. Parameters of some

of these models were then estimated through data of the total index of Tehran Stock

Exchange, the index was simulated based on it, and its one-year distribution was

extracted. Similarly, the paper explained option pricing models, and provided a

numerical method for solving the Black and Scholes model.

Finally, given the central importance of presenting analytical models such as

Black and Scholes model and solving new models in special cases, researchers inter-

ested in this field are suggested to focus on such issues. For example, Campolieti
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Figure 5: Relationship between option bond price and the time and price of the
underlying asset

and his research team (Albaness and Campolieti, 2005; as well as Campolieti and

Makarov, 2005 and 2006) studied a new family of integrable continuous diffusion

models, and focused their attention on transition densities for several types of non-

linear stochastic differential equations. Generally, the main reason for studying

such alternative models is to completely and accurately retrieve the properties of

asymmetry (skewness) or smiling in the markets implicit volatility. Researchers

are also suggested to use different models such as Markov switching model and its

combination with other models such as jump-diffusion model, and to localize and

simulate these types of models according to the specific economic conditions found

in Iran capital market.
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