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Abstract:
Abstract:
This study aims to optimize the portfolio using the genetic operator and network
centralization approach. The statistical population of the study is the top
50 companies of Tehran Stock Exchange, in the first quarter of 2021, and to
calculate the size of centrality, we used the difference in the overall performance
of each company in comparison to all the top companies, based on a standard
hybridization indicator. Then based on the companies performance in the
capital market, the geometric mean of risk, and return of efficient companies are
determined, and given the real-life limitations of the budget, the requirements
and expectations of the investors in comparison to the markets performance, and
the risk-free investment, the decision-making problem for the composition of the
investment is formulated, in the form of a multi-purpose paradigm. We optimized
the investments composition by using the modified optimization algorithm and
the genetic algorithm with dual operators. Finally, we evaluate the effect of
individual and systemic operators on determining the investment strategy by
using the compound linear regression with data analysis approach to, and the
represented results indicate the positive effect of these two operators.
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1 Introduction

Nowadays, various mathematical programs are used to determine the optimal com-

bination of investment or the optimal portfolio. In analyzing the stock market,

both statistical and mathematical methods are studied. One of the mathemat-

ical methods of analyzing the stock market is using different indicators of the

initial multi-objective mathematical scheme of mean-variance portfolio optimiza-

tion (MVPO), which can be divided into four categories: 1) convergence-based

indicators, 2) diversity-based indicators 3) hybridization-based indicators and 4)

risk-adjusted indicators.
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Convergence-based indicators show the approximate proximity of theoretical

Pareto optimality level. In this regard, we can mention indicators such as the

mean of Euclidean distance, variance of return error, mean of return error, average

error percentage, Epsilon (Liagoras 2018;) and the like.

The second category is the diversity based indicators, which indicate the dis-

tribution of the obtained investment combinations along the level or range of the

Pareto hybridization principle. In this regard, we can mention indicators such as

quantitative distance and scattering measure (Sotiwong and So Daniel 2016) and

such.

The third category is hybridization-based indicators, which represent the com-

bination or hybridization of the two categories of convergence and diversity-based

indicators. In this regard, we can mention indicators such as Hypervolume indicator

and the like. We describe the most important of these indicators in the following:

A) Hypervolume indicator:

The first of the hybridization indicator we talk about is the Hypervolume

indicator. This indicator measures the volume of a multi-dimensional region

dominated by a set of non-dominant solutions and it is provided by a multi-

objective algorithm (Zeitzler and Tille 1999). Higher values of this indicator

represent better approximation of the set of answers or the investment com-

bination.

B) D1R

The second case of diversity-based indicators is ”D1R”. This hybridization

based indicator provides information about the average distance between the

closest solution and the forward convergence of the optimal solution based on

the Pareto principle (Levin et al. 2017).

1.1 Risk-adjusted indicators

Risk-adjusted indicators are the fourth category of indicators that measure the

performance of the portfolio optimization algorithm. They represent a combination

or a hybridization of return and risk; these indicators simultaneously show the

positive effects of gain and the negative effects of loss or risk. In this regard, we

can mention the Sharpe index and such. We describe the most important of these

indicators in the following:

A) Sharpe ratio:

The first of the risk adjustment indicator we talk about is the Sharpe ratio

index. This risk-adjusting indicator is used to measure the adjusted return

of a risk-based investment combination Sharpe (1966). In other words, using

the Sharpe Ratio Performance Indicator or measure (e.g., in purchasing secu-

rities), one can calculate how the return can hedge the investors expected risk.
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The higher Sharpe ratio means better performance of the chosen investment

combination, in the financial decision-making for the determined decision.

B) Omega ratio:

The second risk-adjusted indicator is the omega ratio indicator. This risk-

adjustment-based indicator records all the information of changing to higher

return in distribution of the return and is also sensitive to the return level.

While Sharpe risk-based performance indicator requires assuming an average

structure for variance and the input data that is usually distributed (Ban et

al. 2018).

In addition to mathematical methods, there is a group of statistical methods

based on autoregressive moving average (ARMA), autoregressive integrated mov-

ing average (ARIMA), generalized autoregressive conditional heteroskedasticity

(GARCH) (Frances and Chichesles 1999), and smooth transition autoregressive

(STAR) (Sarantis 2001), all of which use delay-dependent variable structure. Other

types of statistical methods that have been used in recent years include linear de-

tachable analysis (LDA) quadratic discriminant analysis (QDA), linear regression

(LR), and support vector machines (SVM). Each of these methods usually consist

of multi-input variables. In addition most of the mentioned methods are limited

by linearity and the linear independence of explanatory variables in the field of

financial predicting. On the contrary, artificial intelligence models such as artificial

neural networks (ANNs), Fuzzy systems, and various genetic algorithms are used

based on multi-variable data and without any specific assumption. Many of these

methods have also been used in the stock market to predict financial variables.

Usually, stock market scheduling systems are used to make a system that sup-

ports independent or compatible decision-making, regarding the trading rules. For

example, in this field, we can mention researches performed by Barak, Danayi and

Techi (2015), Serovolonov, Guyarro and Mishinyuk (2015), Chen and Chen (2016),

Chiang, Anke, Wu and Wang (2016), Chormozidis And Chetzoglu (2016). Multi-

variate analysis using artificial neural networks (ANN), based on nonlinear, data,

and generalizable methods, has become a popular and dominant tool in finance and

economics. Stock markets are affected by various factors, most of which are used

as possible input variables during the development of the stock market prediction

system. Therefore, if you expect an efficient and accurate prediction in using ANN,

you need to choose the effective and representative inputs from various predict-

ing measures. These sort of choices are the main function of dimension reduction

technology.

Dimension reduction can be performed in two different ways: either by selecting

relevant variables from the original data set (which is usually referred to as feature

selection) or by generating a small group of new variables, each of which is a specific

combination of older input variables. Researchers in statistics, computer science,

and applied mathematics have worked many years in this field, and have identified
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and used various linear and nonlinear reduction methods. Sorzano, Vargas, and

Pascal-Montano (2014), also classify many dimension reduction methods in the

related mathematical insight.

1.2 Optimal portfolio and network centrality

Nowadays there is a wide debate concerning the network. In particular in sociology,

the circumstance of measuring the centrality of a particular factor that exists within

a network of relations is discussed. The importance of such criteria stems from the

implicit assumption of added power or the situation associated with individuals is

highly focused. Despite its intuitive meaning, the concept of centrality is somewhat

ambiguous and its measuring depends on the specific fundamental process that is

used. For instance, in a social network, the time factor that interacts with other

factors is considered the central factor. While contrary to the mentioned case, in

a bargaining process, the centrality of the i-th factor is derived from its relation to

other non-central factors.

Bonasic (1972), in his paper explaining centrality, proposes a centrality criterion

that has become a standard for determining centralization in the network litera-

ture. Further he discusses this concept in a financial market and determines its

relationship with the weights used to determine an optimal portfolio.

1.3 Measuring centrality

Generally, a network is an ordered pair from the set of G = N,Ω in which N =

{1, 2, ..., n} is defined as a set of nodes and Ω is a set of relationships between each

ordered pair of this set. Now if we assume there is a relation from node i to node

j, then (i, j) ∈ Ω̃. An appropriate method of sorting the information in Ω̃ is to use

the mean values of the adjacent points’ matrix, where Ω = [Ωij ]. Ω is an n ∗ n
matrix in which Ωij ̸= 0 indicates the existence of a relation between i and j nodes.

If Ω ̸= ΩT , it is called an oriented network, therefore if (i, j) ∈ Ω̃, it automatically

indicates that (j, i) ∈ Ω̃. Note that for undesirable networks, there is no causal

relation between the links, and these relations are visually represented as the (j− i)
line. On the other hand, if Ω ≠ ΩT be an oriented network and Ωij indicates a

causal relation from node j to node i, which may not necessarily exist inversely. In

this case, relations between the nodes are shown as arrows i.e. (j → i). In addition,

if Ωij ∈ {0, 1} then G is called non-weighted. However, when Ωij ∈ R he relations

between nodes in the network convey information related to the intensity of the

interaction between the nodes that lead to a weighted network. For a detailed

discussion in this context, we refer the reader to the articles of Newman (2010) and

Jackson (2010). As stated in Bonasics research (1972), in expressing real centrality,

we assume the centrality of node i be νi. It is adequate to the sum of the central

weights of the adjacent points as follows:
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νi ≡ λ−1
∑
j

Ωijνj (1)

By substituting relation (1) in the matrix form, the eigen centrality of an evalu-

ated source, ν, is defined based on a specific input Ω concerning the specific value

λ, while the largest real value in this field is the preferred one and is defined as

follows:

λν = Ων (2)

Definition 1.1. Suppose a non-oriented network and the weighted network G =

{N,Ω}, with N as a set of nodes and Ω as a matrix of adjacent points. Then central-

ity of the eigenvector i along with the i-th component of eigenvector Ω corresponds

to the largest eigenvalueλ1. While the set λ−1
1 is the proportional factor.

It should be noted that (1) indicates that each node can be considered centrality

of the network, provided it is in association to other nodes (in positive range) or

a few central points. This value is also calculated for weighted and non-weighted

networks. However, for the mentioned oriented structure, such central measurement

has some deficiencies that are not recommended for its implementation.

main result of selecting the optimal portfolio

A review of this researchs literature shows that the theory of portfolio optimiza-

tion was first introduced by Markowitz (1952), subsequently, this theory has been

used as a basis for the outline of the proposed model. We assume that in a portfo-

lio we have risky assets with an expected return vector µ and a covariance matrix

Σ. Then portfolio optimization will be defined as the problem of determining the

desired weights’ vector w, that minimizes this portfolios variance as the sum of

portfolio risk, provided the sum of the assigned weights to each asset of the port-

folio is equal to one in other words wT1 = 1. This strategy is commonly known

as the sum variance minimization strategy (risk sum) or in brief m-var. Therefore,

the said strategy is defined in the form of a minimization program:

minσ2
p = wTΣw (3)

s.t.

wT 1 = 1

And the optimal solution to the defined mathematical model in (6) is expressed

as the quantity in (7) and is calculated as follows:

w∗
mv =

1

1TΣ−11
Σ−11 (4)

We assume that the matrix of return correlation is Ω, the standard deviation

return of stock i is σi, and ∆ = diag(σi). Finally, the relation between the corre-
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lation and the covariance matrix is obtained from Σ = ∆Ω∆. Therefore (7) with

respect to Ω can be defined as followers:

ŵ∗
mv = φmvΩ

−1ϵ (5)

while ŵ∗
mv = w∗

mv ∗ σi , φmv = 1
1TΣ−11

, and ϵi =
1
σi
.

Considering the problem defined in (6), which includes a risk-free asset with

the return rf . Therefore, the defined portfolio is a combination of n + 1 assets, n

represents risky assets and 1 is the risk-free asset. In this case, the excess return

of asset i(ri − rf ) is represented as rei and the excess return vector reaches to µe.

The problem of minimizing the variance of the portfolio for a certain level of excess

return Re is expressed as follows:

minσ2
p = wTΣw (6)

s.t.

wTµe = Re

The investment strategy defined in (10) is known as the mean-variance strategy

or M-var. Of course, we should note that wT1 = 1 is not a limit in (10), since

part of the investor’s wealth can be assigned to the risky asset, then wf = 1−wT1.

However, when we consider the set of investment portfolio, wf = 0. Anyways, the

optimal solution for the M-var strategy will be obtained as follows:

w∗ =
Re

µeTΣ−1µe
Σ−1µe (7)

Following the same logic as before, (11) can be transformed to the correlation

matrix format as follows:

ŵ∗ = φΩ−1µ̂e (8)

while ŵ∗
i = w∗

i ∗ σi, φ = Re

µeTΣ−1µe , and µ̂
e
i = µe

i/σi.

1.4 The relation between optimal portfolio weights and stocks’
centralities

Suppose a network of the financial market is defined as CM = {N,Ω} in which N is

a set of stocks and Ω is the adjacent points matrix defined by the return correlation

matrix. If the main diagonal of the matrix Ω leads to zero, there will be no need

to deal with the absurd structure of the connection circles in this network. Of

course, it can be proved that this neither changes the structure of the eigenvector

nor its’ purpose. Thus, Theorem 1 and conclusion 1 show that the relation between

the desired weight of asset i, is obtained from a certain range, and the desired or

optimal weights in making this decision, are based on m-var and M-var investment

strategies.
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Theorem 1.2. If we assume CM = {N,Ω} be a financial market network and

correspondingly {ν1, ..., νn} and {λ1, ..., λn} depending on the case be a set of special

inputs and eigenvalues of matrix Ω. Then, the desired securities’ weights or the

desired level of the selected assets in the optimal portfolio of (9) and (14) can be

defined as follows:

ŵ∗
mv = φmvϵ+ φmv

( 1

λ1
− 1
)
ϵmv1 + Γmv (9)

w∗
mv = φµ̂e + φ

( 1

λ1
− 1
)
µ̂M ∗ ev1 + Γ (10)

while ϵM = (vT1 ϵ) and µ̂
e
M = vT1 µ̂

e.

Theorem 15 clearly determines the relation between the optimal weights and

the first special input of the correlation matrix, which represents the principal

assignor centrality in network theory. In addition, from the viewpoint of principal

component analysis, it can be interpreted as the inverse of the standard return

deviation and the return to risk ratio in the market. In (17) and (21), the immature

idea of investing in an asset that merely the risk or the return to risk ratio associated

with it is considered. In this case, by decreasing or increasing the standard return

deviation (return to risk) for the i-th asset, the corresponding weight in the optimal

portfolio depending on the case should decrease or increase. Here this is referred to

as the individual performance of the asset i. In the case of substituting the relation

by (17) and (21), the corresponding centrality to each asset can be calculated.

Therefore, we will consider the calculated centrality as the systemic performance

of asset i. Corollary 25 creates a negative relation between the assigned money to

a particular asset and its particular centrality.

Corollary 1.3. Assume λ1 > 1, ϵM , and µ̂e
M are positive quantities, then the

exclusive large centrality of the eigenvector of stock i with low weights would be the

desired portfolio in either of m-var or M-var strategies.

Corollary 25 states that under plausible conditions, those stocks that account

for a large amount of investors investment in an optimal portfolio will be placed

towards the outer part of the network. This corresponds to the results of the study

of Poozi et al. (2013). However, in the said study, individual performance, as

well as interaction with systematic (central) performance is completely eliminated.

Peralta and Zareei (2014), provided evidence that this is the relation of time and

market dependency. Therefore, there exist time periods in which most of the core

(central) systems are also the best individual assets that lead to dispute in choosing

the investment type.
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2 Different models in portfolio optimization

In this section, we describe the various models used in portfolio optimization based

on the researches conducted in this field.

Single-objective optimization model

The main mean-variance model (MV), which aims to minimize investment risk

(variance or dispersion of return) for the desired return level, is considered a single-

objective model. In this model, the parameters used in decision-making are the

number of available assets (investment fields), N, expected return of i-th asset

(investment field), µi, the covariance of i-th and j-th asset (investment field),σij ,

and the desired level of expected return, R∗.

In addition to the decision-making parameters that are obtained based on perfor-

mance data and obtained from the above definitions, wi is also a decision variable

in this optimization scheme, which is defined as the percentage or relative share of

investment in the i-th type asset (investment field). Accordingly, considering the

stated parameters and variables, the optimization model is defined as follows:

min(c) =

N∑
i=1

N∑
j=1

wiwjσij (11)

s.t.

N∑
i=1

wiµj = R∗

N∑
i=1

wi = 1

0 ≤ wi ≤ 1, i = 1, ..., N

In this scheme, the objective function is defined based on risk minimization (of

sum of covariances). In this scheme, the first restriction is based on obtaining the

return at the desired return level, the second restriction refers to the investment

combination, which is equal to 1 or 100 percent overall, and the third restriction

states the relative share of investment in each asset or investment field in this

portfolio as a relative quantity between 0 and 1 or percent-wise between 0 and 100

percent.

The principal single-objective mean-variance investment model can also be rewrit-

ten based on maximizing the expected return in the sum of investment for a given

risk level. In either case, the obtained portfolio by solving (27), is called an efficient

set by considering the minimum risk for a certain return level or the maximum of

return or the investors expected return and for a certain level of risk.

However, to find an efficient portfolio, the risk tolerance level of the investor,

or the investors desired return, should be determined. In fact, such conditions
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may not be a plausible in reality. Therefore, to find an efficient portfolio among

different combinations of investments in rational space, instead of considering a

single goal, researchers should consider all goals at once. Therefore, to solve the

problem of considering the decision making criteria, risk and expected return in

financial decision-making at once and even in some cases considering other goals

rather than risk and return, researchers have converted the single-objective model

into a multi-objective model (Clichy et al. 2019).

Multi-objective optimization model

Reviewing the research literature shows that based on Zeitzlers (1999) approach,

the mathematical approach of multi-objective mean-variance portfolio optimization

(MVPO) is defined as follows:

min f(x) = {f1(x), f2(x), ..., fp(x)} (12)

s.t.

e(x) = {e1(x), e2(x), ..., em(x)} ≤ 0

x = (x1, x2, ..., xn) ∈ X

In this approach, f1(x) to fp(x) are different objective functions that can be

defined based on risk or other objective criteria (of course minimization criteria).

e1(x) to em(x) are different constraints that must be considered in choosing a port-

folio or investment combination and can be defined based on investment budget,

investment expectations, combination restrictions, and such. Eventually, the deci-

sion variables are x = (x1, x2, ..., xn), which are based on the amount of investment

in the asset or the evaluated stock as an investment option and are defined relatively.

The defined constraints are in fact the justified space or the answer and in other

words the possible combinations of investment or different investment portfolios in

decision-making.

A) Feasible set:

A feasible set xf , is defined as a vector of decision variables (here an invest-

ment combination or portfolio) in which all the limitations of the investment

model are considered and in other words, the obtained answer for the amount

of investment in each asset to choose the desired portfolio applies to all re-

strictions, and at the same time, none of these values are negative as feasible

levels of investment in each asset or company shares.

B) Pareto Dominance:

In the multi-objective scheme in (29), based on Debbs opinion (2001), Pareto’s

dominance principle is considered in finding the optimal solution for select-

ing the desired investment combination, and a set of answers (of an invest-

ment combination) is called the reference combination, provided it contains

a smaller amount of objective function than the other combination.
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C) Pareto Optimality:

In the multi-objective scheme in (29), according to Zitzlers opinion (1999),

Paretos optimality principle is considered in selecting the final investment

combination or the desired portfolio, and a set of answers (of an investment

combination) is called the optimal combination, provided it contains a smaller

amount of the objective function than all other combinations.

Methods for solving multi-objective models

In multi-objective models, optimization of all objective functions may not be

possible at once. Therefore, it is necessary to determine the priorities based on

management or decision-making preferences, by using methods such as the weighted

sum of functions or applying approaches based on the dominance of some goals over

others; and to solve the problem based on these priorities.

A) Weighted sum approach:

In the weighted sum of objective functions method, a set of objectives are

combined into a single objective function by assigning a related weight as the

priority preference of one over another. Due to its simple structure and ease of

implementation, in addition to the most use of the classic approach for solving

multi-objective optimization problems (Debb 2005), this approach is the most

popular solution for multi-objective problems in optimizing portfolio based on

the mean-variance paradigm. However, despite the simplicity of this method,

there exist major problems for optimizing the multi-objective model, by using

this method to achieve Paretos optimal solutions, we have an optimal Pareto

non-convex solution space. Thus, the main disadvantage of the weighted sum

approach is that the said approach cant produce all Pareto’s optimal solutions

that coincide with the non-convex solution space levels (Zeitzler 1999).

Regardless of the limitations and complexities of complying with contradic-

tory goals in the objective function on the one hand and considering the

limitations related to real-life realities on the other hand, in any case, the

general framework of the weighted sum of the objective functions in solv-

ing multi-objective portfolio optimization problems with the mean-variance

criterion is expressed as follows:

min(C) =

p∑
i=1

λifi(x) (13)

s.t.

x ∈ Xf

While in this relation λi is the weight assigned to each of the previous objec-

tive functions based on the degree of importance or its preference over other
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defined objectives. The mentioned weight coefficients or preferences can be

determined by methods based on expert surveys and approaches like fuzzy

logic. The mean-variance portfolio optimization (MVPO) multi-objective

mathematical paradigm can be formulated based on the weighted sum ap-

proach of the objectives as follows in (31). In this paradigm, two main goals

are considered, minimizing the risk and maximizing the return to optimize

the portfolio, which are conflated as a sum function with the management

preferences (Chang et al. 2000).

min(C) = λ

[
N∑
i=1

N∑
j=1

wiwjσij

]
− (1− λ)

[ N∑
i=1

wiµi

]
(14)

s.t.

σN
i=1wi = 1

0 ≤ wi ≤ 1, i = 1, ..., N

As can be seen in (31), two opposing objectives (minimizing risk and maxi-

mizing return) are combined by a parameter λ. The weight parameter λ takes

different values between 0 and 1. While the objective function of the model

seeks the maximum of the return on one hand and the minimum of the risk

on the other, λ obtains an exchange between risk and return.

B) Pareto-based approaches:

Approaches based on the Pareto principle can control large search spaces

and exchange between multiple option trades at the same time in a single

optimization implementation (Zeitzler 1999). In this approach, unlike the

objectives weighted sum approach, which converts a multi-objective structure

into a single objective structure, there is no united criterion for evaluating

the quality of exchange between objectives. Defining qualitative evaluation

criteria in this method is relatively difficult.

In approaches based on the Pareto principle, usually, a solution ranking strat-

egy based on the concept of Pareto optimal principle is used (Horn et al. 1994).

Many multi-objective algorithms are based on Pareto ranking, however many

alterations such as 1) Dominance depth algorithm (Deb et al. 2002) and 2)

Dominance dimensions algorithm in optimization, are used more than other

algorithms (Zeitler et al. 2001). Based on the proposed paradigm by Levin

et al. (2014), mean-variance portfolio optimization (MVPO) multi-objective

mathematical paradigm based on the Pareto principle can be presented as

follows:
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min

[
N∑
i=1

N∑
j=1

wiwjσij

]
and max

[ N∑
i=1

wiµi

]
(15)

s.t.

N∑
i=1

wi = 1

0 ≤ wi ≤ 1, i = 1, ..., N

As can be seen in the objective function (32), two opposing objectives: 1) min-

imizing the risk and 2) maximizing the return, are evaluated independently to

achieve the optimal investment combination in a paradigm based on the Pareto

dominance principle.

Case studies based on performance data in different capital markets show that

modeling the optimal investment combination to ”determine the preference of single-

objective or multi-objective paradigms” has a basic assumption. The said basic

assumption is that investors are aware of the desired risk or return level of single-

objective models. Therefore, multi-objective models seem more realistic than single-

objective models.

2.1 Research methodology

This research is based on a theoretical inference method to find a new and in-

digenous model suitable for Irans capital market conditions to calculate network

centrality and portfolio optimization using genetic algorithm, therefore the research

can be considered as a theoretical research in this regard. On the other hand, de-

signing the model and employing it to help the investors and the capital market

to make better investment decisions, and therefore this research can be considered

an applied research in terms of purpose. The statistical population of this study

as discussed later (50 top listed companies in the first quarter of 2021) is compati-

ble with the statistical sample and using random methods in studying a section of

the statistical population as a random sample is not objectified and mathematical

optimization methods have been used to select the optimal portfolio. Accordingly,

during the inference, the aim was not to generalize and disseminate the results, and

the used tools were descriptive, in other words, descriptive inference method has

been used. In the following, the general framework, measuring, and determining

relations between variables and in a way the proposed research model is discussed.

2.2 Calculating the centrality

In this section, using the ”portfolio optimization” approach, the centrality criterion

for each company is calculated and based on the regular and logical algorithm that
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is used, the obtained findings are described. To determine the centrality, first, we

normalize and integrate the data, then based on the difference in the overall per-

formance of each company in comparison to all the top companies, including the

performance of the company that is under evaluation, and relying on the standard-

ized integrated criterion of performance, we calculate the centrality size of each

company and then rank it relatively. In other words, the difference in the option’s

return that is under survey compared to all other justified options, in investment

decision-making has been used.

In this regard, first: the difference of the hybridization based indicators for each

company, and including the company itself, is calculated and is determined as a

positive number (absolute value). Second: the sum of performance differences is

calculated by summing up the calculated values per 50 companies. Third: the

obtained sum for each company is divided by the obtained sum for all companies

(rounded by 4 decimals) and controlled (the obtained sum of numbers for all com-

panies is equal to 1). Fourth: Considering that the most optimal performing status

is for the minimum value calculated in the previous step, complement calculated,

which means the obtained numbers in calculating the previous division are sub-

tracted from the maximum value of the previous column and stated as a positive

number. Finally: Standardized, which means the obtained complement is divided

and controlled on the sum of complements of 50 companies and is divided as the

centrality measure of the evaluated company. The obtained numbers are positive

with 5 decimals and their sum is 1 and they are somehow standardized.

It should be noted that the centrality measure per company as a relative quantity

is between 0 to 1 and in sum or for all companies equals 1.

2.3 Determining the optimal strategy based on the mean-
variance paradigm

In this section, research findings are analyzed based on Markovitzs portfolio theory

(1952), mean-variance mathematical optimization paradigm, and applying real lim-

itations in the top companies are studied according to performance data in time

period. In this regard, first objective criteria in modeling including risk and return

are defined and measured, then decision variables are defined, the objective func-

tion and limitations are stated, and eventually, by mathematical optimization, the

final model is solved and optimal strategies of investing are determined.

Therefore, by using the research background, the return criterion is selected as

one of the most important indicators affecting investment decision-making, and in

calculating the average return, Barak and Modares (2015) model has been used as

follows, in which R is the average stock return for the studied time periods;

R = n

√
(1 +

r1
100

)(1 +
r2
100

)...(1 +
rn
100

)

In other words, to calculate the average return the geometric mean method has



126 Journal of Mathematics and Modeling in Finance

been used and here, r1, ..., rn are the stocks real return from the first to the n-

th time period. In this regard, the one-year performance up to 19/3/2021 for the

studied companies has been considered and in these 12 months the monthly periods

have been the criterion of action and to calculate the return, stock price changes

compared to past have been used. This means that the change percentage of the

stock price (stock price at the end of the month subtracted from the stock price

at the beginning of the month) is divided by the stock price at the beginning of

the month and multiplied by 100 is expressed as a percentage, and finally, to be

converted to the annual return it is multiplied by 12. The second criterion that

has attracted investors in decision-making along with the return, has been the

investment risk; according to Markowitz (1952), Nikzad and Zaranezhad (2012),

Chang et al. (2012), Burke et al. (2014), Sadaf And Ghodrati (2015), Senol and

Oztoran (2016), from which different interpretations have been expressed. In this

study, based on Barak and Modaresis model (2015), the risk criterion is based on

price changes and is calculated by the following formula:

σ =

√√√√ 1

n− 1

1∑
i=0

(
ri − E(r)

)2

3 Modeling investment composition

At this stage of decision-making to determine the optimal investment composition

based on the initial feasible space, and in other words, the decision made in eval-

uating the financial efficiency of selected companies and introducing the efficient

companies as feasible investment options, modeling the composition of investment

is defined as the final model by using these steps: 1) defining the decision variable,

2) defining the objective function, 3) identifying decision-making real constraints

and 4) summing up the said steps.

3.1 The first step, defining the decision variable:

Following similar researches, including Chen et al. (2019), in this study, the decision

variable is the relative investment between 0 to 1 of the total investment in the i-th

efficient company and for each of the 50 companies that are ultimately selected as

top stock companies and feasible investment option in determining the initial space

(or decision-making) which is defined as follows:

Xi relative investment in the desired efficient company: i : 1, 2, ..., 50.

3.2 The second step, defining the objective functions:

Based on the two criteria, risk and return, the objective functions are defined based

on Markowitz (1952) mean-variance paradigm as follows:
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max(R) = R1X1 +R2X2 + ...+RnXn

min(δ) = δ1X1 + δ2X2 + ...+ δnXn

Here, Ri is the average monthly return of the i-th efficient company, Xi is the

relative investment in the i-th efficient company, δi is the average monthly risk

of the i-th efficient company, R is the average monthly return of the investment

composition in the efficient companies and δ is the average risk of investment com-

position in the efficient companies. The investor wants to choose a combination of

investments that has the most return and the least risk at same time.

3.3 The third step, applying real limitations:

By applying real limitations when choosing the portfolio or optimal investment

composition, maximizing returns and minimizing risk in selecting the investment

composition, the final decision space in selecting the optimal composition will be

determined based on investment limitations. Obviously, these limitations are based

on the circumstances of the person who decides and vary from person to person.

Therefore, following the Chen et al. (2019), a number of limitations are mentioned

here as examples:

A) Investment composition limitation: This limitation is affected by the defini-

tion of variables as relative quantity and in fact, is the relative investment

in the investment portfolio or relative share of each top company from one

investment unit, which assuming relative investment in other companies be 0,

the maximum share of the i-th efficient company is equal to 1 and considering

that the real decision variables are non-negative the minimum is defined as

an unknown relative quantity as follows:

0 ≤ Xi ≤ 1, i : 1, 2, ..., 50

B) Investment budget limitation: This limit is based on the existing or available

amount of money as a ceiling or maximum of investment by a natural or legal

person and varies from a person to the other. Here, according to the general

assumption in the budget constraints of investment following Maghwani et al.

(2018), we assume that the investor wants to buy a share that is relatively

divided between different shares and practically with the individuality of the

Rial budget considering dividing the Rial budget by the average price of a

share we can calculate the number of final shares with the optimal relative

combination. This number is multiplied by the optimal relative combination

and the amount of the shares of each company from this specific composition

will be determined, and by multiplying the amount by the daily price of the

relevant share, the Rials amount of buying shares from each company in the
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optimal composition will be determined. Accordingly, the budget constraint

is generally defined per share as follows:

X1 +X2 + ...+X50 = 1

C) Minimum return relative to the market limitation: This limit is based on the

minimum risk-free return, for instance, the return on investment in a one-

year bank deposit, which is 15% per annum and 1.25% per month according

to the Central Bank, and based on this limit, the investment portfolio or

composition should be determined in a way that the return on investment

will not be less than the risk-free return. In other words:

R1X1 +R2X2 + ...+R50X50 ≥ 1.0125

D) Minimum return relative to the market limitation: This limit is based on the

average performance in the capital market and is based on the assumption

that in general the investment composition should be determined in a way

that the minimum return on investment will not be less than the average

return in the capital market. In other words:

R1X1 +R2X2 + ...+R50X50 ≥ R

E) Maximum risk limit relative to the capital market: This limit is based on the

average performance in the capital market and is based on the assumption

that in general the investment composition should be determined in a way

that the maximum risk on investment will not exceed the average risk in the

capital market. In other words:

δ1X1 + δ2X2 + ...+ δnXn ≥ δ

3.4 The fourth step, final model:

According to variables definition, objective functions and investment limits, the

final model of the optimal investment composition will be as follows:
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Xi: The relative investment amount in the desired efficient company, i : 1, 2, ..., 50.

max(R) = R1X1 +R2X2 + ...+R50X50

min(δ) = δ1X1 + δ2X2 + ...+ δ50X50

s.t.

X1 +X2 + ...+X50 ≤ 1

R1X1 +R2X2 + ...+R50X50 ≥ 15.00

R1X1 +R2X2 + ...+R50X50 ≥ R

δ1X1 + δ2X2 + ...+ δ50X50 ≤ δ

0 ≤ X1 ≤ 1, i : 1, 2, ..., 50

4 Portfolio optimization

To select the desired option in investment decision-making, at this stage of the anal-

ysis, relying on the genetic algorithm and the following ultra-innovative algorithm,

we optimize the portfolio in the form of determining the optimal investment com-

position of efficient companies, aiming to achieve maximum average returns and

the minimum risk and observance of real limitations in decision-making.

4.1 Step 1, Optimization algorithm:

In this regard, the correction mechanism that Stretcher et al. (2004), Levin, Kuo

and Kendall (2014), and Sculpadonekt et al. (2007) have used in their studies,

is invented to manage budget, floor, and ceiling limits. It should be noted that

budget limits are usually avoided unless i = 0. Another modifying mechanism has

been developed in Chang et al.’s (2000) study to comply with investment budget,

capability, floor and ceiling limits. According to the algorithm used in this study,

producing solutions in this study should be based on consistency and quantity.

Then, the used algorithm is shown in table 35.

4.2 Step 2, Determining optimization parameters:

Relying on the ultra-innovative mathematical algorithm and using the data mining

process of the genetic algorithm, the optimization parameters including the number

of generations, the number of iterations, base population, etc. are defined as follows.

In this study, the binary genetic algorithm is used. In other words, the genetic

operation was not directly performed on the variables, but its coded in the base-

2. Also, the production of the initial generation is performed randomly. The

initial population size used in this study is 100. The termination condition in

the algorithm is reaching a constant objective function or to reach the maximum

number of generations, which is 200 in this method.
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Table 1: Stock Composition Optimization Algorithm

Portfolio optimization modified algorithm

Proposed repair mechanism

rocedure Repair (ω, ϑ)

δ ← 0

Inz = {i|ωi > 0}
ri = (ω mod ϑ) ∀i ∈ Inz

ILBV = {i|ωi − r < Ii}
if |ILBV | = 0 then

ωi ← ωi − ri

else

ωi ← ωi + (ϑi − ri) ∀i ∈ ILBV

ωi ← ωi − (ωi mod ϑi) ∀i ∈ Inz

end if

β =
∑

i∈Inz
ωi

if β > 1 then

ai ← Ii + ϑi − (Ii mod ϑi) ∀i ∈ Inz

ωi ← ai + ϑi +
ωi−ai∑

i∈Inz
(ωi−ai)

(1−
∑

i∈Inz
ai) ∀i ∈ Inz

else

ai ← ui − (ui mod ϑi) ∀i ∈ Inz

ωi ← ai − ai−ωi∑
i∈Inz

(ai−ωi)
(
∑

i∈Inz
ai − 1) ∀i ∈ Inz

end if

ri = (ωi mod ϑi) ∀i ∈ Inz

δ ←
∑

i∈Inz
ri

I = {i|δ > ϑi}
ϑmin ← min{ϑi|i ∈ I}
Choose an index k from {i|ϑi = ϑmin : i ∈ I}
ID ← 0

while δ ≥ ϑmin do

I ← I\ID
if ωk + ϑmin ≤ uk then

δ ← δ − ϑmin

ωk ← ωk + ϑmin

else

I ← I\{k}
ID ← ID ∪ {k}
end if

I ← {i|δ > ϑi}
ϑmin ← min{ϑi|i ∈ I}
Choose an index k from {i|ϑi = ϑmin : i ∈ I}
end while

end procedure
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The number of elite chromosomes that will enter the next generation is 3.5% of

the population. To scale the value of the fitness function, a rank scale has been used.

To determine how to select chromosomes, the Selection Tournament method has

been used. The intersection rate, which represents the percentage of the population

affected by the intersection operator, is considered 0.8 in the best case of portfolio

selection.

Mutations in chromosomes are performed by the Arithmetic Function method,

the length of change in the gene depends on the limitations of the problem. The mu-

tation rate, which represents the percentage of the population affected by the muta-

tion operator, is considered 0.1. Then, using the mentioned parameters and Table 4-

18 as the justified starting point and applying them inMATLAB, z1, z2, z3, z4, z5, z6,

which have the main role in the fitness function, are calculated. Assuming that the

relative investment amounts are the same in all financially efficient companies, the

starting point is obtained from dividing 1, i.e. budget limitation, by 50.

4.3 Step 3, Simulation:

Using MATLAB, the formulated model, and the modified algorithm, the simulation

process was performed with each of the three operators, and after 250 generations

of simulation for the selected operators, the simulation operation was terminated.

A summary of each simulation is presented in the following, and in the next section,

the best answer based on the calculations is represented.

Selecting the optimal portfolio using Tournament genetic operator

After following the steps and determining the assumptions and parameters that

were previously explained in the process of implementing the genetic algorithm

simulation in the third chapter, its possible to simulate the algorithm using MAT-

LAB, with a repeat rate of 250 generations and an initial population of 150 by

default. At this stage, using MATLAB, the proposed ultra-innovative algorithm

with the Tournament operator has been used. Simulation to build an optimal port-

folio was performed. Figure (36) depicts the change rate of the fitness function in

250 generations.

Accordingly, figure (37) depicts the distance between each generation of the

proposed genetic algorithm compared to the previous generation of answers in 250

generations:

In addition, figure (2) depicts the best, worst, and the average value of the fitness

function in each generation of using the genetic algorithm by Tournament operator

function:

Eventually, figure (3) depicts, the selected chromosome (of the optimal portfolio)

using the genetic algorithm after 250 generations:
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Figure 1: The change trend of Tournament operator in each generation of the
simulation (researcher’s findings)

Figure 2: The distance between each generation of Tournament’s operator (re-
searcher’s findings)

Selecting the optimal portfolio using Roulette Wheel genetic operator:

Following the steps, and determining the assumptions and parameters that were

explained in the implementation process of the genetic algorithm simulation in the

third chapter, simulation of the algorithm by MATLAB with a repetition rate of 250

generations and an initial population of 150 can be done by default. At this stage,

by using MATLAB, the proposed ultra-innovative algorithm with the Roulette
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Figure 3: The best, and worst, and the average value of Tournament operator
(researcher’s findings)

Figure 4: The final chromosome in Tournament operator (researcher’s findings)

Wheel operator is used. Simulations were performed to build an optimal portfolio.

Figure (4) depicts the rate of change in the fitness function in 250 generations.

Accordingly, figure (1) depicts, the distance between each generation of the pro-

posed genetic algorithm compared to the previous generation of answers by the

Roulette Wheel operator in 250 generations:

In addition, figure (7) depicts the best, worst and average value of the fitness

function in each generation of using the genetic algorithm by Roulette Wheel oper-

ator function:

Eventually, figure (8) depicts, the selected chromosome (of the optimal portfolio)

using genetic algorithm and Roulette Wheel operator after 250 generations:
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Figure 5: The change trend of Roulette Wheel operator for each generation of the
simulation (researcher’s findings)

Figure 6: The distance between each generation in Roulette Wheel operator (re-
searcher’s findings)

Performance comparison of TR genetic operators:

According to return and risk values obtained in the simulation using the two selec-

tion operators Tournament and Roulette Wheel, it is determined that the return

of the Tournament operator is somewhat better but it has a higher risk level. In

any case, based on the performance efficiency the first operator is better and the

performance of the two algorithms is compared in figure (9):
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Figure 7: The best, and worst, and the average value of Roulette Wheel operator
(researcher’s findings)

Figure 8: The final chromosome in Roulette Wheel operator (researcher’s findings)

4.4 Step 4, Decision-making:

Finally, according to the more efficient operator, i.e. the Tournament operator, the

optimal decision, and in other words, the optimal combination of investments or

optimal portfolio was determined with a maximum return of 1.169 and investment

risk of 0.231.
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Figure 9: Comparison of the efficiency of the two operators (researcher’s findings)

4.5 The effect of Sharpe individual operator, return volatil-
ity, and centrality on investment strategy

At this stage, based on the performance data of the top companies in the studied

time period, Sharpe (1964) index or individual operator is calculated in investment

decision-making and its effect on the optimal investment strategy which is obtained

through the Tournament operator is evaluated. Therefore, to evaluate the effect

of Sharpe individual operator, return volatility and a systems operation based on

the centrality, optimal decision strategy or portfolio, combined linear regression

based on cross-section data analysis model and the model proposed by Gastow et

al. (2014) has been utilized as follows:

w∗
i = β0 + β1Centralityi + β2Sharpe Ratioi + β3VOLi + ϵi (16)

Here, w∗
i,gmv is the dependent variable of the optimal weights in choosing the op-

timal investment combination or investment strategies in the mean-variance model.

Centralityi the first independent variable is the systemic operator of stock, based on

centrality. Sharpe Ratioi is the individual operator of stock, based on the Sharpe

index, VOLi represents the return volatility based on the stock return domain and

eventually, ϵi is the unforeseen part in regression estimation or estimation error.

It is expected that in both models of investment strategy, obtained the values are

higher than the centrality values, which is affected by the systematic performance

of stocks in interaction with each other. The results of using combined linear regres-

sion with a cross-sectional data analysis model based on the output of statistical

software are briefly stated in Table 2 as follows:

The results of the above table show that due to the negativity of the coefficient

of the individual operator of return fluctuations on the investment strategy in the

regression estimation relation which is equal to -0.0069, it can be concluded that
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Table 2: The impact of Sharpe individual operator on the optimal investment
strategy (Researcher’s findings)

Description Impact Coefficient T Statistics Significance Relation

symbol level type

y-intercept β0 0.1121 1.617 0.107 *****

Systemic β1 0.0086 1.935 0.054 Straightforward

operator and meaningful

Sharpe β2 0.0092 2.221 0.027 Straightforward

operator and meaningful

Return β2 -0.069 -3.226 0.001 Inverse

volatility and meaningful

Explanation power Determination coefficient: Modified determination

0.7825 coefficient: 0.7512

Generalizability Fisher statistics: 12.181 Significant level: 0.0000

of relation

the individual operator of the stocks return fluctuations had a negative impact

on determining the optimal investment strategy and Student’s t-statistic is equal

to -3.222 and its significance level is 0.001 and less than 5% and therefore the

obtained results are significant at the 5% level. The relation justifies an estimation

between 75.12 to 78.25% of changes in investment strategy based on the individual

Sharpe operator, the centrality system operator, and has high explanatory power

and finally, Fisher’s significance level is equal to 0.0000 and indicates the significance

of the estimated relationship. As a result, the individual operator of companies’

stocks in the research field based on the measure of the return fluctuations affects

the optimal composition of investment.

Considering the individual Sharpe operator is positive in the estimated regression

relation which is equal to 0.0092, it can be concluded that the individual Sherpe

operator had a positive effect on determining the optimal investment strategy and

Students t-statistic is equal to 2.221 and its significance level is 0.027 and is less

than 5% and therefore the obtained results are significant at the 5% level. The

relation justifies an estimation between 75.12 to 78.25% of changes in investment

strategy based on the individual Sharpe operator, the centrality system operator,

and has high explanatory power and finally, Fisher’s significance level is equal to

0.0000 and indicates the significance of the estimated relationship. As a result, the

individual operator of companies’ stocks in the research field (Sharpe ratio) affects

the optimal composition of investment

Considering the coefficient of centrality size is positive in the estimated regression

relation which is equal to 0.0086, it can be concluded that the size of centrality had

a positive effect on determining the optimal investment strategy and Students t-
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statistic is equal to 1.935 and its significance level is 0.054 and is less than 10%

and therefore the obtained results are significant at the 10% level. The relation

justifies an estimation between 75.12 to 78.25% of changes in investment strategy

based on the individual Sharpe operator, the centrality system operator, and has

high explanatory power and finally, Fisher’s significance level is equal to 0.0000 and

indicates the significance of the estimated relationship. As a result, the investments

diversity based on the coefficient of variation of the stocks centrality size affects the

optimal composition of investment.

5 Conclusions

The present study has been conducted in order to optimize the portfolio using ge-

netic and network centralization operators in the framework of a case study among

companies listed on the Tehran Stock Exchange. The results of the study showed

that, in investigating the effect of a centralization based systemic operator, Sharp

individual operator, and individual performance of stock based on the return volatil-

ity measure on the optimal investment strategy obtained from optimization of the

portfolio based on the Mean-variance model and the genetic algorithm (Tourna-

ment operator), considering that the coefficient of the individual operator of return

volatility of the investment strategy is negative, regarding regression estimation,

we can conclude that the individual operator of stock return volatility has a nega-

tive effect on determining the optimal strategy of investment. And as stock return

volatility and actually investment risk based on scattered return are increased the

stock becomes less preferable to be selected as an optimal investment option and

owns a lower percentage of the overall investment or portfolio. Also, due to the

positive effect of the individual Sharpe operator on determining the optimal invest-

ment strategy, as the risk premium of the market of investing in the company is

higher and the risk is less, it has become more preferable to be chosen as a desir-

able investment option and dedicates a higher percentage of total investment or

portfolio to itself. Also, due to the positive effect of centrality size on determining

the optimal investment strategy, as the sum of differences in the hybridization indi-

cator of the companys performance have become less than other companies, it has

become more preferable to be chosen as a desirable investment option and dedicates

a higher percentage of total investment or portfolio to itself.
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