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Abstract:
Data envelopment analysis (DEA) is a methodology widely used for evaluat-
ing the relative performance of portfolios under a meanvariance framework.
However, there has been little discussion of whether nonlinear models best
suit this purpose. Moreover, when using DEA linear models, the portfolio
efficiency obtained is not comparable to those on the efficient portfolio fron-
tier. This is because a separable piecewise linear boundary usually below
the efficient frontier is considered the efficient frontier, so the model does
not fully explore the possibility of portfolio benchmarks. In this paper, and
with use of the dual-Lagrangian function, we propose a linear model under
a meanvariance framework to evaluate better the performance of portfolios
relative to those on the efficient frontier.
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1 Introduction

One of the most important principles in portfolio management is the evaluation

of portfolio performance, including selecting the best portfolio in terms of returns.

A central purpose of creating a portfolio is the risk reduction of investment, such

that the return from one asset compensates for the loss from another. To address

this, Markowitz (1952) [15] introduced the frontier method under a meanvariance

framework. This is a nonlinear model and its operation calculates the distance

between the portfolio and its image on the efficient frontier. Tobin (1958) [21]

and Hanoch and Levy (1969) [4] later took steps to improve the Markowitz model,

while Sharpe (1966) [18], Treynor (1965) [22] and Jensen (1968) [6] provide suitable
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benchmarks for portfolio assessment. Of these, the so-called Sharpe index is the

risk premium per unit of total risk, the Treynor index is the risk premium per unit

of the systematic risk, and the Jensen index is the difference between the actual

portfolio return and the estimated benchmark return.

Subsequently a number of other studies further explored aspects of the model,

including Turner and Weigel (1992) [23] and Sharpe, Gordon and Jeffry (1995) [19].

Yoshimoto (1996) [25] considered multi-period portfolio selection with transaction

costs using Markowitzs basic model. In contrast, Morey and Morey (1999) [17]

developed a model for evaluating portfolio performance with significant change to

the Markowitz model based on data envelopment analysis (DEA), by simultaneously

considering the variance as an input and the mean return as an output over the

same time horizon. Importantly, these models are nonlinear in the sense that both

the Markowitz model and the Morey and Morey model depend particularly on the

assumption that the asset return distribution is normal. This is problematic in

that the return distributions of most financial assets exhibit strong asymmetry. As

a result, the meanvariance model is unsuitable for the performance evaluation of

these types of assets.

As variance as a risk measure in the presence of asymmetrical returns creates

inappropriate results because the positive and negative changes in asset returns

are considered alike, semi-variance is a good alternative. Markowitz (1992) [16],

Choobineh and Branting (1986) [3] and Kaplan and Alldredge (1997) [8] have

all examined the characteristics and computational problems of the semi-variance

model, showing for the most part that the semi-variance model can well measure

risk. Subsequently, Joro and Na (2006) [7] presented a nonlinear meanvarianceskew-

ness model that considers the mean and skewness of each portfolio as its output

and its variance as the input, while Lozano and Gutiérrez (2008) [12] described

several linear diversification models with a single input and output. While these

are completely different to DEA models, they are consistent with the second-order

stochastic dominance (SSD) in the sense that being efficient according to these

proposed models is a necessary condition for being SSD efficient.

Later, Branda and Kopa (2012) [1] considered the empirical influence of various

risk measures on DEA efficiency and its relation to SSD and Briec et al. (2006) [2]

introduced a nonparametric efficiency measurement approach for static portfolio se-

lection in the meanvarianceskewness space. Subsequently, Kerstens et al. (2011) [9]

provided the geometric display of the meanvarianceskewness portfolio frontier based

upon the shortage function, Lozza et al. (2011) [13] proposed several models for

portfolio selection and Soleimani et al. (2009) [20] added market sectors to the

Markowitz model as an additional constraint and considered the cardinality con-

straints and minimization of transaction costs. Lastly, Liu et al. (2015) [11] ex-

amined the convergence of DEA models under the meanvariance framework, which

suggested that appropriate DEA models with sufficient data could be used to effec-

tively approximate portfolio efficiency. They also examined some basic portfolios
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using DEA models to estimate their portfolio efficiency via their efficiency scores

and verified the validity of the models using simulations.

In evaluating portfolio performance, it is increasingly evident that nonlinear

models capture the complexities inherent in financial markets more effectively than

traditional linear models. However, the usefulness of Data Envelopment Analy-

sis (DEA) in linear settings often falls short when juxtaposed with the nonlinear

efficiency portfolio frontier, particularly in volatile market conditions. As a re-

sult, Markowitz (1952) [15] introduced the frontier method under a mean-variance

framework, which has undergone various enhancements by researchers like Tobin

(1958) [21] and Hanoch and Levy (1969) [4]. Sharpe (1966) [18], Treynor (1965) [22],

and Jensen (1968) [6] further developed benchmarks for a more nuanced portfolio

assessment.

Recent advancements in machine learning have significantly enhanced asset re-

turn predictions and portfolio optimization. Ma, Han, and Wang (2021) [14] demon-

strated how deep learning could be leveraged for portfolio optimization, offering

more accurate forecasts and adaptive strategies compared to traditional models.

Similarly, Lim, Cao, and Quek (2022) [10] have shown how dynamic portfolio re-

balancing can be effectively managed through reinforcement learning, adapting to

market conditions in real-time and thus potentially outperforming static models in

turbulent environments.

Moreover, the increasing relevance of ESG (Environmental, Social, and Gover-

nance) factors in investment decisions reflects a broader shift towards sustainability.

Iazzolino et al. (2023) [5] examined the impact of ESG factors on the financial effi-

ciency of portfolios, emphasizing the importance of incorporating these dimensions

into performance evaluation models to meet new investor expectations and regula-

tory standards.

The overall finding of the existing literature is that evaluating the performance

of portfolios requires nonlinear models or, if using DEA linear models, the efficiency

is not comparable to the efficiency portfolio frontier. In this paper, we propose a

linear model with the assistance of the DEA to evaluate the performance of any

portfolio desired For this purpose, we draw on the concept of the dual-lagrangine

and the earlier Markowitz and Morey and Morey models. Motivation for this lin-

ear model stems from the recognition of the computational complexities associated

with nonlinear models, particularly in time-sensitive decision-making environments.

Nonlinear models often entail intricate computational procedures and may exhibit

challenges in real-time applications due to their computational intensity and poten-

tial convergence issues. In contrast, the proposed linear model offers a simpler and

more computationally efficient alternative, making it well-suited for practical port-

folio management tasks. By leveraging the power of linear programming techniques

within the framework of Data Envelopment Analysis (DEA), our model aims to pro-

vide a more tractable and scalable approach to portfolio performance evaluation,

facilitating timely decision-making in dynamic market conditions. Moreover, the
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transparency and interpretability inherent in linear models enhance their appeal,

allowing for easier validation and implementation by practitioners. Overall, the

motivation behind this linear model lies in its potential to bridge the gap between

theoretical sophistication and practical utility in portfolio management. The re-

mainder of the paper is as follows. Section 2 reviews the Markowitz and Morey and

Morey models and the concept of the efficient portfolio frontier. Section 3 develops

the linear model and Section 4 provides an empirical application to Chinese stocks.

Section 5 concludes.

2 Preliminaries

2.1 Lagrange duality

In mathematical optimization theory, duality is the principle that allows for the

consideration of an optimization problem from two distinct perspectives: the primal

and the dual problem. The solution to the dual problem provides a lower bound for

the solution of the primal problem, which typically involves minimization. However,

the optimal values of the primal and dual problems are not necessarily equal in

general. This discrepancy is known as the duality gap. For convex optimization

problems, the duality gap is zero under certain constraint qualification conditions.

Let n , m, and p be positive integers. Let X be a subset of Rn (usually a box-

constrained one), let f , gi(x), and hj(x) be real-valued functions on X for each i

in {1, ...,m} and each j in {1, ..., p}, with at least one of f , gi(x), and hj(x) being

nonlinear.

A nonlinear programming problem is an optimization problem of the form (1):

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

x ∈ X

(1)

With the domain D ⊆ Rn, the Lagrangian function Λ : Rn × Rm × Rp → R is

defined as:

Λ(x, u, ν) = f(x) +
m∑
i=1

uig(x) +
p∑

j=1

νjhj(x) (2)

θ(x, u, ν) = inf
x
{f(x) +

m∑
i=1

uig(x) +
p∑

j=1

νjhj(x)} (3)

and the dual-Lagrangian problem is:



Paper 6: Comparing linear model and efficient frontier for portfolio performance evaluation 87

max
u,ν

inf
x

f(x) +
m∑
i=1

uigi(x) +
p∑

j=1

νjhj(x)

s.t. u ≥ 0

(4)

where the objective function is the Lagrangian dual function. Provided the func-

tions f, g1, · · · , gm and h1, · · · , hp are continuously differentiable, the infimum oc-

curs where the gradient is equal to zero. The problem (5) is then the Wolfe dual

problem [24]. In mathematical optimization, Wolfe duality, named after Philip

Wolfe, is type of dual problem in which the objective function and constraints are

all differentiable functions. Using this concept a lower bound for a minimization

problem can be found because of the weak duality principle.

max
u,ν,x

f(x) +
m∑
i=1

uigi(x) +
p∑

j=1

νjhj(x)

s.t. ∇f(x) +
m∑
i=1

ui∇gi(x) +
p∑

j=1

νj∇hj(x) = 0

u ≥ 0

(5)

Theorem 2.1. (weak duality)

Let be a feasible solution to the primal, and (u, ν) be a feasible solution to the

dual. Then:

θ (u, ν) ≤ f (x) (6)

Theorem 2.2. (Complementary Slackness Theorem)

If x is feasible for model (1) and (u, ν) is feasible for model (5) and if is optimal

to model (1) and is optimal to model (5) then

uigi (x) = 0 i = 1, · · · ,m

2.2 Relationship between Morey and Morey and Markowitz models

In the realm of investment management, a profound understanding of efficient port-

folios and their efficiency frontier is crucial. These concepts, emphasized in various

investment models including the Morey and Markowitz models, enable us to tailor

our investment strategies based on two fundamental criteria: maximizing expected

returns for a specified level of risk, or minimizing risk for a given expected return.

An efficient portfolio is defined as one that either delivers the highest expected

return for a specified level of risk, or offers the lowest level of risk for a predetermined

expected return.

The efficient portfolio frontier represents the collection of optimal portfolios that

provide either the highest expected return for a specified level of risk or the lowest

risk for a given level of expected return.
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Markowitz [15] introduced the nonlinear model for evaluating portfolio in 1952,

as based on two indexes, one for mean and another for variance. Markowitz’s

essential work thus laid the basis for the frontier approach under the meanvariance

framework.

min
n∑

i=1

n∑
j=1

σij

s.t.
n∑

j=1

λjµj ≥ µExpected

n∑
j=1

λj = 1

λj ≥ 0

(7)

Figure 1: Portfolio Efficiency Frontier

Difference between the efficiency frontiers in the Markowitz model and DEA:

First, the efficient frontier in Markowitz model does not a weakly efficient frontier.

Second, in DEA, while all Decision Making Units (DMUs) are located below the

efficient frontier, but as shown in Figure 1, portfolio k is not located below the

efficient portfolio frontier. Third, no one individual stock may be on the efficient

frontier in the Markowitz model by definition. In fact, the efficient portfolio frontier

results from combining stocks with each other. In contrast, in DEA, at least one

stock is certainly efficient.

Suppose units {a, b, c, d, e, f, g, h, k} are stocks, given we know a portfolio is

a grouping of financial assets such as stocks. To evaluate the efficiency of any

portfolio, we have to calculate its distance to the efficient frontier, and many models

then evaluate the efficiency of the portfolio, including the nonlinear Morey and

Morey model. The input-orientated form of this model is as follows.
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min θ

s.t.
n∑

i=1

n∑
j=1

λiλjσij ≤ θσo

n∑
j=1

λjµj ≥ µExpected

n∑
j=1

λj = 1

λj ≥ 0

(8)

Models (7) and (8) have a global optimal given their convexity and the optimal

solution λ is the same in both models. Consequently, according to the second

constraint in model (8), the optimal value of the model (7) is equal to θ∗σo .

n∑
i=1

n∑
j=1

λ∗i λ
∗
jσij = θ⋇σo (9)

One of the challenges associated with nonlinear models is the considerable time

they demand for solving. As an alternative, the assessment of these units often

employs a linear DEA model known as BCC (Banker, Charnes, and Cooper). These

models gauge portfolio performance by measuring the distance from the piecewise

linear frontier. However, it’s problematic that this frontier typically lies below the

efficient portfolio frontier. Consequently, decision-makers might err in selecting

portfolios based on this type of evaluation. Although a portfolio may be deemed

efficient, it doesn’t necessarily compare as efficient against the efficient portfolio

frontier. Thus, there’s always another portfolio with potentially higher returns

and/or lower risk. As depicted in Figure 2, units {a, b, c, g, f}, positioned on the

efficient frontier, are indeed efficient, but not when juxtaposed with the efficient

portfolio frontier. This implies the perpetual possibility of an investment offering

lesser risk or greater returns. One approach to mitigate this disparity is to increase

the number of portfolios, as outlined by Liu et al. (2015) in the following theorem.

Theorem 2.3. Let r = h (σ) be the portfolio frontier without risk-free assets and

r⋇ = h⋇m (σ) be the BCC frontier with m portfolio samples. Then h⋇m (σ) converges

to h (σ) in probability when m→ ∞ .

To solve this problem, we present an input-orientated model that is firstly a linear

model, and secondly, one where the efficiency of each portfolio can be calculated

by comparing it to a portfolio on the actual efficient portfolio frontier.
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Figure 2: BCC frontier and efficiency portfolio frontier

3 Calculating portfolio efficiency relative to the efficient

portfolio frontier using the linear model

In this section, we present the steps for obtaining a linear model for calculating the

efficient portfolio.

The dual-Lagrangian model (7) is as follows:

max
k,f,h

inf
λ

n∑
i=1

n∑
j=1

λiλjσij − k

(
n∑

j=1

λjµj − µo

)
+ h

(
n∑

j=1

λj − 1

)
−

n∑
j=1

λjfj

s.t. k ≥ 0

f ≥ 0
(10)

Provided the functions, objectives and constraints are continuously differentiable,

the infimum occurs where the gradient is equal to zero.

max
k,f,h,λ

n∑
i=1

n∑
j=1

λiλjσij − k

(
n∑

j=1

λjµj − µo

)
+ h

(
n∑

j=1

λj − 1

)
−

n∑
j=1

λjfj

s.t.
n∑
i

λjσij − kµj + h− fj = 0 j = 1, . . . , p

k ≥ 0

f ≥ 0
(11)

According to Theorem 2.1, if λ∗ is the optimal solution 7 then:
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n∑
i=1

n∑
j=1

λiλjσij − k

(
n∑

j=1

λjµj − µo

)
+ h

(
n∑

j=1

λj − 1

)
−

n∑
j=1

λjfj ≤
n∑

i=1

n∑
j=1

λ∗i λ
∗
jσij

(12)

We also know that for convex optimization problems, the duality gap is zero

under a constraint qualification condition. Therefore, the optimal condition is that

the values applicable in the inequality (12) are feasible in the two models (primal

and dual).
n∑

i=1

λjσij − kµj + h− fj = 0 j = 1, . . . , p (13)

n∑
i=1

λi = 1 (14)

n∑
i=1

λiµi ≥ µo (15)

k ≥ 0 (16)

f ≥ 0 (17)

To change the inequality to an equality, we maximize the value on the left-hand side.

According to (15) and (16), we then have k

(
n∑

i=1

λiµi − µo

)
= 0 and we multiply

equation (13) in λj .

λj
n∑

i=1

λiσij − λjkµj + λjh− λjfj = 0 j = 1, . . . , p

Then

n∑
j=1

n∑
i=1

λiλjσij − k
n∑

j=1

λj
n∑

j=1

µj + h
n∑

j=1

λj −
n∑

j=1

λjfj = 0

n∑
j=1

n∑
i=1

λjλjσij = k
n∑

j=1

λj
n∑

j=1

µj − h
n∑

j=1

λj +
n∑

j=1

λjfj

With the help of equation (12) and the points mentioned above

k
n∑

j=1

λjµj − h ≤
n∑

j=1

n∑
i=1

λ∗i λ
∗
jσij
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and kλj = wj then

max φ

s.t.
n∑
i

λiσij − kµj + h− fj = 0 j = 1, . . . , p

n∑
i

λjµj − s = µo

n∑
i

wjµj − kµo = 0

n∑
i

wjµj − h = φσo∑
j

λj = 1∑
j

wj = k

k ≥ 0

f ≥ 0

λ ≥ 0

w ≥ 0

(18)

where (σoo, µo) is the portfolio under evaluation

In the following theorem, we prove φ∗ = θ∗.

Theorem 3.1. If φ∗ is the optimum value in model (18) and θ∗ is the optimum

value in model (8), then φ∗ = θ∗.

Proof. According to the fourth condition of model (18)
n∑
i

w∗
jµj − h∗ = φ∗σo then φ∗σo = k∗

n∑
j=1

λ∗jµj − h∗ =
n∑

j=1

n∑
i=1

λiλjσij and also

according to equation (9) then φ∗ = θ∗.

According to Theorem 3.1, φ∗ is efficiency.

Theorem 3.2. The benchmark for the portfolio of under evaluation is as follows(
n∑

j=1

n∑
i=1

λ∗i λ
∗
jσij ,

n∑
j=1

λjµj

)
= (φ∗σo, µo + s∗)

Proof. h∗ =
n∑
i

w∗
jµj − φ∗σo

and

n∑
i

λ∗jσij − k∗µi +
n∑
i

w∗
jµj − φ∗σo − f∗i = 0
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n∑
j=1

n∑
i=1

λ∗i λ
∗
jσij − φ∗σo −

n∑
i=1

f∗i λ
∗
i = 0

n∑
j=1

n∑
i=1

λ∗i λ
∗
jσij ≤ φ∗σo

According to the complementary slackness theorem

n∑
i=1

f∗i λ
∗
i = 0

n∑
j=1

n∑
i=1

λ∗i λ
∗
jσij = φ∗σo

And according to the second condition of model (18)

n∑
j=1

λ∗jµj − s∗ = µo →
n∑

j=1

λ∗jµj − s∗ = µo + s∗

4 Empirical application

In this section, we take as an example the Chinese stock market data in Zhou et al.

(2017) [26], with the following statistical properties.

E (e) = [1.0077 1.0057 1.0024 1.0070 1.0063]

cov(e) =


0.0081 0.0042 0.0034 0.0016 0.0007

0.0042 0.0150 0.0030 0.0014 0.0012

0.0034 0.0030 0.0086 0.0016 0.0012

0.0016 0.0014 0.0016 0.0047 0.0014

0.0007 0.0012 0.0012 0.0014 0.0043


If we evaluate these stocks using model (18), the result is in table 1:

Table 1: Valuation with model (18) and model (8)

Portfolio A B C D E

φ∗ 1 0.1637 0.2855 0.6482 0.5712

θ∗ 1 0.1637 0.2855 0.5769 0.5711

According to the figures in Table (1), only portfolio A is efficient and located on

the frontier.

If you multiply the value of the variance of D by the value of its return from

model (18) (benchmark variance), the result is σ2 = 0.0030 (σ = 0.0030) , but if
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Figure 3: Efficiency portfolio frontier

you multiply it by the return obtained from model (8), the result is σ2 = 0.0027

(σ2 = 0.052).This difference is small and may be due to software error.

One of the benefits of model (18) is that desired portfolios are produced from

existing stock

(
n∑

j=1

n∑
i=1

λ∗i λ
∗
jσij ,

n∑
j=1

λjµj

)
such that

∑
j

λj = 1, can be evaluated

using model (18) and compare its proximity to the efficient portfolio frontier with

the other portfolios.

Based on research, linear models generally run faster than nonlinear models

on large data processing and analysis and can help improve the performance and

efficiency of data analysis.

5 Conclusion

The model presented in this paper is a linear model used to evaluate the perfor-

mance of portfolio, which we transform into a linear model using the concept of the

dual Langrangian. In previous studies, DEA models like the BCC serve to evaluate

the performance of a portfolio using a linear model. However, these required a large

number of portfolios to ensure the convergence of the efficient frontier model to the

portfolio efficient frontier (Theorem (2.3))

To evaluate each portfolio with the model proposed it is not necessary to increase

the number of portfolios. In fact, this model can evaluate portfolio performance

with only the available assets, and this increases the speed of calculation. Nonethe-

less, one problem with this model is that we only evaluate portfolio performance

using an input orientation. Another is that it only considers the indexes of variance
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and mean.
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