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Abstract:
In recent years, precise analysis and prediction of financial time series data
have received significant attention. While advanced linear models provide
suitable predictions for short and medium-term periods, market studies
have indicated that stock behavior adheres to nonlinear patterns and linear
models capturing only a portion of the market’s stock behavior. Nonlinear
exponential autoregressive models have proven highly practical in solving
financial problems. This article introduces a new nonlinear model that
allocates coefficients to significant variables. To achieve this, existing expo-
nential autoregressive models are analyzed, tests are conducted to validate
data integrity and identify influential factors in data trends, and an ap-
propriate model is determined. Subsequently, a novel coefficient allocation
method for optimizing the nonlinear exponential Autoregressive model is
proposed. The article then proves the ergodicity of the new model and
determines its order using the Akaike Information Criterion (AIC). Model
parameters are estimated using the nonlinear least squares method. To
demonstrate the performance of the proposed model, numerical simula-
tions of Kayson Corporation’s stocks are analyzed using existing methods
and the new approach. The numerical simulation results confirm the ef-
fectiveness and prediction accuracy of the proposed method compared to
existing approaches.
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1 Introduction

In recent years, the analysis of financial time series has garnered significant atten-

tion, particularly in relation to the evaluation of assets over time (Taylor, 2011 [27]).

Both financial mathematics theory and empirical time series inherently involve el-

ements of uncertainty. Prediction is a crucial application of time series analysis,

making it vital to employ methods that enhance the accuracy of time series predic-

tions (Cuthbertson & Nitzsche, 2005 [8]). Experts in financial mathematics utilize

models from various sciences, including statistics, to optimize predictions for in-

terest rates, stock market pricing, and more. Some time series provide valuable

information, especially in financial markets, offering insights into stable long-term

trends. However, these series may exhibit non-normality, presenting challenges in

their analysis. Models can aid in extracting meaningful information from such data,

providing optimal models for meaningful interpretations (Mills, 1991 [15]). In the

realm of financial mathematics, autoregressive integrated moving average models,

autoregressive models, and stochastic volatility models have been extensively ex-

amined, with a focus on their predictive capabilities (Chatfield, 2003 [6]). In many

cases, time series data, particularly in financial markets, are subject to noise and

uncertainty. This noise can result from various factors, such as market fluctuations

and economic events, making the data analysis more complex. The organization

of data points in financial time series is often influenced by the independence of

observations, leading to increased complexity. Various types of data irregularities,

arising from outliers and missing values, further complicate the analysis of financial

time series. Recently, technological advancements and the adoption of innovative

prediction methods, such as nonlinear time series models, neural networks, and

fuzzy algorithms, have introduced new challenges to the field. Research indicates

that if the data generation process of a variable, whether linear or nonlinear, can

be determined, predicting that variable becomes more manageable with less error.

While advanced linear models provide suitable predictions for short and medium-

term periods, market studies have shown that stock behavior adheres to nonlinear

patterns, and linear models only capture a portion of the market’s stock behavior.

Researchers have extensively explored financial market predictions using various

time series models. Stock and Watson (1998) [25] compared and studied nonlinear

prediction models, demonstrating significant differences between linear and non-

linear models, with nonlinear models exhibiting superior performance. Ramsay

(2004) [24] employed stochastic differential equations for modeling financial time

series. Lamarche (2010) [13] compared multiple data panel models with single-

variable models and extended the use of multiple models. Farnoosh et al. (2016) [9]

utilized stochastic differential equations for simulating and predicting the time se-

ries of OPEC oil prices. Hjorth (2017) [11] investigated prediction for multiple time

series models. Many events in the world are part of random processes. Random pro-

cesses can be controlled or predicted using autoregressive and moving average time
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series models or a combination of the two, known as autoregressive moving average

(ARMA) models (Box, Jenkins, & Reinsel, 2015 [4]). Raei, et al. (2020 [23]), con-

sidering non-uniformity and variance in the Iranian market, optimized investment

portfolios. Rahimpour and colleagues (2020) performed modeling and prediction of

gold and dollar prices using simulation-based robust estimation. Mohammadi and

Nabati (2021) [16] addressed financial market modeling using the combination of a

return-to-mean time series with Levy noise. Yazdani, et al. (2022) [33] identified

optimal turning points in financial time series using graph-based methods. They

introduced a new method by searching for the longest path in the graph structure

to identify optimal turning points. Nabati and Hajrajabi (2022) [17] introduced a

three factor mean reverting model for financial markets with stochastic drift term

innovation.

Among financial time series, nonlinear autoregressive models have considerable

flexibility. However, some processes exhibit nonlinear behavior. The study of non-

linear models began in the 1970s, covering a wide range of models. The exponential

autoregressive (ExpAR) model is a highly practical nonlinear model first introduced

by Ozaki and Oda (1977) [18]. Various studies demonstrate the application of non-

linear time series models in financial contexts, such as the research by Merzougui

et al. (2016) [14] which examines periodicity tests in restrictive ExpAR models and

their use in financial data analysis. The work by Chen et al. (2018) [7] on gen-

eralized exponential autoregressive models highlights the flexibility and capability

of these models in handling nonlinear time series data. This includes discussions

on the stationarity, estimation methods, and practical applications in finance. Re-

search by Xu et al. (2021) [32] covers the modeling a nonlinear process using

the exponential autoregressive time series model. Pan et al. (2023) [21] studied

the gradient based parameter estimation for nonlinear ExpAR time series model

using the multi-innovation. These sources collectively provide a thorough under-

standing of the methodologies, applications, and advancements in using nonlinear

exponential autoregressive models for financial time series prediction. They offer

valuable perspectives on the strengths and limitations of these models in capturing

the nonlinear characteristics of financial data.

The basis of this article is the investigation of nonlinear behaviors of exponen-

tial autoregressive models, introducing a new nonlinear autoregressive model with

a coefficient allocation method that enhances the prediction accuracy of time se-

ries. The article is organized as follows: the second section presents the research

background, including a review of the EGARCH model. The third section focuses

on data analysis, conducting tests to identify data validity and influential factors

for data trends to determine a suitable model. The fourth section introduces the

mathematical modeling, including the presentation of the new coefficient alloca-

tion method for nonlinear autoregressive time series. The fifth section involves the

simulation of real data from Kayson Corporation using existing models and the

proposed new model. Simulation results confirm the accuracy of the new method
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for prediction. The conclusion and suggestions for future work are provided in the

final section.

2 Research Preliminaries

One of the indicators of a country’s development on the international stage is the

existence of an active and dynamic capital market. The capital market is considered

a crucial economic platform for investment and financial support for companies

and economic enterprises in most developed countries (Raei, Bajalan, & Ajam,

2021 [22]). Time series analysis is one of the advanced methods for data analysis. By

analyzing data over time, one can study the quantitative behavior of observations

and devise suitable patterns for data behavior or attempt to classify them. It is

evident that recognizing a repetitive structure, a sequence, or a distribution shape

of data will assist in a more accurate diagnosis of the model (Tabatabaei, Pakgohar,

2020 [26]). Below are some of the characteristics of these models that are further

examined:

Definition 2.1. The nonlinear exponential autoregressive model of order p for a time

series {x1, x2, . . . , xN} is defined as follows:

xt =
{
c1 + π1e

−γx2
t−1

}
xt−1 + . . . +

{
cp + πpe

−γx2
t−1

}
xt−p + εt, (1)

where εt is a random variable with identical independent distributions and also

independent with xi and the parameters ci, πi, γ should be predicted through

observations (Haggan and Ozaki, 1981 [10]).

Model number (1) is the simplest exponential autoregressive model. Ozaki (1981)

introduced another model as follows:

xt =

p∑
i=1

ci +
π(i)

0 +

ki∑
j=1

π
(i)
j xjt−1

 e−γ.x2
t−1

xt−i + εt (2)

where the parameters π
(i)
0 , ci, γ should be predicted. r

Tang (1990) also proposed a model of exponential autoregression that had many

applications in the field of financial mathematics as follows:

xt =
(
c0 + π0e

−γ(xt−d−z)
2
)
+

p∑
j=1

{
cj + πje

−γ(xt−d−z)
2
}
xt−j + εt. (3)

Another appropriate model has been proposed by Teräsvirta (1994) which is as

follows.

xt =
(
c0 + π0e

−γ(xt−d−z)
2
)
+

p∑
j=1

{
cj + πje

−γ(Xt−d−z)
2
}
xt−j + εt, (4)
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where z and d are scalar parameters and an integer respectively. Proper prediction

of the parameters in the exponential autoregressive model is a significant optimiza-

tion problem. Haggan and Ozaki (1981) [10] addressed these nonlinear problems

by transforming them into linear least squares problems through the substitution

of the γ parameters in the equations. This approach was effective when there was

only one nonlinear parameter in the exponential autoregressive model. However, in

the model we are introducing, there will be multiple nonlinear parameters. Careful

examination of the equations in the exponential autoregressive model reveals that

this model is a linear combination of several nonlinear functions.

2.1 Ergodicity of the model

Considering the exponential autoregressive models, let us first introduce the vari-

ables we need:

Xt = (xt, . . . , xt−p+1)
T

ωt = (εt, 0, . . . , 0)
T

C0 = (c0, 0, 0, . . . , 0)
T

A (X) =


φ1(X) φ2(X) . . . φp−1(X) φp(X)

1 000
...

0

...

0

. . .

. . .

...

1

...

0


Exponential autoregressive models can be written as follows:

xt = c0 +

p∑
i=1

φi (Xt−1) .xt−1 + εt. (5)

Or in matrix form we have

Xt = C0 +A (Xt−1) .Xt−1 + ωt (6)

It is necessary to prove the ergodicity of relation (6) for the exponential autoregres-

sive model to be ergodic, we can rewrite equation (5) as follows:

xt = f (xt−1, . . . , xt−p) + εt. (7)

Or in matrix form we have

Xt = g (Xt−1) + ωt, (8)

Where g (Xt) = (f (Xt−1) , xt−1, . . . , xt−p+1)
T .
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In this article, we first propose the following exponential autoregressive model,

and we discuss the conditions of ergodicity on it. Then we introduce the model

with the allocation of coefficients.

xt =

p∑
i=1

(
ci + πie

−γx2
t−1

)
xt−i + εt (9)

The following relation is a generalized model (9):

xt = c0 +

p∑
i=1

(
ci + πie

−γ(xt−d−z)
2
)
xt−i + εt (10)

We will examine the conditions of the model being ergodic.

2.2 Investigating Model Conditions

Lemma 2.2. If we assume that the model function (7) is a measurable and bounded

function, and the noise function εt has an almost everywhere positive density and

E(εt) = 0, then both models (7) and (8) are ergodic. If

lim
∥θ∥→∞

∣∣f (θ)− ρT (θ)
∣∣

∥θ∥
= 0, (11)

where ∥.∥ is the Euclidean norm and ρ = (α1, . . . , αp)
T has the following conditions:

zp − α1z
p−1 − . . . − αp ̸=0, (12)

For all |z| ≥1.

If we assume that the model function (7) is bounded, and the density function

ωt is almost everywhere positive, then {Xt} in (8) is non-oscillatory, and µ is an

irreversible measure on the normal topological space.

Theorem 2.3. If {Xt} is an irreversible measure on the normal topological space

and has continuous probability, then there exist sufficient conditions for ergodicity

such that a compact set k and a constant 0 < τ < 1 exist such that

E(∥Xt+1∥ |Xt = θ ) <

{
∞ θ∈k
τ ∥θ∥ θ/∈k

(13)

If {Xt} is a non-periodic matrix and if h is a positive integer such that {Xht} is

ergodic, then the series {Xt} is ergodic (Chan and Tong, 1985).

With the stated conditions, ergodicity of exponential autoregressive models can

be concluded as follows:

Firstly, it is evident that |∅i(Xt−1)| ≤ |ci| |πi| for i=1, 2, , p considering that

∅i = |ci| + |πi|. This means that if we assume εt has a density function in the
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exponential autoregressive model on R that is positive everywhere, and if all the

roots of the equation below are inside the unit circle, then in this case, the model

(10) is an ergodic time series:

zp − ∅1zp−1 − . . . ∅p = 0

Based on this, let’s assume that the density function εt in the model on the line

R is positive everywhere, if all the roots are characteristic function inside the unit

circle, then the model (10) is ergodic (Tjostheim, 1990 [29]).

Also, with the proposition that we assume that the density function εt in model

(10) is positive everywhere on the R line, if all the roots of the characteristic function

zp−c1zp−1−. . . cp = 0 are inside the unit root circle, then the model (9) is ergodic.

2.3 Implementation method on the nonlinear model

In this article, to obtain the coefficients, we need a nonlinear method. Nonlin-

ear least squares, considering the selection of parameters β, minimizes the sum of

squared residuals. For this purpose, the following nonlinear model is considered:

y = f (x;β) + ε(β) (14)

Here, y represents the observed values, x is a vector of predictors, β is the vector

of parameters to be estimated, and ε(β) is the error term. The goal is to find the

values of β that minimize the sum of squared differences between the observed and

predicted values. This is typically done using optimization techniques.

Let us assume T is the number of observations, we can rewrite equation 14 as

follows:

y =


y1

y2
...

yT

 , f (x1, · · ·, xT ;β) =


f (x1;β)

f (x2;β)
...

f (xT ;β)


y = f (x1, · · ·, xT ;β) + ε(β) (15)

2.4 Prediction and Implementation on the Model

The objective of this section is to find the best k-dimensional level (yt, xt) consid-

ering t = 1,2,,N. The method involves minimizing a function over the data values.

We consider the function (2.13)

QN (β) =
1

N
(y − f (x1, · · ·, xN ;β))

T
[y − f (x1, · · ·, xN ;β)]

=
1

N

k∑
N=1

[yN − f (xt;β)]
2, (16)
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Where ∇βQN (β) is the gradiant function of QN (β) .

To optimize the problem, we have a relationship with k number of unknown

parameters and k nonlinear equation (14).

∇βQT (β) =
−2

T
∇βf (x1, · · ·, xT ;β) [y − f (x1, · · ·, xT ;β)]≜0, (17)

where

∇βf (x1, · · ·, xT ;β) =
[
∇βf (x1;β) ∇βf (x2;β) · · · ∇βf (xT ;β)

]
. (18)

These parameters have associated errors, and the objective is to minimize this value.

In this regard, we proceed with the iterative solution of this problem, considering

the first-order solution method. To continue this process, we define the second order

as ∇2
βQT

(
β
)

and by repeating this procedure, we will have an optimal solution

for the parameters for nonlinear data fitting. It is noteworthy that the optimal

solution may not be unique, and local optimal solutions for error minimization are

possible, which is of importance.

3 Mathematical modeling

In this section, a method for parameter optimization and increasing prediction

accuracy on the nonlinear exponential autoregressive model is introduced. It is

worth noting that this method is effective for time series models and is a general

approach for optimization in the time series domain, applicable to various time

series models. In this article, we specifically focus on the examination of the model

(10).

Consider the following model:

xt = c0 +

p∑
i=1

(
ci + πie

−γi(xt−i−zi)
2
)
xt−i + εt. (19)

At first, we prove its ergodicity, then we compare its results with previous models.

3.1 Examining the ergodicity of the introduced model

Theorem 3.1. Assume that the density function εt in model (19) is positive every-

where on the line R. If all the roots are characteristic functions zp−c1zp−1−. . . cp =

0 inside the unit circle, then this model is ergodic.

Proof: Consider fi (xt−i) = ∅i and ρ = (α1, . . . , αp)
T . According to the state-

ments of ergodicity of models (9) and (10), we have:



Paper 11: Improving the accuracy of financial time series prediction 167

lim
∥X∥→∞

∣∣f (X)− ρT (X)
∣∣

∥X∥

= lim
∥X∥→∞

∣∣∣c0 +∑p
i=1

(
ci + πie

−γi(xi−ci)
2
)
xi − ρT (X)

∣∣∣
∥X∥

≤ lim
∥X∥→∞

|C0|
∥X∥

+ lim
∥X∥→∞

∣∣∣∑p
i=1

(
ci + πie

−γi(xi−ci)
2
)
xi

∣∣∣
∥X∥

(20)

Since γi is greater than zero we conclude that:

lim
∥X∥→∞

∣∣∣∑p
i=1

(
ci + πie

−γi(xi−ci)
2
)
xi

∣∣∣
∥X∥

= 0

Therefore, according to the definition of α, we can easily conclude the condition

(12), so the ergodicity of the model (19) is proved by knowing the ergodicity of the

model (10) and the relation (20).

3.2 Model Order Determination

There are various methods available for determining the order of the model, such

as Akaike’s Information Criterion (AIC), Bayesian Criterion, and many more. For

numerical examples and simulations, we choose the AIC method.

AIC (p) = (N −m) log
(
δ̂2p

)
+ 2 (2p+ 1) , (21)

where p is the optimal order, and N is the total number of observations. There are

2p+1 estimated parameters, and δ̂2p is the residual variance with the model used

by predicting the least squares estimation.

3.3 Step by step explanation of the novel coefficient Allocation method

Below is a detailed step-by-step explanation of this method.

(i) Problem Definition: Clearly define the problem that requires coefficient al-

location. Identify the variables, constraints, and objectives involved in the

allocation process.

(ii) Data Collection and Preprocessing: Gather all necessary data that will influ-

ence the allocation of coefficients. This data might include historical data,

statistical measures, or domain-specific metrics.

(iii) Initial Coefficient Assignment: Assign initial coefficients to the variables

based on predefined rules. These initial coefficients serve as a starting point

for further optimization.
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(iv) Objective Function Formulation: Develop an objective function that quan-

tifies the goal of the coefficient allocation. This function should reflect the

criteria for an optimal allocation, such as minimizing error, maximizing effi-

ciency, or balancing trade-offs.

(v) Constraint Definition: Define the constraints that must be adhered to during

the coefficient allocation. Constraints can be equality constraints, inequality

constraints, or boundary conditions that the coefficients must satisfy.

(vi) Optimization Algorithm Selection: Choose an appropriate optimization algo-

rithm to solve the coefficient allocation problem.

(vii) Iterative Optimization: Run the optimization algorithm iteratively to adjust

the coefficients. During each iteration, evaluate the objective function and

constraints to guide the adjustments. Monitor convergence criteria to deter-

mine when the optimal or satisfactory coefficients have been reached.

(viii) Validation and Testing: Validate the allocated coefficients by applying them

to a test dataset or real-world scenario. Assess the performance against pre-

defined metrics or benchmarks. Make necessary adjustments if the validation

results indicate suboptimal performance.

(ix) Final Allocation: Once validated, finalize the coefficients and document the

allocation method, including the rationale for each step and the results ob-

tained. Implement the coefficients in the relevant application or system.

(x) Review and Improvement: Periodically review the coefficient allocation method

and its performance. Gather feedback and conduct further analysis to refine

the method over time. Incorporate new data and insights to continuously

improve the allocation process.

4 Finding results

The company Kayson was established in 1975 and is listed on the Tehran

Stock Exchange with the symbol KSON. The company is engaged in engineer-

ing, procurement, construction, and project management activities. Kayson

has consistently reported actual profits, achieving 53% in 2018 and 63% in

2017. In 2016, the company was recognized among the top 100 global con-

tractors. In this section, a simulation of the model is considered for Kayson’s

stock prices. The closing prices of Kayson from September 18, 2018, to April

25, 2019, were obtained from the Tehran Stock Exchange Technology Man-

agement Company. The company had 135 trading days during this period.

The prices of the company are plotted in Figure 1. With knowledge of the data

and conducting tests on the data, a nonlinear model is applied. Initially, the
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data is estimated with models (9) and (10), then data analysis is performed

with the proposed model, i.e., model (19), and error values are compared.

Figure 2 represents the estimation of model (9), Figure 3 shows the estimation

of model (10), and Figure 4 presents the simulation of Kayson’s data with the

introduced model (19). It’s worth noting that all simulations were performed

using EViews software.

Considering the trend of the autocorrelation function and the delay of one in

the partial autocorrelation function, it is possible to choose a suitable model

for these data using the first-order Box Jenkins autoregressive method. Figure

2 shows the forecast of the company’s stock using the first-order autoregres-

sive model. Using Dickie Fuller’s developed tests, he noticed the existence of

instability in the data, so the logarithm of the data price difference is investi-

gated. In model selection, ARMA (3,1) model is selected through information

criteria using Akaike’s criterion.

By knowing the data and performing tests on the data, the implementation

of the model is used in non-linear mode. First, by using the data, the pa-

rameters of models (9) and (10) and the new model (19) are estimated, then

the simulation of the models with the estimated parameters is done. Figures

3 and 4 show the simulated graphs of data using models (9) and (10). The

simulation of the data of Caisson company with the introduced model (19) is

presented in Figure 5. It should be noted that all the simulations were done

in EViews software.

Figure 1: Chart of the stock price of Kayson Company

Figure 2: Simulation of the stock price of Kayson company using the first order
autoregressive model
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Figure 3: Simulation of Kayson company shares with model 9 (exponential autore-
gression of the 3rd order

Figure 4: Simulation of Kayson company shares with model (10) (exponential
autoregression of the 3rd order)

Figure 5: Simulation of the shares of Kayson company with the new model (expo-
nential autoregression of the 3rd order)

5 Model Comparison

Figures 6 and 7 show the prediction of data using models (9) and (10) in the 3rd

order exponential autoregressive form. Figure 8 shows the prediction of data using

the newly introduced model with the help of assigning coefficients. By comparing

the error values of all three models in the guide tables of forecasting figures, we find

that the lowest error value is for the model with the allocation of coefficients, i.e.

model (19). In comparing the error values of the estimated models, the presented

model is more accurate. As can be seen, the model presented in this article is closer

to the real values than other models. Then, model (10) and model (9) have less
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Figure 6: Data prediction with model (9)

Figure 7: Data prediction with model (10)

Figure 8: Data prediction with the new model

errors in prediction

6 Conclusion and Recommendations

Time series models represent a robust research domain for estimation and predic-

tion in financial markets, encompassing various linear and nonlinear models. Au-

toregressive and exponential autoregressive models are among the types, and their

performance can be enhanced by adapting them to changes. In this article, by

allocating coefficients to significant variables, we were able to increase prediction

accuracy. Furthermore, through applying the model to Kayson company data, we

conducted simulations and observed an improvement in prediction accuracy and a
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reduction in errors compared to previous models. Future work in this article could

involve exploring well-known nonlinear functions as coefficients for other significant

variables in different models. Additionally, predicting data using the new method

introduced in this article, combining artificial intelligence networks, is among the

future objectives of this research.
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