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Abstract:
Abstract:
Option pricing is a fundamental issue in financial markets, and barrier options
are a popular type of options that can become valuable or worthless when the
underlying asset price reaches a predetermined level. A double barrier option
consist two barriers, one situated above and the other below the prevailing stock
price. This particular option is categorized as path dependent because the re-
turn for the holder is influenced by the stock price’s breach of the two barriers.
The double barrier option contract stipulates three specific payoffs, depending on
whether the up-barrier or down-barrier is touched, or if there is no breach of ei-
ther barrier during the entire duration of the option. In this paper, pricing of
the double barrier options when the underlying asset price follows the exponential
Ornstein-Uhlenbeck model is investigated, and also pricing formulas for different
types of double barrier options (knock-in and knock-out) are derived by α-paths
of uncertain differential equations in the uncertain environment.
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1 Introduction

In the financial markets, options are a remarkable instrument, and their pricing

is one of the main subjects in mathematical finance. On the other hand, barrier

options and vanilla options are similar, except that the option is knocked in or

out when the underlying asset price touches the barrier price before maturity time.

Since 1967, barrier options have been traded in the over-the-counter (OTC) market,

and nowadays are the most favorite type of exotic options.

Previous techniques in pricing options have been extensively utilized based on the

Black-Scholes model [1] and Merton’s [18] option pricing theory, in which stochastic
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differential equations (SDEs) were used to model the price process for underlying

assets. Merton [18] initially introduced the concept of pricing rational options and

subsequently developed to down and out options, then Rich [22] based the pric-

ing of barrier options. After that, researchers have focused on exploring diverse

methodologies for valuing such options. For example, Nouri, Abbasi et al. [19], [20]

presented an improved Monte Carlo algorithm for pricing different kinds of barrier

and double barrier options and [17] applied Lie-algebraic method for finding the

value of moving barrier options, and [9] studied the valuation of American dou-

ble barrier options analytically. [6] studied double barrier option pricing using a

regime switching exponential mean reverting process. In 2013, Liu [16] has been

suggested that employing stochastic differential equations to characterize the stock

price process is inappropriate and leads to a compelling paradox. The empirical

phenomena can show this viewpoint by that the peak of distribution of underlying

assets is higher than the peak of normal probability distribution and the tails of

that is heavier.

However, many empirical studies have indicated that the price of underlying assets

does not adhere to the principles of probability and randomness. Instead, financial

markets are affected by both randomness and human uncertainty. The degree of in-

vestor belief plays a significant role in this, as investors tend to base their decisions

on beliefs rather than probabilities. Kahneman [10] indicated that the degrees of

beliefs exhibit a wider range of variance compared to frequency.

In 2004, Cont and Tankov [5] used jump-diffusion models as an uncertain source and

showed that these models have rich structures for asset pricing. In 2007, Liu [11]

within the uncertain measure framework, developed a theory of uncertainty to

improve the modeling of uncertain phenomena that dealing with the degree of be-

lief. In 2008, he introduced an uncertain process [12]. Based on it, researchers

in [4], [15], [25], and [26] developed methods for solving uncertain differential equa-

tions (UDEs). Also, the existence and uniqueness theorem of the solution for UDEs

have been demonstrated by Chen and Liu [4]. Moreover, Liu [13] proved the stabil-

ity of UDEs. Liu [13], several formulas have been derived for option pricing based

on the uncertain stock models, in 2009. After that, Pang and Yao [21], Yu [28],

Chen [3], Yao [27], and Ji and Zhou [7] attended seriously to uncertain stock pric-

ing models. Besides, Chen [2] introduced a formula for American option pricing in

2011. In 2020, Jia and Chen [8] have presented several interesting findings about

the pricing formulas of knock-in barrier options based on an uncertain stock pricing

model which has a floating interest rate. In 2020, Rong et al. [23] investigate pricing

formulas for American barrier option, and Yang et al. [24] Study approaches for

determining the pricing of Asian barrier options in an uncertain environment.

In what follows, some necessary preliminaries are discussed in Section 2. Then, for

as much as uncertain space is more accorded to real decision problems, the expo-

nential Ornstein-Uhlenbeck model for stock pricing in uncertain space, is presented

in Section 3. Section 4 proves pricing formulas for double barrier (knock-in and
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knock-out) options for an uncertain stock model. The paper then concluded with

a summary in Section 5.

2 Preliminaries

Suppose L be a σ-algebra on a non-empty set Γ(universal set). If M is a set

function M : L → [0, 1] and it satisfies the following axioms:

1: (Normality axiom) M(Γ) = 1 ;

2: (Subadditivity axiom) For each sequence of events {Θj} that can be counted,

we have

M(

∞∪
j=1

Θj) ≤
∞∑
j=1

M(Θj)

3: (Duality axiom) M(Θ) +M(Θc) = 1 for every event Θ;

Then, (Γ, L) is a measurable space, and the triplet (Γ, L,M) is an uncertain space.

4: (Monotonicity axiom) M(Θ1) ≤ M(Θ2) every where Θ1 ⊆ Θ2 ;

Definition 2.1. [13]. The set function M, which satisfies the above axioms is

called an uncertain measure.

5: (Product Axiom) [13]. Let the triple (Γk, Lk,Mk), where Γ = Γ1×Γ2× ...Γk

and L = L1 × L2 × ...Lk be uncertainty spaces for k = 1, 2, ..., n, the product

uncertain measure M is an uncertain measure on the σ -algebra satisfying

M(

∞∏
k=1

Θk) ≤
∞∧
k=1

Mk(Θk)

where Θk, for k = 1, 2, ..., n are arbitrary chosen events from Lk, respectively.

Definition 2.2. [14]. The uncertainty distribution for an uncertain variable such

as η is defined by function Ψ : R → [0, 1] that Ψ(x) = M{η ≤ x}.

Definition 2.3. Following uncertainty distribution is called normal

Ψ(x) =
(
1 + exp

(
π(e− x)√

3σ

))−1

, x ∈ R, (1)

If η be an uncertain variable, in this case σ > 0 and e are real numbers and it is

shown by N (e, σ). The normal uncertaintly distribution can be called standard, if

e be equal to 0 and σ be equal to 1.

The inverse uncertaintly distribution of η denoted by Ψ−1(α), α ∈ (0, 1) and the

expected value of an uncertain variable η is defined as

E[η] =

∫ 1

0

Ψ−1(α)dα, (2)
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Definition 2.4. [12] following UDE (uncertain differential equation)

dXt = h(t,Xt)dt+ k(t,Xt)dCt, (3)

has an α-path Xα
t (0 < α < 1), if it solves the bellow corresponding ODE

dXα
t = h(t,Xα

t )dt+ |k(t,Xα
t )|Ψ−1(α)dt, (4)

where Ψ−1(α) is the inverse standard normal uncertainty distribution, i.e.,

Ψ−1(α) =

√
3

π
ln

α

1− α
, (5)

Definition 2.5. [13] Liu process is an uncertain process Ct which have bellow

properties:

• C0 = 0,

• Ct has independent and stationary increments,

• almost all sample paths are Lipschitz continuous,

• all increments Cs+t −Cs are normal uncertain variables with expected value

0 and variance t2.

Theorem 2.6. [25] Let Xt be the solution of the UDE eq.(12) and Xα
t be the

solution and α-path of ODE eq.(4). Then

M{Xt ≤ Xα
t , ∀t ∈ [0, T ]} = α,

M{Xt > Xα
t , ∀t ∈ [0, T ]} = 1− α,

Theorem 2.7. [27] Assume that η1, η2, ..., ηm, ..., ηn are independent uncertain

variables and Ψ1,Ψ2, ...,Ψm, ...,Ψn be regular uncertainty distributions of these vari-

ables, respectively. if the function f(x1, x2, ..., xm, xm+1, ..., xn) is strictly increasing

function with respect to x1, x2, ..., xm and strictly decreasing function with respect to

xm+1, xm+2..., xn, then the uncertain process η = f(η1, ..., ηm, ..., ηn) has an inverse

uncertainty distribution

Ψ−1(α) = f(Ψ−1
1 (α), ...,Ψ−1

m (α), ...,Ψ−1
m+1(1− α), ...,Ψ−1

n (1− α))

where Ψ−1(α) = Xα
t (α− path of Xt)

3 Uncertain stock model for barrier option pricing

Assum that the stock price St follows the exponential Ornstein-Uhlenbeck model:{
dSt = µ(1− λlnSt)Stdt+ σStdCt

dPt = rPtdt
(6)
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where Pt is the bond price, λ > 0 is constant, positive constants r, µ, σ are the

risk-less interest rate, log-drift and log-diffusion respectively, and Ct represents a

Liu process.

Theorem 3.1. Assume that the stock price follows

dSt = µ(1− λlnSt)Stdt+ σStdCt. (7)

where St is the stock price at the moment t. Then we obtain an α-path for St as

Sα
t = exp[exp(−µλt)lnS0 + (1− exp(−µλt))(

1

λ
+

σ
√
3

µλπ
ln

α

1− α
)] (8)

Proof. According to Definition[2.4], we have

dSα
t = µ(1− λlnSα

t )S
α
t dt+ σSα

t

√
3

π
ln

α

1− α
dt

so
dSα

t

Sα
t

= µ(1− λlnSα
t )dt+ σ

√
3

π
ln

α

1− α
dt

and

dlnSα
t = (µ+

σ
√
3

π
ln

α

1− α
)dt− µλlnSα

t dt

By solving the above differential equation we have

lnSα
t = (

µ+ σ
√
3

π ln α
1−α

µλ
)(1− exp(−µλt)) + exp(−µλt)lnS0

Then, the α-path for St as

Sα
t = S

exp(−µλt)
0 exp[(1− exp(−µλt))(

1

λ
+

σ
√
3

µλπ
ln

α

1− α
)]

= exp[exp(−µλt)lnS0 + (1− exp(−µλt))(
1

λ
+

σ
√
3

µλπ
ln

α

1− α
)]

4 double barrier options

In double barrier options, one barrier is above the current stock price and the other

is below it. Since the payoff of the option depends on the behavior of the stock price

process due to these two obstacles, it is considered as path-dependent option. The

payoff of the double barrier options during the life of the option finds three different

types, depending on whether it hits the upper barrier or lower barrier or no touched

the barrier level. If the payoff of the option decreases after hitting the barrier, the

barrier is called worthless (the amount of decrease may be time-dependent), and
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if the payoff increases, the barrier is called valuable. One of the characteristics of

the barrier is that it may be used throughout the life of the option or a part of the

life of the option. In this section, we have presented the formula for pricing double

barrier options, which asset price follows Eq [10].

4.1 knock-in options

One kind of barrier option is a knock-in option which contract that only comes in

existence when the underlying asset crosses a certain price level. This means that

traders can buy or sell this type of option only at the moment, and after that, the

price reaches a particular prespecified level. If the knock-in price level has touched

at any time before the maturity date of the options contract, the payoff of the

option is converted into a vanilla option, and the knock-in barrier option expires

worthless. In this section, we have presented the formula for pricing European

knock-in options, in which asset price follows Eq [10].

Pricing formula for double knock-in call option

Consider a double barrier option which the lower barrier level is BL, the upper

barrier level is BU , the exercise price is K, and the expiration time is T . If before

the maturity T , the underlying asset price St hits the lower or upper barrier level

and exceeds them, then this call option will become into existence, and its payoff

will be max(St −K, 0) on the maturity date. Now we assign η+ = max(η, 0) and

apply an indicator function

IB(η) =

{
1, St < BL or St > BU

0, BL < η < BU

Hence, the payoff on the maturity time is written as;

payoff = (ST −K)+(IB(St)) (9)

By taking into account the discount rate on the initial date, the discounted expec-

tation of payoff is

Bdki = e−rT (ST −K)+(IB(St)) (10)

and a price of this kind of double barrier options is

f c
dki = E[Bdki] = E[e−rT (ST −K)+(IB(St))] (11)

Theorem 4.1. Consider a double knock-in call option for stock pricing model that

underlying uncertain Eq. [10] has a lower barrier level BL, upper barrier level BU ,
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exercise price K, and the expiration time T . Then the price of this option is defined

by

f c
dki = e−rT [

∫ θ0

0

(Sα
T −K)+dα+

∫ 1

θ1

(Sα
T −K)+dα] (12)

where

θ0 = (1 + exp[
µπ

σ
√
3
(
λ(exp(−µλt)lnS0 − ln(BL))

1− exp(−µλt)
+ 1)])−1 (13)

and

θ1 = (1 + exp[
µπ

σ
√
3
(
λ(exp(−µλt)lnS0 − ln(BU ))

1− exp(−µλt)
+ 1)])−1 (14)

and

Sα
t = exp[exp(−µλt)lnS0 + (1− exp(−µλt))(

1

λ
+

σ
√
3

µλπ
ln

α

1− α
)] (15)

Proof. Note that

IB(S
α
t ) = 1 (16)

if and only if

Sα
t < BL or Sα

t > BU (17)

In addition

exp[exp(−µλt)lnS0 + (1− exp(−µλt))(
1

λ
+

σ
√
3

µλπ
ln

α

1− α
)] < BL

⇒exp(−µλt)lnS0 + (1− exp(−µλt))(
1

λ
+

σ
√
3

µλπ
ln

α

1− α
) < ln(BL)

⇒ µπ

σ
√
3
[
λ(exp(−µλt)lnS0 − ln(BL))

1− exp(−µλt)
+ 1] < ln

1− α

α

By taking

M =
µπ

σ
√
3
[
λ(exp(−µλt)lnS0 − ln(BL))

1− exp(−µλt)
+ 1] (18)

we have

eM <
1− α

α
(19)

then

α <
1

1 + eM
= θ0 (20)

On the other hand

exp[exp(−µλt)lnS0 + (1− exp(−µλt))(
1

λ
+

σ
√
3

µλπ
ln

α

1− α
)] > BU

⇒exp(−µλt)lnS0 + (1− exp(−µλt))(
1

λ
+

σ
√
3

µλπ
ln

α

1− α
) > ln(BU )

⇒ µπ

σ
√
3
[
λ(exp(−µλt)lnS0 − ln(BL))

1− exp(−µλt)
+ 1] > ln

1− α

α
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By taking

N =
µπ

σ
√
3
[
λ(exp(−µλt)lnS0 − ln(BU ))

1− exp(−µλt)
+ 1] (21)

we have

eN >
1− α

α
(22)

then

α >
1

1 + eN
= θ1 (23)

Example 4.2. Assume the initial stock price S0 = 4, risk-less interest rate r = 0.03,

lower barrier level BL = 2, upper barrier level BU = 6, strike price K = 8, time to

maturity T = 20, log-diffusion σ = 0.05, log-drift µ = 0.01 and parameter λ = 0.6.

Then the price of double knock-in call option is 1.1532.

100 200 300 400 500 600 700 800 900 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14
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number of steps
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tin
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e

Figure 1: The barrier option price fc
dki with respect to different step N in Example 4.2.

Pricing formula for double knock-in put option

Consider a double barrier option which the lower barrier level is BL, the upper

barrier level is BU , the exercise price is K, and the expiration time is T . If before

the maturity T , the underlying asset price St hits the lower or upper barrier level
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and exceeds them, then this call option will become into existence, and its payoff

will be max(K − St, 0) on the maturity date. Now we assign η+ = max(η, 0) and

apply an indicator function

IB(η) =

{
1, St < BL or St > BU

0, BL < η < BU

Hence, the payoff on the maturity time is written as;

payoff = (K − ST )
+(IB(St)) (24)

By taking into account the discount rate on the initial date, the discounted expec-

tation of payoff is

Bdki = e−rT (K − ST )
+(IB(St)) (25)

and a price of this kind of double barrier options is

fp
dki = E[Bdki] = E[e−rT (K − ST )

+(IB(St))] (26)

Theorem 4.3. Consider a double knock-in put option for stock pricing model that

underlying uncertain Eq. [10] has a lower barrier level BL, upper barrier level BU ,

exercise price K, and the expiration time T . Then the price of this option is defined

by

fp
dki = e−rT [

∫ θ0

0

(K − Sα
T )

+dα+

∫ 1

θ1

(K − Sα
T )

+dα] (27)

where

θ0 = (1 + exp[
µπ

σ
√
3
(
λ(exp(−µλt)lnS0 − ln(BL))

1− exp(−µλt)
+ 1)])−1 (28)

and

θ1 = (1 + exp[
µπ

σ
√
3
(
λ(exp(−µλt)lnS0 − ln(BU ))

1− exp(−µλt)
+ 1)])−1 (29)

and

Sα
t = exp[exp(−µλt)lnS0 + (1− exp(−µλt))(

1

λ
+

σ
√
3

µλπ
ln

α

1− α
)] (30)

Proof. Similar to theorem 4.1 it will be proofed.

Example 4.4. Assume the initial stock price S0 = 6, risk-less interest rate r = 0.03,

lower barrier level BL = 5, upper barrier level BU = 15, strike price K = 8, time to

maturity T = 20, log-diffusion σ = 0.05, log-drift µ = 0.04 and parameter λ = 0.6.

Then the price of double knock-in put option is 1.1347.
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Figure 2: The barrier option price fp
dki with respect to different step N in Example 4.4.

4.2 knock-out options

Knock-out option is a kind of barrier option that if the underlying asset price does

not exceed a specified barrier level during the life of the option, then it has a payoff,

that is if the price of the underlying asset before the maturity date T crosses the

barrier level, the payoff becomes zero. In this section, we have presented the formula

for pricing European knock-out option, which asset price follows Eq [10].

Pricing formula for double knock-out call option

Consider a double barrier option which the lower barrier level is BL, the upper

barrier level is BU , the exercise price is K, and the expiration time is T . If before

the maturity T , the spot price St always be between the lower barrier level BL and

upper barrier level BU , then this call option will become into existence, and its

payoff will be max(St−K, 0) on the maturity date. Now we assign η+ = max(η, 0)

and apply an indicator function

IB(η) =

{
1, BL < η < BU

0, η < BL or η > BU
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Hence, the payoff on the maturity time is written as;

payoff = (ST −K)+(IB(St)) (31)

By taking into account the discount rate on the initial date, the discounted expec-

tation of payoff is

Bdko = e−rT (ST −K)+(IB(St)) (32)

and a price of this kind of double barrier options is

f c
dko = E[Bdko] = E[e−rT (ST −K)+(IB(St))] (33)

Theorem 4.5. Consider a double knock-out call option for stock pricing model

that underlying uncertain Eq. [10] has a lower barrier level BL, upper barrier level

BU , exercise price K, and the expiration time T . Then the price of this option is

defined by

f c
dko = e−rT

∫ θ1

θ0

(Sα
T −K)+dα (34)

where

θ0 = (1 + exp[
µπ

σ
√
3
(
λ(exp(−µλt)lnS0 − ln(BL))

1− exp(−µλt)
+ 1)])−1 (35)

and

θ1 = (1 + exp[
µπ

σ
√
3
(
λ(exp(−µλt)lnS0 − ln(BU ))

1− exp(−µλt)
+ 1)])−1 (36)

and

Sα
t = exp[exp(−µλt)lnS0 + (1− exp(−µλt))(

1

λ
+

σ
√
3

µλπ
ln

α

1− α
)] (37)

Proof. Note that

IB(S
α
t ) = 1 (38)

if and only if

BL < Sα
t < BU (39)

In addition

BL < exp[exp(−µλt)lnS0 + (1− exp(−µλt))(
1

λ
+

σ
√
3

µλπ
ln

α

1− α
)] < BU

⇒ln(BL) < exp(−µλt)lnS0 + (1− exp(−µλt))(
1

λ
+

σ
√
3

µλπ
ln

α

1− α
) < ln(BU )

⇒
µπ

σ
√
3
[
λ(exp(−µλt)lnS0 − ln(BU ))

1− exp(−µλt)
+ 1] < ln

1− α

α
<

µπ

σ
√
3
[
λ(exp(−µλt)lnS0 − ln(BL))

1− exp(−µλt)
+ 1]

By taking

N =
µπ

σ
√
3
[
λ(exp(−µλt)lnS0 − ln(BU ))

1− exp(−µλt)
+ 1] (40)

and

M =
µπ

σ
√
3
[
λ(exp(−µλt)lnS0 − ln(BL))

1− exp(−µλt)
+ 1] (41)
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we have

eN <
1− α

α
< eM (42)

then

θ0 =
1

1 + eM
< α <

1

1 + eN
= θ1 (43)

Example 4.6. Assume the initial stock price S0 = 3, risk-less interest rate r = 0.03,

lower barrier level BL = 2, upper barrier level BU = 10, strike price K = 5, time to

maturity T = 15, log-diffusion σ = 0.05, log-drift µ = 0.04 and parameter λ = 0.6.

Then the price of knock-out call option is 0.3222.
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0.318

0.32

0.322

0.324

0.326
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tin

 p
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Figure 3: The double barrier option price fc
dko with respect to different step N in Example 4.6.

Pricing formula for double knock-out put option

Consider a double barrier option which the lower barrier level is BL, the upper

barrier level is BU , the exercise price is K, and the expiration time is T . If before

the maturity T , the spot price St always be between the lower barrier level BL and

upper barrier level BU , then this call option will become into existence, and its
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payoff will be max(K−St, 0) on the maturity date. Now we assign η+ = max(η, 0)

and apply an indicator function

IB(η) =

{
1, BL < η < BU

0, η < BL or η > BU

Hence, the payoff on the maturity time is written as;

payoff = (K − ST )
+(IB(St)) (44)

By taking into account the discount rate on the initial date, the discounted expec-

tation of payoff is

Bdko = e−rT (K − ST )
+(IB(St)) (45)

and a price of this kind of double barrier options is

fp
dko = E[Bdko] = E[e−rT (K − ST )

+(IB(St))] (46)

Theorem 4.7. Consider a double knock-out put option for stock pricing model that

underlying uncertain Eq. [10] has a lower barrier level BL, upper barrier level BU ,

exercise price K, and the expiration time T . Then the price of this option is defined

by

fp
dko = e−rT

∫ θ1

θ0

(K − Sα
T )

+dα (47)

where

θ0 = (1 + exp[
µπ

σ
√
3
(
λ(exp(−µλt)lnS0 − ln(BL))

1− exp(−µλt)
+ 1)])−1 (48)

and

θ1 = (1 + exp[
µπ

σ
√
3
(
λ(exp(−µλt)lnS0 − ln(BU ))

1− exp(−µλt)
+ 1)])−1 (49)

and

Sα
t = exp[exp(−µλt)lnS0 + (1− exp(−µλt))(

1

λ
+

σ
√
3

µλπ
ln

α

1− α
)] (50)

Proof. Similar to theorem 4.5 it will be proofed.

Example 4.8. Assume the initial stock price S0 = 10, risk-less interest rate r =

0.03, lower barrier level BL = 5, upper barrier level BU = 15, strike price K = 8,

time to maturity T = 10, log-diffusion σ = 0.05, log-drift µ = 0.04 and parameter

λ = 0.6. Then the price of double knock-out put option is 0.3215.
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Figure 4: The barrier option price fp
dko with respect to different step N in Example 4.8.

5 Conclusion

Since the probability space and randomness aren’t sufficient space for the simula-

tion of investor decisions, many researchers propose Liu’s uncertain space for using

in such cases. In this paper, we have presented an uncertain process to verify the

double barrier option pricing formula. Formulas for pricing knocked-in options and

knocked-out options are arrived by α-paths of UDEs in the uncertain environment.

In addition, some numerical examples are illustrated for the pricing of double bar-

rier options with the presented model. Further research may use Power and Digital

options, or other types of exotic options on this uncertain stock pricing model with

similar conditions and may consider multi-asset options in the uncertain environ-

ment and derive formulas for option pricing.
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