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Abstract:
Abstract:
Due to the increasing popularity of futures trading among financial markets par-
ticipants, the risk management of futures trading is of particular importance. In
this paper, we study a futures trading strategy consisting of a long and a short
positions by using the mean reversion property of positive log-ergodic financial
processes. We introduce a model for estimating the ideal time for leaving a trad-
ing position on a stock. Also, using ergodic theorems, we investigate the European
call option pricing problem using an stochastic irrational rotation on the unit cir-
cle. By means of the properties of log-ergodic processes, we use the time average
of the stochastic process of risky assets instead of expectation in our calculations.
Our findings indicate that the proposed model improves the accuracy of predicting
optimal trading times and enhances the computational efficiency of option pricing.
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1 Introduction

Futures market is one of the most popular active markets internationally. The

futures market, originating from the Djima Rice Exchange in 1710, has evolved

significantly, now encompassing a wide range of financial products beyond its agri-

cultural beginnings [6]. In 2006, the New York Stock Exchange partnered with the

Amsterdam-Brussels-Lisbon-Paris Stock Exchange (Euronext Electronic Exchange)

to form the first transcontinental stocks and options exchange. This, as well as the

growth of Internet futures trading platforms created by developed companies, indi-

cate the increasing trend of competition in the field of online futures and options

services in the coming years [9]. In terms of trading volume, the National Stock

Exchange of India in Mumbai is the largest stock futures exchange in the world [8].

Despite the fact that futures trading is one of the most popular types of securities

trading in the world, the high risk of this type of trading is considered a deterrent
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factor for many risk-averse traders [7, 10]. Generally, it is difficult to predict the

behavior of financial markets in terms of time, although a research using machine

learning has been conducted in this field [11]. In the paper [12], Harrison Hong

presented a model for the futures market and studied the returns and the trading

pattern of its participants. Binh Do in the paper [13] has studied some trading

models, consisting of long and short positions, on a pair of shares (risky assets).

Researchers have studied futures trading in terms of risk and return. However,

there are very few resources available on estimating the appropriate time to take a

trading position. Rama Cont and his colleagues have described the risk and return

of dynamic trading in the form of fluctuations of the market value of the basket from

a reference level, and based on the price fluctuation, relative to that reference level,

in a path-dependent manner, they have provided a framework for risk analysis of

trading [14]. In this paper, we use the method of [14] and the concept of log-ergodic

process [16] to model futures trading on a risky asset and estimate the ideal time

to take a trading position.

The pricing of financial derivatives is one of the fundamental problems in mathe-

matical finance [2]. In mathematical finance, we use the discount of an expectation

for the pricing of financial derivatives [2]. In this paper, we assume that the price

process of a risky asset follows a log-ergodic process [16]. Studying the price process

of an asset as an ergodic dynamical system on the unit circle (Irrational rotation),

we replace the time average of the price process by mathematical expectation in

our calculations. Artur Avila and his colleagues have studied the behavior of the

random walk process using the irrational rotation and have presented a new proof

of the J. Beck central limit theorem [15].

The rest of the paper is organized as follows:

Some necessary concepts are introduced in section 2. In section 3, we present

the futures trading model. Using the properties of the log-ergodic processes, we

introduce the process of recurrence times and a time interval for leaving a trading

position. In section 4, we define the irrational rotation on the unit circle and

study it’s properties. We study the European call option pricing problem using the

irrational rotation in section 5. In section 6, we solve the ergodic partial differential

equation of Black-Scholes presented in our recent work [16]. The results of the paper

are presented in section 7.

2 preliminaries

Throughout the text, we use the filtered probability space (Ω,F ,P, (Ft)t≥0), in

which Ω is the space of events, F is a σ-algebra, P is an invariant probability measure

(see [10]), and sub σ-algebra Ft represents the information of the financial market

up to time t, which is generated by Wiener process Wt (i.e. Ft = σ{Ws|s ≤ t}).
From [16] we have the following definitions.

Definition 2.1. (Log-ergodicity) We say that the positive stochastic process Xt
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is logarithmically ergodic (log-ergodic), if its logarithm is mean ergodic. More

precisely, the positive stochastic process Xt is log-ergodic if the process Yt = ln(Xt)

satisfies

< Y > := lim
T→∞

1

T

∫ T

0

(1− τ

T
)Covyy(τ)dτ = 0, ∀τ ∈ [0, T ]. (1)

Where Covyy(τ) is the covariance of Yτ .

Definition 2.2. Let Wt be a standard Wiener process and β > 3
2 . For all t, s ∈

[0, T ], we define the ergodic maker operator of the process

Y ′
t = Y ′

0 +Dt +Rt as

ξβδ,Wδ
[Y ′

t ] := 0 · Y ′
0 +

WT

T β
·Dδ +

1

T β
·Rδ = DT,WT

δ +RT
δ , (2)

where δ = t− s for t > s.

We introduce the definition of the inverse ergodic maker operator, which we use

in section 6.

Definition 2.3. (Inverse Ergodic Maker Operator) For any mean ergodic random

process Zδ = DT,WT

δ +RT
δ we define the IEMO as follows

ξ−β
t,Wt

[Zδ] = c+
T β

WT
·DT,Wt

t + T β ·RT
t , t > 0, (3)

where c is a constant.

Lemma 2.4. For all c > 0 and any mean ergodic process Yt = Dt +Rt, we have

ξ−β
t,Wt

[
ξβδ,Wδ

[c+ Yt]
]
= c+ Yt.

Proof. We have

ξβδ,Wδ
[c+ Yt] = 0 · c+ WT

T β
Dδ +

1

T β
Rδ.

Now, from the definition 3 we have

ξ−β
t,Wt

[
WT

T β
Dδ +

1

T β
Rδ] = c+

T β

WT

WT

T β
Dt + T β 1

T β
Rt = c+Dt +Rt

= c+ Yt.

Proposition 2.5. For any finite mean ergodic process Zδ, the coefficient c defined

in 3 is unique.
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Proof. Assume that there exist numbers c1, c2 > 0. From lemma 2.4 for the finite

processes c1 + Yt and c2 + Yt we have

ξβδ,Wδ
[c1 + Yt] = ξβδ,Wδ

[c2 + Yt]. (4)

The equality 4 is true because the EMO drops the constants c1 and c2. Now, using

3 yields

ξ−β
t,Wt

[
ξβδ,Wδ

[c1 + Yt]
]
= ξ−β

t,Wt

[
ξβδ,Wδ

[c2 + Yt]
]

c1 + Yt = c2 + Yt

c1 = c2.

Remark 2.6. Note that from uniqueness of the coefficient c in the definition 3

implies that IEMO is well-defined.

Theorem 2.7. (Kac) Let f be a measure preserving transformation, and A ∈ F
such that P(A) > 0. Define ρA(ω) = min{n ∈ N|fn(ω) ∈ A}. Then,

E[ρA(ω)] =
1

P(A)
, ∀ω ∈ A.

Proof. For the proof and more details we refer the reader to [1].

3 Futures Trading Model: Time Estimation

3.1 The Setup

Suppose that the price process of a risky asset, St, be a log-ergodic positive stochas-

tic process (with respect to ξβδ,Wδ
[·]). Using [16], Poincaré recurrence theorem [1],

and theorem 2.7 the first recurrence time (to the mean), τ0 (in the time interval of

length δ0), exists and we define it as follows.

Xt = X0e
Yt , X0 = x, Zδ = ξβδ,Wδ

[Yt], Z0 = 0, (5)

τ0 := inf{t ∈ [0, s]
∣∣δ0 = s− 0, Zδ0 = 0}, s > 0. (6)

We define the subsequent return times to the reference level for every

i ∈ {1, 2, 3, · · · } with τi, such that τi < τi+1. We call the difference between every

two consecutive recurrence times, the sojourn time and we denote it by δi.

Taking the level Zδ = 0 as the reference level, we divide the path of the Zδ into

two parts. One above the reference level, and one bellow the reference level. Then,

we define the set of the sojourn times for the above the reference level as ϕ+, and

the set of sojourn times below the reference level as ϕ− and we write

ϕ+ := {δi = τi+1 − τi
∣∣Zδi > 0}, (7)

ϕ− := {δi = τi+1 − τi
∣∣Zδi < 0}, ∀i ≥ 0. (8)
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Therefore, we write the mean sojourn time of Zδ as follows.

ϕ
+
(z, δ) := lim

n→∞

1

n

n∑
k=1

δk, δk ∈ ϕ+,

ϕ−(z, δ) := lim
n→∞

1

n

n∑
k=1

δk, δk ∈ ϕ−.

Obviously, we can also define the sets of all recurrence times and sojourn times,

respectively, as follows.

τ = {τ0, τ1, τ2, · · · },
δ = ϕ+ ∪ ϕ− = {δ0, δ1, δ2, · · · }, δi = τi+1 − τi, ∀i ≥ 0.

For every time interval [τi, τi+1], let Mi = max|Zδi |. We denote the time when |Zδ|
reaches it’s maximum along the path (after leaving the reference level), in every

time interval [τi, τi+1], by tMi and we call it the Order Execution Time (OET).

As the process Zδ approaches zero, the reference level, we open a trading position

(long, if the process gets below the reference level, and short if the process gets above

the reference level). We interpret the time tMi
as the time that we close the trade.

Let l and s be the long and short leverage coefficients, respectively. Then, we

form a basket, Vt, consisting of only one long and one short positions. Therefore,

we write the profit of this trade as follows.

Vt = l
∑
i≥1

1[ϕ−]|Xτi −XtNi
|+ s

∑
i≥1

1[ϕ+]|Xτi −XtMi
|, (9)

where,

1[ϕ·] :=

1, if ϕ· ̸= ∅,
0, if ϕ· = ∅.

3.2 The Process of Recurrence Times

Let Yt be an Itô Markov stochastic process. Using [2], we have

Yt = Y0 +

∫ t

0

σsdWs +

∫ t

0

µsds, Y0 = y.

Utilizing the ergodic maker operator (EMO), we get a mean ergodic process Zδ,

which is made from the process Xt, according to [16]. Therefore,

Y ′
t = ln(Xt) = Y ′

0 +

∫ t

0

σsdWs +

∫ t

0

µsds, Y ′
0 = y + ln(x),

Zδ = ξβδ,Wδ
[Y ′

t ] = Z0 +
1

T β

∫ δ

0

σsdWs +
WT

T β

∫ δ

0

µsds, Z0 = 0, (10)
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where µt and σt are the drift and volatility coefficients, which are adapted integrable

functions of t andX,Wt is a standard Wiener process, and β is the inhibition degree

parameter.

Theorem 3.1. Consider the time interval [0, T ] and let Xt be a log-ergodic stochas-

tic process. Then, the process of recurrence times, {τi}i≥0 satisfies the following

dynamics.

dτi = −
[
στi +

∫ τi
0
µsds

]
µτi

dWτi

Wτi

.

τ0 = inf{t ∈ [0, s]
∣∣δ0 = s− 0, Zδ0 = 0}.

Proof. Consider the fixed path ω0. When Zδ meets it’s mean along ω0, at the time

interval of length δi, we have

Zδi =
1

T β

∫ δi

0

σsdWs +
WT

T β

∫ δi

0

µsds = 0

According to [16] we know that the process Zδ returns to it’s mean in the time

interval [0, T ] once at least. Therefore, we can consider δi as δT = T − 0 = 0.

Hence,

ZT =
1

T β

∫ T

0

σsdWs +
WT

T β

∫ T

0

µsds = 0.

Using Itô lemma we have

dZT =
[ −β
T β+1

∫ T

0

σsdWs −
βWT

T β+1

∫ T

0

µsds+
µTWT

T β

]
dT

+
1

T β

[
σT +

∫ T

0

µsds
]
dWT

=
[−β
T
ZT +

µTWT

T β

]
dT +

1

T β

[
σT +

∫ T

0

µsds
]
dWT = 0.

Since we considered δ = T − 0 = T , we can write

dZδ =
[−β
δ
Zδ +

µδWδ

δβ
]
dδ +

1

δβ
[
σδ +

∫ δ

0

µsds
]
dWδ = 0.

When Zδ meets it’s mean, at the time τi in the time interval of length δi , we have

Zδi = 0. Take δi = τi − 0 = τi. Therefore,

dZτi =
[µτiWτi

τβi

]
dτi +

1

τβi

[
στi +

∫ τi

0

µsds
]
dWτi = 0.
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Hence,

[µτiWτi

τβi

]
dτi = − 1

τβi

[
στi +

∫ τi

0

µsds
]
dWτi

µτiWτidτi = −
[
στi +

∫ τi

0

µsds
]
dWτi

⇒ dτi = −
[
στi +

∫ τi
0
µsds

]
µτi

dWτi

Wτi

.

Finally from 6 we write τ0 = inf{t ∈ [0, s]
∣∣δ0 = s− 0, Zδ0 = 0}.

An Example

Supposing a stock price process, St, follows the geometric Brownian motion

St = S0 exp{(µ− 1

2
σ2)t+ σWt}, S0 = s. (11)

Y ′
t = ln(St) = Y ′

0 + (µ− 1

2
σ2)t+ σWt, Y ′

0 = ln(s).

Where µ and σ are constants, and Wt is a standard Wiener process. Constructing

the log-ergodic process Zδ yields

Zδ = Z0 +
(µ− 1

2σ
2)δWT

T β
+
σWδ

T β
, Z0 = 0. (12)

Using theorem 3.1 we have

dτi = −
[
σ +

∫ τi
0
(µ− 1

2σ
2)ds

]
µ− 1

2σ
2

dWτi

Wτi

.

τ0 = inf{t > 0
∣∣t ∈ [t, t+ δ0], Zδ0 = 0}.

Thus,

dτi = −
[
σ + (µ− 1

2σ
2)τi

]
µ− 1

2σ
2

dWτi

Wτi

.

= −
[ σ

1
2σ

2 − µ
+ τi

]dWτi

Wτi

.

In the figures below, we have the plot of stock price process 11, figure 1, and the

corresponding Zδ process 12. Figure 2 illustrates the recurrence of Zδ to its mean

level over time. We can observe how interestingly process Zδ tells us where to take

a long or a short position on the stock. As an illustration, two sample short and

long opportunities are shown by arrows.
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Figure 1: The plot of the stock price process St.
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Figure 2: Corresponding mean ergodic Zδ process of St.

As we compare the figures, we realize that there would be some errors in the

plot of the Zδ. Therefore, the model does not necessarily provide us with a perfect

strategy. However, it reduces the trading risk.
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3.3 Estimating tMi

Theorem 3.2. The order execution time tMi , for all i > 0, satisfies the following

relations
σtMi

µtMi

< dtMi
< dτi+1.

Proof. Consider the fixed path ω0. Without loss of generality consider the case

that the path of Zδ is bellow the reference level, Zδ(ω0) = 0. In each time interval

[τi, τi+1], of length δi, the absolute value of Zδ(ω0) accepts a value in the interval

[0, |ZtMi
(ω0)|] (δMi

= tMi
− 0). Therefore,

ZtMi
(ω0) ≤ 0,

ZtMi
=

1

tMi
β

∫ tMi

0

σsdWs +
WtMi

tMi
β

∫ tMi

0

µsds ≤ 0,

1

tMi
β

∫ tMi

0

σsdWs ≤ −
WtMi

tMi
β

∫ tMi

0

µsds,∫ tMi

0

σsdWs ≤WtMi

∫ tMi

0

µsds, ⇒
∫ tMi

0
σsdWs∫ tMi

0
µsds

≤WtMi
,

σtMi
dWtMi

µtMi
dtMi

≤ dWtMi
, ⇒ dtMi ≥

σtMi

µtMi

. (13)

On the other hand, we have δi = τi+1 − τi and

τi < tMi
< τi+1, ⇒ 0 < tMi

− τi < τi+1 − τi,

⇒0 < tMi
− τi < δi. (14)

Therefore from 13 we write,

dtMi ≥
σtMi

µtMi

dtMi
− dτi ≥

σtMi

µtMi

− dτi.

Using 14 yields

σtMi

µtMi

− dτi ≤ dtMi − dτi < dδi = dτi+1 − dτi

σtMi

µtMi

≤ dtMi
< dτi+1.

4 Irrational Rotation

Definition 4.1. An irrational rotation is a map given by

Rθ : [0, 1] → [0, 1], Rθ = x+ θ mod 1, (15)
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where θ is an irrational number.

The circle rotation can be thought of as a subdivision of a circle into two parts,

which are then exchanged with each other. A subdivision into more than two

parts, which are then permuted with one-another, is called an interval exchange

transformation [1].

We can consider another notation for the irrational rotation, which is knows as

the multiplicative notation.

Definition 4.2. (Irrational rotation) For the unit circle S1, let

Rθ : S1 → S1, Rθ(x) = xe2πiθ, (16)

where θ is an irrational number. We call the mapping 16 an irrational rotation on

the unit circle.

4.1 Stochastic Process θt

We consider θt as a stochastic process and dependent on the price process of a risky

asset, Xt.

For all t ≥ 0, let

0 < θt ̸=
p

q
< n, n ∈ N\{∞}.

Therefore,

0 < θ2t < n2 ⇒ 0 < E[θ2t ] < n2. (17)

For all k ∈ N, the angles zero and 2kπ overlap each other. But, we do not consider

these angles to be the same.

From [2] we have the following relation for the European call option price.

C(t,Xt) = e−r(T−t)EQ
[
max[xeYt −K, 0]

]
,

where K is the strike price. We have

ln(xeYt −K) = ln(xeYt) + ln(1− K

xeYt
)

= ln(x) + Yt + ln(1− K

xeYt
).

Using the EMO yields

ξβδ,Wδ
[ln(xeYt −K)] = Zδ + ξβδ,Wδ

[
ln(1− K

xeYt
)
]
. (18)

Lemma 4.3. The natural logarithm, ln(1− K
xeYt

), is an irrational number.

Proof. For a European call option to be exercised, we need to have xeYt > K.

Therefore, we have 0 < 1 − K/xeYt < 1. From Lindemann-Weierstrass theorem

[4], it follows that ea is non-algebraic, for every positive non-algebraic number

a. Specifically, if a is a rational number, the ea cannot be rational. Therefore,

ln(1−K/xeYt) is an irrational number, according to [3, 4].
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Now since 18 is irrational, we define the process θ(z, δ) as follows

Definition 4.4. For t > 0, we have

θ(z, δ) = Zδ +
WT

T β
γδ, γδ = ln

(
1− K

xeYδ

)
. (19)

We call θ(z, δ), the irrational angle process.

We denote the irrational rotation generated using θ(z, δ) by Rθt(·).

Proposition 4.5. The process θ(z, δ) is stationary.

Proof. First, we evaluate the expectation of the process.

E[θ(z, δ)] = E[Zδ +
WT

T β
γδ] = E[Zδ] +

E[WT ]γδ
T β

= 0.

Also we have

Var[θ(z, δ)] = E[θ(z, δ)2]− E[θ(z, δ)]2 = E[Z2
δ +

W 2
δ

δ2β
γ2δ ]

=E[Z2
δ ] +

γ2δ
T 2β−1

=
1

T 2β

∫ δ

0

σ2
sds+

1

T 2β−1
(

∫ δ

0

µsds)
2 +

γ2δ
T 2β−1

⇒Var[θ(z, δ)] =
1

T 2β

[ ∫ δ

0

σ2
sds+ t

[
(

∫ δ

0

µsds)
2 + γ2δ

]]
Since Yt is an Itô process we have

∫ δ

0
(σ2

s + µs)ds <∞. Therefore,

E[θ2(z, δ)] <∞.

For all δ, ϵ > 0 we have

E[θ(z, δ)] = E[θ(z, δ + ϵ)] = 0.

Finally, since the process θ(z, δ) is only dependent on δ, the length of time intervals,

the correlation function of θ(z, δ) is also a function of δ. Hence, θ(z, δ) is stationary.

Proposition 4.6. The process θ(z, δ) is mean ergodic.

Proof. We know that Zδ is mean ergodic. Also, ξβδ,Wδ
[γδ] is mean ergodic, according

to [16]. Therefore, from the properties of mean ergodic processes, [16], θ(z, δ) is

mean ergodic.

4.2 The Properties of Irrational Rotation

Proposition 4.7. If Rθ is an irrational rotation on the unit circle, with θ being

an irrational number. Then,

1. The orbit of every x ∈ [0, 1] under Rθ is dense in the interval [0, 1].
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2. Rθ is not topologically mixing.

3. Rθ is uniquely ergodic, with the lebesgue measure as the unique invariant

probability measure.

4. Let [a, b] ∈ [0, 1]. From the ergodicity of Rθ we have

lim
N→∞

N−1∑
n=0

χ[a,b)(R
n
θ (x)) = b− a, x ∈ [a, b].

Proof. For the proof and more details we refer the reader to [1].

Theorem 4.8. The process Rθt is Markov.

Proof. It suffices to prove the increments of Rθt are independent. We have

∀t > 0, Rθt(0) = 0 · e2πiθt = 0.

According to proposition 4.7, since the irrational rotation is ergodic and the orbit of

every point is dense, it follows that for the time T and every s, t ≥ 0, the angles θt
and θs are independent from each other. Therefore, Rθs and Rθt are independent.

Hence,

P(Rθt ≤ x|Rθt1
, · · · , Rθtn

)

=P(Rθt −Rθtn
+Rθtn

≤ x|Rθt1
, · · · , Rθtn

)

=P(Rθt −Rθtn
+Rθtn

≤ x|Rθtn
) = P(Rθt ≤ x|Rθtn

)

We express the following theorem by using [5] to define the function ϕ, which is

used in the Birkhoff ergodic theorem.

Theorem 4.9. Let Rθt be an irrational rotation process and ϕ : [0, 1] → R be a

continuous function, such that ϕ(0) = ϕ(1). Then,

lim
n→∞

( 1
n

n−1∑
k=0

ϕ(Rk
θt(x))

)
=

∫ 1

0

ϕ(y)dy, ∀x ∈ [0, 1].

Proof. From [5] we define the function ψm as

ψm(x) = e2πimx = cos(2πimx) + i sin(2πimx).

We have

ψm(Rk
θt(x)) = e2πikθt+x = e2πimkθtψm(x).
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For m ̸= 0 we write∣∣∣ 1
n

n−1∑
k=0

ψm(Rk
θt(x))

∣∣∣ = 1

n
· |e2πimx| ·

∣∣∣ n−1∑
k=0

e2πimkθt
∣∣∣

=
1

n

∣∣∣1− e2πinmθt

1− e2πimθt

∣∣∣ ≤ 1

n
· 2

1− e2πimθt
−−−−→
n→∞

0.

Therefore, if we take ϕ(x) =
∑tN

m=−tN
θmψm(x), in which

θ−tN , θ−tN+1
, · · · , θt0 , · · · , θtN ∈ Q∁, Then,

lim
n→∞

1

n

n−1∑
k=0

ϕ(Rk
θt(x)) = θt0 =

∫
ϕ(y)dy.

Finally, from [1] we know that the set of trigonometric polynomials is dense in the

space of all periodic functions, which completes the proof.

Remark 4.10. In the above theorem the angle θ−i, for all i > 0, indicates clockwise

orientation on the unit circle. Also t0 indicates the time that we buy an option

contract. Therefore, the angle θ0 = θt0 is not zero and it varies with respect to Zδ0 .

Hence, θt0 is a random irrational number.

Theorem 4.11. Let θ(z, δ) be a random angle process with respect to irrational

rotation Rθt on S1, such that E[θt] < ∞. Then, Rθt = xe2πiθt is log-ergodic with

respect to ξδ,Wδ
[·].

Proof. We have

Yt = ln(Rθt) = ln(x) + 2πiθ(z, t), Y0 = ln(x).

Let θ(z, δ) = θδ. Using EMO yields

Zδ = ξβδ,Wδ
[Yt] = 0 +

2πiWT

T β
θδ, Z0 = 0.

Evaluating the covariance of Zδ yields

Covzz = E[Z2
δ ] = − 4π2

T β−1
E[θ2δ ]. (20)

Now, it suffices to we prove

< Z >= lim
T→∞

1

T

∫ T

0

(1− δ

T
)Covzz(δ)dδ = 0. (21)

Substituting 20 in 21 yields

< Z > = lim
T→∞

1

T

∫ T

0

(
δ

T
− 1)

4π2

T β−1
E[θ2δ ]dδ

= lim
T→∞

1

T

∫ T

0

δ

T

4π2

T β−1
E[θ2δ ]dδ − lim

T→∞

1

T

∫ T

0

4π2

T β−1
E[θ2δ ]dδ

= lim
T→∞

4π2

T β+1

∫ T

0

δE[θ2δ ]dδ − lim
T→∞

4π2

T β

∫ T

0

E[θ2δ ]dδ. (22)
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From 17 we know that E[θ2δ ] = m < ∞. Therefore, the integrals in 22 are finite.

Hence, taking the limit as T → ∞ yields < Z >= 0.

The figure 3 demonstrates how the value of Rθt is varies with respect to stock

price.

Figure 3: The behavior of the process Rθt on the unit circle relative to the stock
price.

5 European Call Option Pricing Using The Irra-
tional Rotation

In order to study the problem of option pricing using the irrational rotation, we

need to consider a corresponding value of K ′ in the interval [0, 1] for the strike price

K. Therefore, we consider ϕ such that ϕ(K ′) = K.

Theorem 5.1. The European call option price with strike price K and the exercise

time T is given by

C(Rθt ,K) = e−rt
(WT

T β
ln(1− K

St0

)−K
)
,

where Rθt is the irrational rotation on the unit circle S1.
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Proof. From [2] we write

C(Rθt ,K) =e−rtEQ[ϕ(Rθt(x))− ϕ(K ′)]

=e−rtEQ[ϕ(xe2πiθt)−K]

=e−rt
[
EQ[ϕ(xe2πiθt)]−K

]
=e−rt

(
lim
n→∞

1

n

n−1∑
k=0

ϕ(Rk
θt(x))−K

)
=e−rt

(∫
ϕ(y)dy −K

)
. (23)

From 4.9 we have

ϕ(y = x) =

tN∑
m=−tN

θmψm(x),

ψm(x) = e2πimx = cos(2πimx) + i sin(2πimx).

Therefore, ∫
ϕ(y)dy =

∫
θ0ψ0(y)dy

=

∫ 1

0

θ0dy = θt0 =
WT

T β
ln(1− K

St0

). (24)

Substituting 24 in 23 yields

C(Rθt ,K) = e−rt
(WT

T β
ln(1− K

St0

)−K
)
,

where St0 is the stock price at the time we buy the option contract.

6 Ergodic Partial differential equation of BlackSc-
holes

From [16] we have the following proposition.

Proposition 6.1. (Ergodic Partial differential equation of BlackScholes) Under the

assumptions of the Black-Scholes model, the European call option price, C(Zδ, δ),

relative to the stock price variation Zδ = z, with respect to short rate r, inhibi-

tion degree parameter β, and the strike price K satisfies in the following partial

differential equation.

∂C

∂δ
+ rz

∂C

∂z
+

1

2
B2

δ

∂2C

∂z2
− rC = 0, (25)

for 0 < |z| <∞, 0 < δ < δT = T − 0,

where Bδ =
q

δβ−1
+

σ

δβ
, q = µ− 1

2
σ2,

together with initial conditions C(0, δ) = 0 and C(z, δT ) = (|z| − ln(K))+.
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The goal is to solve this equation in this section.

Proposition 6.2. The PDE 25 has the representation of the form

∂U

∂τ
=

1

2
η
∂2U

∂y2
, (26)

where 0 < τ < T and −∞ < y <∞.

Proof. From [16] we have

Zδ =
1

T β

[
(µ− 1

2
σ2)δWT + σWδ

]
Zδ =

1

T β

[
(µ− 1

2
σ2)δ − (µ− 1

2
σ2)δ + (µ− 1

2
σ2)δWT + σWδ

]
T βZδ = Yδ + (µ− 1

2
σ2)[WT − δ]

Yδ = T βZδ − (µ− 1

2
σ2)[WT − δ]

Therefore, we consider the following change of variables.

δ = T − τ, y = T βz − (µ− 1

2
σ2)[WT − δ] (27)

Using 27 we have

∂C

∂δ
=
∂C

∂τ

∂τ

∂δ
= −∂C

∂τ
, (28)

∂C

∂z
=
∂C

∂y

∂y

∂z
= T β ∂C

∂y
, (29)

∂2C

∂z2
=

∂

∂z

(∂C
∂z

)
=

∂

∂z

(
T β ∂C

∂y

)
=

∂

∂y

(
T β ∂C

∂y

)∂y
∂z

=
(∂2C
∂y2

− ∂C

∂y

)
T 2β . (30)

Substituting 28, 29, and 30 in 25 yields

−∂C
∂τ

+ rzT β ∂C

∂y
+

1

2
B2

δ

(∂2C
∂y2

− ∂C

∂y

)
T 2β − rC = 0 (31)

Now take

C(y, τ) = U(y, τ)eay+bτ , (32)

∂C

∂τ
= (bU +

∂U

∂τ
)eay+bτ ,

∂C

∂y
= (aU +

∂U

∂y
)eay+bτ ,

∂2C

∂y2
= [a2U + 2a

∂U

∂y
+
∂2U

∂y2
]eay+bτ .
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Substituting the above relations in 31 yields

bU +
∂U

∂τ
=rzT β

[
aU +

∂U

∂y

]
+
B2

δT
2β

2

[
(a2 − a)U + (2a− 1)

∂U

∂y
+
∂2U

∂y2
]
− rU,

⇒ ∂U

∂τ
=
[
rzT β +

B2
δT

2β

2
(2a− 1)

]∂U
∂y

+
B2

δT
2β

2

∂2U

∂y2

+
[
rzT βa+

B2
δT

2β

2
(a2 − a)− r − b

]
U.

Now take

a =
1

2
− rz

B2
δT

β
, and b =

4rzT β −B2
δT

2β

8
− r2z2

2B2
δ

− r.

Therefore, we have
∂U

∂τ
=

1

2
B2

δT
2β︸ ︷︷ ︸

η

∂2U

∂y2
, (33)

With initial condition

U(y, 0) = C(z, T )e−ay = max[|z| − ln(K)].

6.1 Solving the Heat Equation

Proposition 6.3. The heat equation 26 has a solution of the form

U(y, τ) =

∫ ∞

−∞
K(y − γ, τ)f(γ)dγ.

Proof. Using Fourier transform we have

F{U(y, τ)} = Û(ω, τ) =
1√
2π

∫ ∞

−∞
U(y, τ)e−iωydy

⇒F{Uτ (y, τ)} =
∂Û(ω, τ)

∂τ
= Ûτ (ω, τ),

F{Uyy(y, τ)} = −ω2F{U(y, τ)} = −ω2Û(ω, τ).

From 33 we have

F{Uτ} = F{B
2
δT

2β

2
Uyy}

Ûτ (ω, τ) = −B
2
δT

2β

2
ω2Û(ω, τ). (34)

The equation 34 is partial differential equation with solution

Û(ω, τ) = c(ω) exp{−B
2
δT

2β

2
ω2τ}.
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Using Fourier transform for the initial condition U(y, 0) = f(x) yields

F{U(y, 0)} = Û(ω, 0) = f̂(ω), Û(ω, 0) = c(ω).

Therefore,

Û(ω, τ) = Û(ω, 0) exp{−B
2
δT

2β

2
ω2τ}

= f̂(ω) exp{−B
2
δT

2β

2
ω2τ}.

Now using inverse Fourier transform we have

U(y, τ) = F−1{Û(ω, τ)} =
1√
2π

∫ ∞

−∞
Û(ω, τ)eiωydy

=
1√
2π

∫ ∞

−∞
f̂(ω)e−

B2
δT2β

2 ω2τeiωydω

=
1√
2π

∫ ∞

−∞

( 1√
2π

∫ ∞

−∞
f(γ)e−iωγdγ

)
eiωy−B2

δT2β

2 ω2τdω

=

∫ ∞

−∞

( 1

2π

∫ ∞

−∞
eiω(y−γ)−B2

δT2β

2 ω2τdω
)
f(γ)dγ.

Now taking

K(y − γ, τ) =
1

2π

∫ ∞

−∞
eiω(y−γ)−B2

δT2β

2 ω2τdω. (35)

yields

U(y, τ) =

∫ ∞

−∞
K(y − γ, τ)f(γ)dγ.

Lemma 6.4. If γ = 0, then for K(y, τ) we have

K(y, τ) =
1√

2πτB2
δT

2β
e
− y2

2τB2
δ
T2β

.

Proof. Taking γ = 0 in 35 yields

K(y, τ) =
1

2π

∫ ∞

−∞
eiωy−B2

δT2β

2 ω2τdω

=
1

2π

∫ ∞

−∞
e
− y2

2τB2
δ
T2β

e

(√B2
δ
T2β

√
2

ω
√
τ− iy√

2τB2
δ
T2β

)2
dω.

Let

λ =

√
B2

δT
2β

√
2

ω
√
τ − iy√

2τB2
δT

2β
⇒ dλ =

√
τB2

δT
2β

2
dω.



Paper 10: Ergodic trading model and call option pricing 177

Since
∫∞
−∞ e−λ2

dλ =
√
π,

K(y, τ) =
1

2π
e
− y2

2τB2
δ
T2β

∫ ∞

−∞
e−λ2

√
2√

τB2
δT

2β
dλ

=
1

2π

√
2√

τB2
δT

2β
e
− y2

2τB2
δ
T2β

∫ ∞

−∞
e−λ2

dλ

=
1√

2πτB2
δT

2β
e
− y2

2τB2
δ
T2β

.

6.2 European Option Price: Solving the Equation

Theorem 6.5. The European call option price with respect to stock price X, price

variations z, the EMO ξβδ,Wδ
[·], and the strike price K satisfies the following equa-

tion.

C(z, τ) = e−rτe
y(λ−2)+ 1

4
p(λ−2)2

2λ

[
|z| − ln(K)

]
N [d],

where

d =
ln
[
X/ ln(K)

]
√
2pλ

, p = r|z|τT β , λ =
T βB2

δ

r|z|
.

Proof. Using propositions 6.2, 6.3, lemma 6.4, and 32 we write

eay+bτ = exp
{τB2

δT
2βy − 2τT βr|z|y + r|z|τ2B2

δT
3β − 1

4B
4
δT

4βτ2 − r2z2τ2T 2β

2τB2
δT

2β

}
.

Let p = r|z|τT β , Then

eay+bτ = exp
{τB2

δT
2βy − 2py + pτB2

δT
2β − 1

4B
4
δT

4βτ2 − p2

2τT 2βB2
δ

}
= exp

{B2
δT

β p
r|z|y − 2py + pB2

δT
β p
r|z| −

1
4B

4
δT

2β p2

r2z2 − p2

2 p
r|z|T

βB2
δ

}

= exp
{p[B2

δT
β

r|z| y − 2y
]
+ p2

[B2
δT

β

r|z| − 1
4
B4

δT
2β

r2z2 − 1
]

2p
TβB2

δ

r|z|

}
Now let λ =

TβB2
δ

r|z| . Therefore,

eay+bτ = exp
{p[λy − 2y

]
+ p2

[
λ− 1

4λ
2 − 1

]
2pλ

}
= exp

{y(λ− 2) + 1
4p(λ− 2)2

2λ

}
= exp

{
(λ− 2)

y + 1
4p(λ− 2)

2λ

}
.
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Therefore,

C(z, τ) = e−rτ 1√
2τπB2

δT
2β
e

y(λ−2)+ 1
4
p(λ−2)2

2λ

∫ ∞

−∞
e−

(y−γ)2

2pλ max[|z| − ln(K), 0]dγ

Since |z| =
∣∣ξβδ,Wδ

[γ]
∣∣, and ξ−β

t,Wt

[
ξβδ,Wδ

[γ]
]
= γ we have

C(z, τ) =e−rτ 1√
4πpλ

e
y(λ−2)+ 1

4
p(λ−2)2

2λ

∫ ∞

ξ−β
t,Wt

[ln(K)]

e−
(y−γ)2

2pλ (ξβδ,Wδ
[γ]− ln(K))dγ

=e−rτe
y(λ−2)+ 1

4
p(λ−2)2

2λ
1√
4πpλ[ ∫ ∞

ξ−β
t,Wt

[ln(K)]

e−
(y−γ)2

2pλ ξβδ,Wδ
[γ]dγ − ln(K)

∫ ∞

ξ−β
t,Wt

[ln(K)]

e−
(y−γ)2

2pλ dγ
]

︸ ︷︷ ︸
I1−I2

. (36)

Let M = y−γ√
2pλ

. We have dM = −dγ√
2pλ

. Hence,

I1 =|z|
∫ −∞

ln(X)−ln(ξ
−β
t,Wt

[ln(K)])
√

2pλ

e−
1
2M

2

(−
√

2pλ)dM, (37)

I2 = ln(K)

∫ −∞

ln(X)−ln(ξ
−β
t,Wt

[ln(K)])
√

2pλ

e−
1
2M

2

(−
√

2pλ)dM. (38)

Substituting 37 and 38 in 36 yields

C(z, τ) = e−rτe
y(λ−2)+ 1

4
p(λ−2)2

2λ
1√
4πpλ

[
|z| − ln(K)

]
∫ ln(X)−ln(ξ

−β
t,Wt

[ln(K)])
√

2pλ

−∞
e−

1
2M

2

(
√

2pλ)dM

= e−rτe
y(λ−2)+ 1

4
p(λ−2)2

2λ

[
|z| − ln(K)

]
1√
2π

∫ ln(X)−ln(ξ
−β
t,Wt

[ln(K)])
√

2pλ

−∞
e−

1
2M

2

dM

Using lemma 2.4 yields ξ−β
t,Wt

[ln(K)] = ln(K). Therefore,

C(z, τ) = e−rτe
y(λ−2)+ 1

4
p(λ−2)2

2λ

[
|z| − ln(K)

]
N
[ ln(X)− ln[ln(K)]√

2pλ

]
.

Now taking d = ln(X)−ln[ln(K)]√
2pλ

yields.

C(z, τ) = e−rτe
y(λ−2)+ 1

4
p(λ−2)2

2λ

[
|z| − ln(K)

]
N [d],

where

p = r|z|τT β , λ =
T βB2

δ

r|z|
, Bδ =

q

δβ−1
+

σ

δβ
, q = µ− 1

2
σ2.
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7 Conclusion

Choosing the right time to leave a trading position is always of much interest for

market participants. In this paper, we presented a model using log-ergodic processes

to estimate a time interval for exiting a trading position with profit.

We provided a novel approach to European call option pricing by incorporating

stochastic irrational rotation. We substituted the time average of a mean ergodic

process with the expectation in our calculations, since the irrational rotation is

ergodic. Compared to the traditional Black-Scholes model, this method offers im-

proved accuracy in capturing market dynamics and enhanced computational effi-

ciency due to the use of mean ergodic processes.

Additionally, we solved the ergodic partial differential equation of Black-Scholes,

introduced in our recent work [16]. We have found a unique solution to this equation

which includes the inhibition degree parameter β.

All in all, the financial markets can be studied using the theory of dynamical

systems, as they actually have the property of change of state with respect to time.

Studying the financial markets using ergodic theory have two main advantages:

First, a new approach to solving and modeling financial and economics problems

is provided to us. Second, the use of time average instead of the expectation in

some of the calculations, makes it easier to study the markets in the long run. On

the other hand, the existence of only one descriptive parameter, β, shows that our

work is in early stages, and there are much work to do in the future studies for a

flawless model to be made.
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