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Abstract:
Abstract:
An important question in non life insurance research is the estimation
of number of future payments and corresponding amount of them. A
loss reserve is the money set aside by insurance companies to pay policy-
holders claims on their policies. The policyholder behavior for reporting
claims after its occurrence have significant effect on the costs of the in-
surance company. This article considers the problem of predicting the
amount and number of claims that have been incurred but not reported,
say IBNR. Using the delay probabilities in monthly level, calculated by
the Zero-Inflated Gamma Mixture distribution, it predicts IBNR’s loss
reserve. The model advantage in the IBNR reserve is insurers can pre-
dict the number of future claims for each future date. This enables them
to change the claim reporting process. The practical applications of our
findings are applied against a third party liability (TPL) insurance loss
portfolio. Additional information about claim can be considered in the
loss reserving model and making the prediction of amount more accurate.
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Introduction

A loss reserve is the money set aside by insurance companies to pay
policyholders claims on their policies. Some of these claims may be settled
long after the policy has expired. Insurance companies have to hold loss
reserves for losses that are incurred but not yet paid. Therefore, we have
two types of loss reserves, incurred but not reported (IBNR) and reported
but not settled (RBNS).

In recent papers the double chain ladder approach is used to estimate
the claim reserve through a micro-level approach of the claim develop-
ment process, based on the number of reported claims and the amount
of payments. For example, Verrall et al. (2010) used paid claims and
also the numbers of reported claims to predict the IBNR and RBNS loss
reserve separately. They built a model for aggregate paid claims from
basic principles at the level of individual data. Martinez-Miranda et al.
(2012) extended Verrall et al. (2010) model. They combined the up-
per triangles of count data with the paid data and introduced the Double
Chain Ladder (DCL) model. Martinez-Miranda et al. (2013a) considered
a Double chain ladder focusing on two specific types of prior knowledge:
zero-claims for each underwriting year and relationship between the de-
velopment of the claim and its mean severity.

Martinez-Miranda et al. (2013b) used a micro-level approach to predict
the number of IBNR claims. Their continuous chain-ladder setting can
be applied to data recorded in continuous time, although it is illustrated
in the paper on data aggregated on a monthly level. Antonio and Plat
(2014) proposed a micro-level model and used detailed information of the
time of occurrence of the claim, the delay between occurrence and report-
ing to insurance company, the occurrences of payments and their sizes,
and the final settlement. Verrall and Wüthrich (2016) constructed an in-
homogeneous marked Poisson process with a monthly piecewise constant
intensity and a weekday seasonal occurrence pattern.

Verbelen et al. (2019) presented a flexible regression framework to
jointly estimate the occurrence and reporting of events from data at daily
level. Badescu et al. (2019) proposed a marked Cox process and showed
some desirable properties of Badescu et al. (2016)’s findings. They em-
ployed an EM algorithm and showed that the fitting algorithm can be im-
plemented at a reasonable computational cost. Crevecoeur et al. (2018,
2019) considered IBNR claim reserve due to a delay and modelled the
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time between the occurrence and observation of the event. They pro-
posed a granular model for the heterogeneity in the observation delay
based on the occurrence day of the event and on calendar day effects in
the observation process, such as weekday and holiday effects.

The main aim of this article is to obtain a computationally reasonable
expression for predictors of both IBNR and RBNS loss reserve and their
mean square errors of predictions based on a history up to today’s time
t. To solve the prediction problem, this article decomposes outstanding
claims as IBNR and RBNS. Then, it considers a Zero-Inflated Gamma
Mixture distribution for random reporting delay and a discrete random
variable for the settlement delay. Using updated observation at time t
unknown parameters are estimated under the maximum likelihood ap-
proach, then both IBNR and RBNS outstanding claims are predicted.

The article is organized as follows: Section 2 presents theoretical foun-
dation of the article. Section 3 shows how the previous section findings
can be applied in practice. Suggestions and concluding remarks are given
by Section 4.

Theoretical foundation

It is common for claims to be reported to insurance company long after
they were incurred. The reporting delay is an important driver in the risk
management strategy of the insurer, whose core business is underwriting
risks.

This article considers delay time on a monthly level, therefore, a con-
siderable amount of reporting delay time will be zero, while some of them
stand far from others. These two facts justified implementation of a zero-
inflated and heavy distribution. For some practical reasons, we assume
that the random reporting delay has been distributed according to the
Zero-Inflated Gamma Mixture distribution, say ZIGM. We consider the
ZIGM, as an appropriate distribution for the random reporting delay U
which is given by the following definition.

Definition 0.1. A random variable U has the Zero-Inflated Gamma
Mixture, say ZIGM, distribution if its density function is

g(u, ψ) = πI{0}(u) + (1− π)
k∑

h=1

whGamma(αh, θh)I(0,∞)(u), (1)
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where 0 ≤ π ≤ 1,
∑k

h=1wh = 1, ψ = (π,w1, · · · , wk, α1, · · · , αk, θ1, · · · , θk)
and Gamma(αh, θh) stands for the Gamma density function.I{A} denotes
the indicator function of event A.

See Gharib (1995) for some properties of the Gamma Mixture distri-
bution.

The following represents assumptions that we consider hereafter now.
Assume that:

A1) The total number of claims related to the accident time i, say Ni, fol-
lows from a non-homogeneous Poisson process with finite intensity
λi;

A2) Random reporting delay U has been distributed according to the
ZIGM distribution, given by Definition (0.1);

A3) Discrete random settlement delay D has probability mass function
ql = P (D = l), for l = 0, · · · , d;

A4) The individual payments Y
(k)
i,j−l,l are iid random variables with

E
(
Y

(k)
i,j−l,l

)
= µ <∞ and V ar

(
Y

(k)
i,j−l,l

)
= σ2 <∞;

A5) Ft stands for the updated filtration based upon the past information
at observation time t.

A6) Claims are settled with a single payment.

As mentioned above, the outstanding claims represent claims which
occurred at accident time i and reported to the insurance company j
unit time later. But for some practical reasons, they paid (or settled)
l unit time after j. Let Npaid

i,j , for i, j = 0, · · · , I, denotes total number
of claims that occurred at accident time i and fully paid before or at
time i+ j. I denotes the last accident (or development) year. Under this
setting

Npaid
i,j =

min(j,d)∑
l=0

Npaid
i,j−l,l

where Npaid
i,j−l,l, represents total number of claims that occurred at accident

time i, reported at i + j − l time and paid at i + j time and d is the
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maximum delay that insurance company settle a claim after reporting to
it. Moreover suppose that, for k = 1, · · · , Npaid

i,j−l,l, i.i.d random variable

Y
(k)
i,j−l,l stands for size of the kth individual payments that occurred at

accident time i, reported at i+ j − l time and paid at i+ j time.
Therefore, the total payments at time i+ j is

Xij =

min{j,d}∑
l=0

Npaid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l,

where the maximum payment delay d can be chosen from evaluation
process for each insurance companies.

For the i+j ≤ I, the paymentsXij are known. But for the i+j > t ≥ I,
the total payments Xij are unknown and one has to predict. For such
situation, there is two types of unknown claims, one does not reported
yet, say XIBNR

ij , another one has been reported but not fully paid, say
XRBNS

ij . We focuse on IBNR part and we have

XIBNR
ij =

i+j−I−1∑
l=0

Npaid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l, ∀ i+ j ≥ I.

Remark 0.2. It is worthwhile mentioning that in a situation that: one
would like to make inference about number of outstanding claims rather
than size of outstanding claims, he/she can consider Y

(k)
i,j−l,l = 1.

Under mentioned assumptions and using the Poisson process proper-
ties, one may conclude that: (1) the total number of claims that oc-
curred at accident time i and paid at time i + j, Npaid

i,j follows from a
nonhomogeneous Poisson process with intensity λipj; (2) the total num-

ber of payments at time i+ j, related to accident time i, Npaid
i,j−l,l, follows

from a nonhomogeneous Poisson process with intensity λipj−lql, where,
for l = 0, · · · , d, delay probability pj is

pj = P (j ≤ U ≤ j + 1) =

∫ j+1

j

dGZIGM(u, ψ), (2)

and GZIGM(,̇)̇ stands for the cumulative distribution function of the
ZIGM distribution.
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At observation time t, where i+ j > t ≥ I, conditional expectation of
the total payments Xij given updated filtration Ft can be calculated as
the following.

XIBNR
ij (t) = E(Xij|Ft)

= E(

i+j−I−1∑
l=0

Npaid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l|Ft)

=

i+j−I−1∑
l=0

E(Npaid
i,j−l,l|Ft)E(Y

(k)
i,j−l,l)

=

i+j−I−1∑
l=0

λ
(t)
i p

(t)
j−lq

(t)
l µ(t).

To use the above finding, all model parameters must to be given, or has
to be estimated based on available information in Ft. The next section
considers this issue.

Parameter estimation

The log-likelihood function based upon the observed data up to observa-
tion date t is

logL =
∑
i

∑
j

(ni,j log (λi) + ni,j log (pj)− λipj − log(ni,j!)). (3)

Therefore, the maximum likelihood estimator for λi is

λ̂i =
t∑

j=i

nij/

t∑
j=i

pj.

Substituting λ̂i in the above log-likelihood function leads to

logL ∝
t∑

i=1

t∑
j=i

[nij(log(
t∑

j=i

nij)− log(
t∑

j=i

pj)−
t∑

j=i

nij]+
t∑

i=1

t∑
j=i

nijlog(pj)

(4)
The above log-likelihood function can be understood as a log-likelihood
function for truncated reporting delay random variable where truncation
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point (t− i) is the maximal observed delay for a claim that incurred on
accident time i.

The log-likelihood given by Equation (4) depends on the parameters
of both the Poisson model for claim occurrence and the reporting de-
lay distribution. It is not straightforward and reasonable to calculate
the maximum likelihood estimation with respect to pj. The complica-
tions of parameters estimation are simplified by applying the expectation-
maximization, say EM, algorithm for delay probability.

The EM algorithm consists of two major steps:

E-step) Expectation step: Choose initial values for the set of parameters
ψ and compute the expected value of the u data. After the first
iteration of the EM, the new estimators ψ1 for ψ are obtained. In
this step, we estimate unobserved data.

M-step) Maximization step: Use the data arrived from the E-step, an
updated maximum likelihood estimate of unknown parameters.

Please see da Silva and Yongacoglu (2015) or Moon (1996) for more
details about the EM algorithm.

To estimate the pj, at the first one has to estimate the unknown pa-
rameters ψ, given by Definition (0.1).

Consider the random variable U has a mixture of k-Gamma distribu-
tion. Now, we introduce the EM algorithm in the context of Gamma
mixture models. To find the maximum likelihood estimators with the
EM algorithm, we can introduce a sample v = (v1, · · · , vm) of the ran-
dom variable V which indicate which of the k component densities was
observed for each m; vm ∈ {1, · · · , k}. We call {U, V } the complete data
set, and we say U is incomplete. Now suppose that fU,V stands for the
joint density function of U and V have joint density. Therefore, the
log-likelihood is given by

log[L(ψ|u,v)] = log[
n∏

m=1

fU,V (um, vm;ψ)].

And for given vm, we have

log[L(ψ|u,v)] =
n∑

m=1

log[wvmfvm(vm;ψvm)].
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We guess the parameters ψg = (wg
1, · · · , wg

m, α
g
1, · · · , αg

m, θ
g
1, · · · , θgm) of

the mixing density. Now, we use the EM algorithm to update the param-
eters at each step, i.e.

Q(ψ, ψg) = EV {log[L(ψ|u,v)]|u, ψg}

=
∑
V

n∑
m=1

log[wvmfvm(um; θvm)]
n∏

m=1

fV |U=um(vm;ψ
g)

from a series of simplifying steps, the objective function is

Q(ψ, ψg) =
k∑

h=1

n∑
m=1

log(wh)fV |U=um(h, ψ
g)

+
k∑

h=1

n∑
m=1

log[fh(Um; θh)]fV |U=um(h, ψ
g)

where fV |U=ui
(h, ψg) = Ah/

∑k
j=1Aj andAh = whθ

αh(g)

h(g) u
αh(g)−1e−uθh(g)/Γ(αh(g)).

Moreover, log[fh(um; θh)] = αhlog(θh) + (αh − 1)log(um) − θhum −
log(Γ(αh)).
This problem can be solved analytically. We differentiate Q(h, ψg) with

respect to each parameter, set the expressions equal to zero and solve for
parameter. For each wh we have the restriction

∑k
h=1wh = 1. Thus, we

employ a lagrangian method with lagrange multiplier parameter β and
obtain

∂[Q(ψ, ψg) + β(
∑k

h=1wh − 1)]

∂wh

= 0 ⇐⇒ 1

wh

n∑
m=1

fV |U=um(h, ψ
g) + β = 0

⇐⇒ wh =
−
∑n

m=1 fV |U=um(h, ψ
g)

β
.

Summing over h leads to
∑k

h=1

∑n
m=1 fV |U=um(h, ψ

g) = n. Using the fact

that
∑k

h=1wh = 1, we get β = −n, therefore, in each iteration g of the
algorithm, for each wh, the MLE is

ŵh =

∑n
m=1 fV |U=um(h, ψ

g)

n

and

θ̂h =

∑n
m=1 umfV |U=um(h, ψ

g)

α̂MLE
h

∑n
m=1 umfV |U=um(h, ψ

g)
.
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The MLE for each αh does not have an explicit solution, therefore it has
to be found using numerically.

Now, we estimate other parameters, ql and ϕ. Based on assumptions
A1 − A6 , the mass function of Npaid

ijl given Nij follows a multinomial
distribution with probabilities ql. The settlement delay probabilities, ql,
can be found through an MLE method. Given observed values, the log-
likelihood function, denoted by l, is

l =
I∑

i=0

I−1∑
j=0

min{j,I−1}∑
l=0

log(nij!)−
I∑

i=0

I−1∑
j=0

min{j,I−1}∑
l=0

log(ni,j−l,l!)

+
I∑

i=0

I−1∑
j=0

min{j,I−1}∑
l=0

ni,j−l,llog(ql)

Using the fact that
∑I−1

l=0 ql = 1, the above log-likelihood function can
be restated in context of the lagrange method with lagrange multiplier
parameter β as the following,

l∗ =
I∑

i=0

I−1∑
j=0

min{j,I−1}∑
l=0

log(nij!)−
I∑

i=0

I−1∑
j=0

min{j,I−1}∑
l=0

log(ni,j−l,l!)

+
I∑

i=0

I−1∑
j=0

min{j,I−1}∑
l=0

ni,j−l,llog(ql)− β(1−
I−1∑
l=0

ql).

Taking partial derivative with respect to β and ql, a straightforward cal-
culation along the fact that

∑I−1
l=0 ql = 1 lead to

β̂ =
I∑

i=1

I−1∑
j=l

min{j,I−1}∑
l=0

ni,j−l,l

q̂l =

∑I
i=1

∑I−1
j=l ni,j−l,l∑I

i=1

∑I−1
j=0

∑min{j,I−1}
l=0 ni,j−l,l

.

A Practical Application

In this section we consider a material damage of motor third party liability
insurance claim portfolio from a private insurance company of Iran. We
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Figure 1: Reporting delay relative frequency histogram for material dam-
age observed between from 2012-03-20 and 2019-03-19: Panel (a) rep-
resents all claims and Panel (b) represents claims that reported to the
insurance company more than 30 days after occurrence time.

have 85649 claims in our data set. The observation period consists in
calender years 20-March-2012 till 19-March-2019.

After a primary investigation and removing illogical events, such as
transaction before occurrence, recovery of claims and allocated loss ad-
juster expenses, we just trusted information about 66346 claims.

As mentioned before, we calculate reporting (and settlement) delay in
monthly scale. Figure (1.a and 1.b) illustrates such reporting delay in
two cases, all claims and claims that reported more than 30 days. As
Figure (1.a) illustrates, there is a considerable amount of zeros for claims
which reported in the first month. This observation justifies using the
zero-inflation distribution for random reporting delay.

Now, we employe two well known the Kolmogorove-Smirnov and the
Cramér-von Mises test to make a decision about the following hypothesis
test.

H0 : The random reporting delay has been distributed according to a
ZIGM distribution

The p-value of these two tests are 0.1695 and 0.1458, respectively, there-
fore the null hypothesis, H0, has been accepted at confidence level 0.95.
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Using gammamixEM function in mixtools package of the R software, re-
leases that a zero-inflated two-Gamma mixture distribution is an appro-
priate distribution for the random reporting delay. More precisely, the
density function for the random reporting delay U is

0.56 ∗ I{0}(u) + 0.09 ∗Gamma(1.24, 0.38)I(0,∞)(u)

+ 0.35 ∗Gamma(1.41, 5.53))I(0,∞)(u).

Table 1 represents estimation for claim reporting delay probabilities pk,
non-homogeneous Poisson intensity λk and settlement delay probabilities
qk−1.

The policyholder behavior for reporting claims after its occurrence have
significant effect on the costs of the insurance company. As mentioned
before, in our data set, the most of policyholders tend to report the claim
to the insurance company less than 30 days. As a result, based on the
above estimators the number of IBNR claims for next 12 months will be
N̂ IBNR =

∑
i,j λ̂ip̂ij = 192. We know the actual count for IBNR claims

in calender year 20-March-2012 till 19-March-2020 is 248.
To predict the corresponding IBNR amount reserve we estimate the

mean of an individual claims severity, µ̂ = 13 million IRR. The third
column in Table 1, we have the maximum likelihood estimator for the
settlement delay probability, ql (the numbers round to four decimal). It
shows that 67% of automobile material damage claims are settled in the
one month after they reported to insurance company. These are the
cheapest claims based on their average costs calculations.

Using these parameter estimates, the IBNR reserve for the next 12
months is 2270 million IRR and the actual amount is 6150 million IRR.
This differences is because of the large economic inflation in claim amount
severity.

Conclusion and suggestion

An important question in non-life insurance research is the estimation of
number of future payments and corresponding amount of them, i.e. loss
reserves. In this article, we study IBNR claims using claims amounts
and claim counts and propose a Zero-Inflated Gamma Mixture model
for estimation of reporting delay probabilities in monthly level. Also,
we consider settlement delay probabilities in our model. We belive that
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Table 1: Estimation of claim reporting delay probabilities pk, non-
homogeneous Poisson intensity λk and settlement delay probabilities qk−1.

k pk λk qk−1 k pk λk qk−1 k pk λk qk−1

1 0.5608 3.9437 0.6736 33 0 1704.662 0.0015 65 0 712.8507 0

2 0.0435 51.268 0.0602 34 0 1616.915 0.0014 66 0 1051.983 0

3 0.0287 105.4938 0.0222 35 0 1680.014 0.0014 67 0 1097.336 0

4 0.0212 222.8187 0.0142 36 0 1396.068 0.0009 68 0 936.6313 0

5 0.0153 194.227 0.0111 37 0 1353.673 0.0009 69 0 961.2813 0.0002

6 0.011 275.0727 0.0114 38 0 1218.602 0.0007 70 0 946.4949 0

7 0.0078 335.214 0.0116 39 0 1161.418 0.0007 71 0 918.8925 0

8 0.0055 416.0598 0.0115 40 0 962.2615 0.0005 72 0 967.209 0

9 0.0038 403.2428 0.0124 41 0 1147.615 0.0007 73 0 935.6667 0

10 0.0027 437.7501 0.0127 42 0 879.1205 0.0003 74 0 826.2512 0

11 0.0019 503.807 0.0124 43 0 1006.628 0.0003 75 0 738.5181 0

12 0.0013 627.0474 0.0117 44 0 905.0779 0.0004 76 0 842.0805 0

13 0.0009 509.7225 0.0116 45 0 914.9372 0.0003 77 0 840.1545 0

14 0.0006 601.4134 0.0108 46 0 887.3313 0.0002 78 0 869.8067 0

15 0.0004 589.5824 0.0101 47 0 909.0216 0.0002 79 0 766.3469 0

16 0.0003 681.2733 0.0106 48 0 926.7682 0.0003 80 0 781.2723 0

17 0.0002 656.6252 0.0087 49 0 799.5841 0.0004 81 0 815.0098 0

18 0.0001 766.0627 0.0082 50 0 738.4568 0.0001 82 0 700.7997 0

19 0.0001 770.9923 0.0075 51 0 866.6269 0.0001 83 0 656.7171 0

20 0.0001 855.7817 0.0068 52 0 820.2885 0.0002 84 0 636.4467 0

21 0 904.092 0.0064 53 0 871.5565 0.0001 85 0 620.3047 0

22 0 979.0222 0.0058 54 0 862.6832 0.0001 86 0 669.8068 0

23 0 1059.868 0.0051 55 0 915.9231 0 87 0 636.5304 0

24 0 1335.927 0.0052 56 0 845.9226 0.0001 88 0 716.256 0

25 0 1221.559 0.0047 57 0 926.7683 0.0001 89 0 736.5403 0

26 0 1369.448 0.0037 58 0 935.6417 0.0001 90 0 799.5841 0

27 0 1548.886 0.0034 59 0 929.7262 0 91 0 738.4568 0

28 0 1727.338 0.003 60 0 863.6694 0.0001 92 0 866.6269 0

29 0 1730.296 0.003 61 0 944.5153 0 93 0 820.2885 0

30 0 1879.171 0.0025 62 0 814.3734 0 94 0 871.5565 0

31 0 1948.185 0.0025 63 0 933.6705 0 95 0 862.6832 0

32 0 1708.606 0.0023 64 0 943.5302 0 96 0 915.9231 0
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use reporting and settlement delay probabilities allows one to get exact
prediction for future payments. Given the past observation, we study pre-
diction of future payments (in number and amount) and their prediction
errors and derived reasonable experssions for them. The model advantage
in the IBNR reserve is insurers can predict the number of future claims
for each future date. This enables them to change the claim reporting
process.

The approach proposed in this paper can be improved with additional
information about claim, such as accident year inflation rate, the seasons
that claims occurs, the zone of accident, etc. These characteristics can
be considered in the loss reserving model and making the prediction of
amount more accurate.
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