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Abstract:
Abstract:
Insurance companies and pension funds which deal with human lifetime
are interested in mortality forecasting to minimize the longevity risk.
In this paper, we studied the mortality forecasting model based on the
age-specific death rates by the usage of the state-space framework and
Kalman filtering technique. To capture the volatility of time, the time
varying trend has been added to the Lee-Carter (LC) model, which is
the benchmark methodology in modeling and forecasting mortality since
it was introduced in 1992. So, this model is a random walk with time
varying drift (TV). We illustrated the performance of the proposed model
using Iranian mortality data over the period 19502015. Numerical results
show that, both models have good fitness and are tangent. So the TV
model acts as well as the LC model, but the TV model has the advantages
of fewer calculations and the time-varying drift which can be beneficial
in time varying data sets.
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Introduction

Life expectancy has increased significantly in recent decades all over the
world. This increase, which is because of medical findings and improve-
ment in standards of living, has economic consequences for life-related
insurance companies and pension funds. To evaluate the patterns of mor-
tality and forecast the future mortality, statistical methods are needed.

There are many studies which consider trends of mortality and try
to forecast the future mortality with different viewpoints and methods.
These studies were started in 17th century and have been continued in
numerous methods. These methods were based simply on the collecting
the number of deaths and births from available sources and they were
lack of graphical presentations. Graunt (1662), Halley (1693) and De
Moivre (1725) were among these studies.

More recently, Gompertz (1825) and Makeham (1860) let the force of
mortality increase exponentially with age, adding a small constant, for
better reflection of the age pattern of mortality at younger ages. Force of
mortality represents the instantaneous rate of mortality at a certain age
measured on an annualized basis. Later, others like Heligman Pollard
(1980) try to fit curve to entire age range based on the ratio of the prob-
ability of dying at any age to that of the probability of not dying at that
age. But none of these methods considered time effect in mortality rate.
Most recent models fit curves to mortality rates in both the age and time
dimension.

Lee and Carter [1] were among the first researchers who used stochastic
trend methodology to count the time effect in mortality date. Lee and
Carter (LC) explored the time series behavior of mortality movements
between age groups by using a single latent factor which is responsible
for describing the general level of log mortality. Log central death rates
are modeled as the sum of a time invariant, age-specific constant, and the
product of an age-specific time invariant component and the time-varying
latent factor. The age-specific component represents the sensitivity of an
individual age group to the general level of mortality changes [1].

Girosi and King [2] proposed a reformulation of the Lee and Carter
model. They introduced a version of LC model, with a single latent fac-
tor, following a random walk with drift. Jong and Tickle [3] introduced
a more flexible approach based on standard time series approaches to
estimation and forecasting. The model introduced was the LC (smooth)
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model which is a smoothed version of the original LC model. They es-
timate the parameters by the means of the least square method and
maximum likelihood estimation using Kalman filtering either. H’ari et al.
[4], added the time factor to the drift of LC model in order to capture the
volatility of time. The applied framework is the state-space framework
that is a well-known method in time series. In this approach, the Kalman
filtering technique is used to estimate the required parameters.

In this paper, we implement the LC model as well as the model with
the time varying drift, called the TV model to Iranian mortality data to
evaluate the function and accuracy of the TV model and the advantage
of it according to the LC model. The available data range from 1950 to
2015 and include a peak due to Iran-Iraq war in 80s.

The paper is followed with the methodology section which describes
the Lee-Carter model and Time-Varying model formulations. In section
3, we run and evaluate both methods using Iranian mortality data and
see the results. At last a conclusion section will conclude the article,
proposing future researches.

Methodology

Let Dxt be the number of people with age x that died in year t and Ext

be the exposure-to-risk at age x in year t. Then mxt is the logarithm of
central death rate for age x in year t [5,6]. defined as:

mxt = ln
(Dxt

Ext

)
(1)

where x ∈ {1, . . . , na}, and t ∈ {1, . . . , T}. Define

mt =

m1,t
...

mna,t


Then the model according to Lee and Carter [1] can be formulated as:

mt = α + βγt + δt (2)

Where mt is the central death rate in year t. α and β are time invariant,
age-specific constants. γt is the time-varying index of level of mortality
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which is one-dimensional underlying latent process and δt is a vector of
(measurement) error terms. Taking expectation, yields the estimation of
α as:

αx = mx (3)

And the parameters β and γ in (1) can be estimated via maximum like-
lihood. The optimum can be found easily via the singular value decom-
position (SVD) of the matrix of centered age profiles, UΣV t = m. Then
according to [3] β̂ = U while γ̂ = ΣV t. For better estimation of parame-
ters, we need to run the second stage estimation of γ. As it is seen, LC
estimation needs many calculations to result in parameter estimation. To
reduce the calculations, and improve the estimation accuracy, we gener-
alize the LC model to a time varying (TV) model. For this aim, the start
point is the LC-reformulated model [2], which is defined as:

mt = θ +mt−1 + ζt, (4)

where ζt is the error term and θ = βc. In the TV model θ = βc is
considered as

θt = a+Bxt, (5)

where

xt =t−1 +ηt. (6)

In the state-space framework, suppose that

Yt :=t= mt −mt−1, t = 2, 3, . . . , T.

Therefore, the observation equation is defined as

Yt = a+Bxt + ζt, (7)

and the state equation is defined as

xt =t−1 +ηt, (8)

where xt is considered as a one-dimensional latent factor, and ζt is as-
sumed to be zero. It means all the uncertainty of the model is defined in
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the ηt term, which ηt ∼ WN(0, Q). For estimating the unknown param-
eters, we need to maximize the likelihood function is given by

L(θ|Y1, . . . , YT−1) =(2π)−na×(T−1)/2

T−1∏
t=1

det(BBt)−1/2

exp

(
−1

2

T−1∑
t=1

(Yt − ΓYt−1)
t(BBt)−1(Yt − ΓYt−1)

)
(9)

After computing B and Γ by the means of the two-stage iterative process
introduced in [5], the parameter vector a is calculated by summing over
t = 2, 3, . . . , T . Then we have

a =
1

T − 1

T∑
i=2

(Yi − Yi−1) =
(mT −m1)− Γ(mT−1 −m0)

T − 1
(10)

Therefore, the parameters of the TV model are estimated [8] . Moreover,
the predictions of the death rates are based upon:

E(mT+τ |FT ) = mT + âτ + B̂
T+τ∑

t=T+1

E(xt|FT ) (11)

E(xT+τ |FT ) = Γ̂(x̂T ) (12)

Implementation and numerical results

As mentioned, life related insurance products face two kinds of risk. First
institutions offering products based on lifetime of an individual, face risk
because life time is uncertain. This kind of risk, known as micro- or
pooling-risk can be reduced by increasing portfolio size.

But there exists another source of risk that cannot be reduced by in-
creasing the number of people included. The macro- or longevity risk is
the risk of increasing in life expectancy during time. Insurance compa-
nies and pension funds are of main institutions that are affected by this
risk, and they always seek methods of mortality modeling which forecast
mortality as accurate as possible.

If pension funds in Iran continue to use the static and adopted life table
”TD 88-90”, set for another country and is for many years ago, they will
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run budget deficit, as they usually do. In addition, the insurance compa-
nies suffer from statistic life tables. Statistic life tables do not reflect the
mortality decrease, which will lower the premium. In a complete compet-
itive market, the less the premium, the more the number of costumers. If
one company cannot accurately forecast the mortality, and therefore do
not lower the premium, it will lose its customers. A company with fewer
and fewer customers will go bankrupt.

The Lee-Carter [1] approach is the benchmark methodology in mortal-
ity forecasting since it was introduced. In many empirical applications
the Lee-Carter approach results in a model that describes the log central
death rates by means of linear trends. But it has sophisticate calculations,
and multiple steps to result in estimation and predictions. Therefore, to
implement the LC function, we use an online Lee Carter Mortality fore-
casting.

As described, based on the H’ari [4], we study a mortality forecasting
model describing the time series behavior of age-specific death rates. Our
model is an extended model of the Lee-Carter, which is reformulated by
Girosi and King [2]. In this reformulation the log central death rates
are directly modeled as random walks with drift. These drifts determine
the long run forecasts. We extend this approach by allowing for a time
varying trend for drifts, depending upon a few underlying latent factors,
in order to capture the co-movements between the various age groups. By
reformulating the model in a state-space framework, the Kalman filtering
technique can be used to estimate the parameters by means of maximum
likelihood estimate (MLE).

The reformulation of Girosi King [2] considers a drift for the random
walk. These drift are constant over time. However, due to the volatility
in (past) mortality data, the estimation of these trends, and, thus, the
forecasts based on them, might be rather sensitive to the sample period
employed. This change in drift is not considered in LC model. Our
TV model allows for time-varying trends, depending on a few underlying
factors, to make the estimates of the future trends less sensitive to the
sampling period.

Another advantageous of our model is that we estimate the age specific
parameters, the latent factor and its process in one single step, while the
Lee-Carter model and its extensions estimate the parameters in multiple
steps. In addition, the standard error estimation in our TV model can be

lcfit.demog.berkeley.edu
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done in the same single step, while the standard error of the parameters in
LC model is estimated in several steps which are complex in some cases,
according to what Lee and Carter themselves say in [1]. This multi-
steps approach makes the calculations more complicated and increases
estimation error.

We applied a simplified model of H’ari’s [4] model and illustrated our
specification using Iranian mortality data over the period 19502015. The
data are extracted from the United Nations dynamic life tables, and we
use death rates that are obtained by the division of the number of death
into the exposure- to-risk.

The data are prepared in EXCEL software to obtain death rates from
death numbers existing in the UN site. Then the parameters of the model
are estimated and predictions are done by the means of MATLAB codes,
which are written for this purpose. At last curves and tables are inserted
for result comparison.

When comparing the LC and TV results, both models have good fitness
and are tangent, with the accuracy of one in ten thousand. So the TV
model acts as well as the LC model. But the TV has the advantage of
fewer calculations and the time-varying drift. In this section, the Iranian
age-specific mortality data is used to illustrate the performance of the
proposed model in comparison to the LC model. The data is the males
life table for the years 1950 to 2015 with the age groups 1, 1-4, , 80-
85, 85+ and is from World Population Prospects. Table 1 and figure1
show the forecasting results of both LC and TV methods for the period
2035-2040. It can be seen that the accuracy of the results is almost the
same in all age groups. The curves of models are almost tangent that
are not distinguishable in the curve, but the TV model has an advantage
comparing to the benchmark methodology because the time varying trend
which is added in TV model can be beneficial to decrease the sensitivity
of the estimations of the future trends to the sampling period.

Besides we examined the sampling period sensitivity to the prediction
results. Death rate trend of Iran shows that mortality rate for men had
increased strongly during the period 1980-1985 which was coincident with
the first 5 years of the Iran-Iraq war. We want to see how choosing the
sample period will affect the mortality prediction, especially if the period

World Population Prospects: The 2012 Revision. United Nations, Popula-
tion Division, Department of Economic and Social Affairs. Data is available at
http://esa.un.org/unpd/wpp/index.htm, downloaded on 07.26.2015)
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Figure 1: Death rate projections for the period 2035-2040 by the LC
model and time varying model

Figure 2: TV and LC comparison, including the death peak of war

includes a peak, like the case of war, or epidemic diseases. We seek a
method to be less influenced by these peaks. Table 2 shows the mortality
rate prediction for the years 2015-2020 based on the time varying (TV)
model and Lee-Carter (LC) model, both in three cases. First the sample
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age TV model LC model

<1 0.00525 0.00501

1-5 0.00014 0.00013

5-10 0.00008 0.00007

10-15 0.00010 0.00009

15-20 0.00037 0.00037

20-25 0.00114 0.00119

25-30 0.00079 0.00081

30-35 0.00087 0.00088

35-40 0.00069 0.00070

40-45 0.00094 0.00094

45-50 0.00156 0.00156

50-55 0.00284 0.00284

55-60 0.00367 0.00365

60-65 0.00639 0.00634

65-70 0.01112 0.01108

70-75 0.03105 0.03149

75-80 0.06192 0.06288

80-85 0.10501 0.10690

85+ 0.19331 0.19772

Table 1: Death rate forecasting results for the period of 2035-2040.

period is 1980 to 2015 which includes the first years of war (including),
with the increased rate of mortality. Then in the next step the rates are
calculated by the time series of 1985 up to 2015 which excludes the first
years of the war (excluding). At last the prediction based on the whole
period (1950-2015) is presented (all). By our data set, according to figure
2 and figure 3, we cannot see a significant decrease in sensitivity of the
result to the sample period.

Another advantage of the TV model is that the complexity of the
computations is less than the LC model. The LC model estimates and
predicts the parameters in multiple complex steps. But the TC model
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Figure 3: TV and LC comparison, excluding the death peak of war

using Calman Filtering technique, estimates in a simple step, using MLE
function.

Conclusion

Static life tables fail to predict true distribution of future mortality and
lead to invalid death rate predictions; thus the need for a dynamic life
table is evident. We run a dynamic model for predicting death rate,
using the state-space framework and Kalman filtering technique, called
a Time Varying model. Our model acts as accurate as the Lee-Carter
model, and even more accurate. The other advantage of our proposed
model, is the lower calculations. The third advantage is that the TV
model, can reduces the volatility of time, means the peaks of deaths,
which occur because of war or epidemic diseases (like covid-19 these days.)
The existing model is suggested to be extended by more than one latent
factors, and error terms with autoregressive moving average (ARMA)
behavior instead of white noise. Thus, the model might show better
performance.
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TV model LC model

age including excluding all including excluding all

<1 0.0123 0.0122 0.0127 0.0122 0.0122 0.01259

1-5 0.0004 0.0004 0.0005 0.00046 0.00044 0.00046

5-10 0.0002 0.0002 0.0002 0.00022 0.00022 0.00022

10-15 0.0002 0.0002 0.0002 0.0002 0.00021 0.00023

15-20 0.0005 0.0004 0.0006 0.00042 0.00043 0.00064

20-25 0.001 0.0009 0.0014 0.0009 0.00091 0.00141

25-30 0.0008 0.0008 0.0011 0.00073 0.00074 0.00112

30-35 0.0009 0.0009 0.0013 0.00087 0.00089 0.00126

35-40 0.0009 0.0009 0.0011 0.00089 0.00093 0.00114

40-45 0.0014 0.0014 0.0016 0.00136 0.00145 0.00159

45-50 0.0023 0.0024 0.0026 0.00231 0.0025 0.00259

50-55 0.004 0.0043 0.0045 0.00403 0.00435 0.00449

55-60 0.0055 0.0059 0.006 0.00552 0.006 0.00604

60-65 0.0096 0.0097 0.0101 0.00976 0.00987 0.0101

60-65 0.0096 0.0097 0.0101 0.00976 0.00987 0.0101

65-70 0.016 0.0163 0.0169 0.01634 0.01656 0.01687

70-75 0.0369 0.0389 0.0395 0.03847 0.04 0.03961

75-80 0.0708 0.0748 0.0748 0.07449 0.07722 0.07431

80-85 0.1182 0.1251 0.1238 0.1258 0.12959 0.12274

85+ 0.2106 0.2216 0.2197 0.22638 0.22996 0.21807

Table 2: The central death rate forecast for the period 2015-2020 based
on different sample period (including war 1980-2015; excluding war 1985-
2015; all 1950-2015) and different methods (Time Varying Drift, and
Lee-Carter)
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