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Abstract:
Abstract:
Identifying the structures of dependence between financial assets is one
of the interesting topics to researchers. However, there are challenges to
this purpose. One of them is the modelling of heavy tail distributions.
Distributions of financial assets generally have heavier tails than other
distributions, such as exponential distributions. Also, the dependence of
financial assets in crashes is stronger than in booms and consequently the
skewed parameter in the left tail is more. To address these challenges,
there is a function called Copula. So, copula functions are suggested for
modelling dependency structure between multivariate data without any
assumptions on marginal distributions, which they solve the problems
of dependency measures such as linear correlation coefficient. Also, tail
dependency measures have analytical formulas with copula functions. In
general, the copula function connects the joint distribution functions
to the marginal distribution of every variables. With regard, we have
introduced a factor copula model that is useful for models where variables
are based on latent factor structures. Finally, we have estimated the
parameters of factor copula by Simulated method of Moment, Newton-
Raphson method and Robbins-Monroe algorithm and have compared the
results of these methods to each other.
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Introduction

The financial crisis of 2007-2008 was a threat for large financial institu-
tions. In the early 2000s, the United States faced a severe financial credit
crisis. They were faced with strange formulas for repaying their debts
to the bank, which seemed those debates change over time. As interest
rates on loans rose, many borrowers could no repay their debts, and some
others were forced to relinquish their assets, including housing. As a re-
sult, this reduced the houses prices in the United States. This issue with
other economic problems had negative effects on the US economy rating
and the world stock markets. When borrowers were not able to pay their
debts, including high interest rates, the entire economic system ran into
trouble. European stock prices also fell gradually. In fact, stocks that
were even independent of each other fell together suddenly. This indi-
cates that the dependence of random variables in tails is stronger than
other regions.

As the history of financial crisis shows, one of the underlying causes
of such events is the failure to model and understand the dependence
structure of multi variate distributions of returns. A powerful tool for
this purpose is Copula. Copulas are multivariate functions that capture
the dependence structure of joint distributions [12]. Copulas allow us to
abstract away the individual distributional properties and focus only on
the dependence of multiple random variables.

One of the most important classes of multi-dimensional models used
in economics and finance, are the factor models. Factor models assume
that the target variables that we wish to study, depend on some latent
variables which we do not directly observe. In modelling market prices,
the latent factors can be interpreted as the common factors that drive
the prices. One advantage of factor models is that they help us discover
these common factors. One of the earliest and most influential factor
models in finance has been the CAPM model [11].

The above two mentioned tools (copulas and factor models) can be
combined in a single model called the factor copula model [2]. Factor
copulas have the advantages of both models. On one hand they can
discover the latent factors and on the other hand they focus only on
the dependence structure. This comes with a price, and the price is
that the estimation of such models becomes difficult. Indeed most of the
factor copulas does not posses closed form densities which can be used for
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estimation. This has resulted in various methods in the literature in order
to estimate the coefficients of a factor model. Because of the lack of closed
form densities, most of the methods have resorted to simulations. Such
methods should inevitably use some kind of stochastic approximation.

In this article, we consider three methods for estimation of factor cop-
ula models. All of these models use the idea of method of moments in
combination with simulation and hence the name simulated method of
moments. The first method comes from [1], and uses a minimization
process in order to minimize the distance between the observed and the
simulated moments. The second method, uses the straightforward idea of
solving a nonlinear system consisting of simulated moments and applies
the well-known Newton-Raphson method [3]. The third and final method
uses the Robins-Monroe approximation method which is one the earliest
and most used methods for stochastic approximation [8].

We have implemented the above three methods and applied them on
the historical price data of 470 stocks included in S&P500 index. We
have compared the performance of the estimation methods. All codes
have been conducted by Python.

The copula of a latent factor model

Consider a vector of N variables, Y, with joint distribution FY , marginal
distributions Fi, and copula C:

[Y1, · · · , YN ]′ ≡ Y ≈ FY = C(F1, · · · , FN) (1)

The copula is a function that describes the dependence between the
variables Y1, · · · , YN as our observations. We will use existing models to
estimate the marginal distributions Fi, and focus on constructing useful
new models for the dependence between these variables, C.
According to [1], we consider factor structure, based on a set of N +K

latent variables:
Let:

Xi =
K∑
k=1

βikZk + εi, i = 1, 2, · · · , N (2)

so

[X1, . . . , XN ]
T ≡ X = BZ+ ε
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where
εi ∼ iid Fε(γε),

Zk ∼ inid FZk
(γk), Zk ⊥ εi ∀i, k.

Then
X ∼ FX = C(G1(θ), G2(θ), . . . , GN(θ); θ),

where θ ≡ [vec(B)T , γε
T , γ1

T , . . . , γK
T ]T . The copula of the latent vari-

ables X, denoted C(), is used as the model for the copula of the observ-
able variables Y. An important point about the above construction is
that the marginal distributions of Xi may be different from those of the
original variables Yi, so Fi ̸= Gi in general; on the other hand, due to
the good features of copula function, instead of using marginal distribu-
tion and the presence of latent factors that complicate their distributions,
we used vector structure, X. The copula implied by equation 2 is gen-
erally not known in closed form. If {Fε, Fz1 , · · · , FzK} are all Gaussian
distributions, in which case the variable X is multivariate Gaussian, im-
plying a Gaussian copula. For other choices of {Fε, Fz1 , · · · , FzK} the
joint distribution of X, and the copula of X, is generally not known in
closed form [1]. However, it is simple to simulate from {Fε, Fz1 , · · · , FzK}
for many classes of distributions, and it can be extracted properties of
the copula from simulated data , such as Rank correlation, Kendalls tau,
and Quantile dependence. These simulated dependence measures can be
used in the SMM estimation method of [2] Oh and Patton (2013), which
is briefly described in .

Although most factor copulas do not have a closed-form density, we
can use results from extreme value theory to obtain analytically results
on the tail dependence implied by a given factor copula model. According
to the simple linear structure generating the factor copula, these results
are relatively easy to obtain. Recall the definition of tail dependence for
two variables Xi, Xj with marginal distributions Gi, Gj [2]:

τLij = lim
q↘0

P[Gj(Xj) ≤ q|Gi(Xi) ≤ q] = lim
q↘0

Cij(q, q)

q
(3)

τUij = lim
q↗1

P[Fj(Xj) > q|Fi(Xi) > q] = lim
q↗1

1− 2q +Cij(q, q)

1− q
.

These are lower and upper tail dependence measures, respectively and
the probability of both variables lying below their q quantile, for q limiting
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to zero, scaled by the probability of one of these variables lying below their
q quantile.

In this article, we used the Tau-Kendall rank dependency measure-
ments to estimate the parameter θ. According to [2], rank dependence
measures for the pair (Xi, Xj) are defined as:

τ ij ≡ 4E[Cij(Fi(Xi), Fj(Xj))]− 1, (4)

where Cij is the copula of (Xi, Xj). The sample counterparts are defined
as:

τ̂ ij =
4

T

T∑
t=1

Ĉij(F̂i(X̂it), F̂j(X̂jt))− 1, (5)

where

F̂i(x) ≡
1

T + 1

T∑
t=1

1{X̂it ≤ x}, Ĉij(u, v) (6)

≡ 1

T + 1

T∑
t=1

1{F̂i(X̂it) ≤ u, F̂j(X̂jt) ≤ v}. (7)

counterparts based on simulations are denoted by τ̃ij(θ).
In propositions 1 and 2 [1], we can see lower and upper tail depen-

dence measures using factor models for single factor and multi-factor
copula models. Beside, according to proposition 3 [1], if we know the
distribution of latent variables and errors, we can obtain constant values
of the formulas for the tail dependencies stated in propositions 1 and 2
using factor models. These propositions show that when the coefficients
on the common factor have the same sign, and the common factor and id-
iosyncratic variables have the same tail index, the factor copula generates
upper and lower tail dependence. If either Z or ε is asymmetrically dis-
tributed, then the upper and lower tail dependence coefficients can differ,
which provides this model with the ability to capture differences in the
probabilities of joint crashes and joint booms. When either of the coeffi-
cients on the common factor are zero, or if they have differing signs, then
the upper and lower tail dependence coefficients are both zero. These
propositions consider the case that the common factor and idiosyncratic
variables have the same tail index.
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According to [1], we are likely to estimate parameter θ in below model:

Xi =
K∑
k=1

βikZk + εi, i = 1, 2, · · · , N

[X1, . . . , XN ]
′ ≡ X = BZ+ ε,

εi ∼ N(µ = 0, σ2 = 1), (8)

Zk ∼ Skew t(ν =∞, λ), Zk ⊥ εi ∀i, k.

X ∼ FX = C(G1(θ), G2(θ), . . . , GN(θ); θ),

θ ≡ [vec(B)′, λ]′,

In this model, we considered the Normal distribution for errors and the
latent variables had the Skew-t distribution with the degree of freedom
infinity.

According to the proposition 4 [1], we estimated the number of latent
factors in our model. To further explain, we should sort the eigenvalues of
the matrix of R̂y

T and then consider the number of those whose values are

greater than one, and if T tends to infinity, K̂T will tend K in probability
. This is obvious that the distributions and copula are continuous, and
the iid assumption can be relaxed by invoking assumption 2 of Oh and
Patton (2013) [2] and then we estimated standardized residuals from the
original data. With assumptions (1)(2) of proposition 4 we find that K̂T

provides, asymptotically, a lower bound on the true number of factors; it
will miss factors that are gk(R) ≤ 1 for k ∈ [1, K]. If N diverges with
T then this cannot happen and assumption (3) will hold automatically
(see Chamberlain and Rothschild 1983; Bai and Ng 2002) [10], while in
this proposition setting of finite N this assumption may not hold. In
such cases using a threshold of one provides a lower bound on the true
number of factors.

Estimation of factor copula

As mentioned, joint density factor copula models do not have a closed-
form and the methods that we already know, such as Maximum Likeli-
hood estimation for estimating of parameters of copula are not efficient.
According to [2], we use the Simulated Method of Moments estimation
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or SMM. This method is suitable for models that have a large number of
unknown dependent parameters or their density functions which are not
closed-form. Also, it can be estimated the marginal distributions using
the EDF. Considering the following GARCH model (with p = q = 15)
augmented with lagged market return information, that are used to filter
each of the individual return series:

Yt = α0 + α1Yt−1 + · · ·+ αqYt−q + εt, t = 1, 2, · · · , T (9)

σ2
t = α0 + α1ε

2
t−1 + · · ·+ αqε

2
t−q + δ1σ

2
t−1 + · · ·+ δpσ

2
t−p,

α0 ≥ 0, αi, δi ≥ 0, i = {1, 2, · · · }

In this model, εt represents error which is equal to σtηt, and also ηt
is residual variable. Indeed, residuals appear in errors. We estimated
the distribution of the standardized residuals as the EDF using GARCH
model and observations Y . From now on, we will estimate the factor
copula parameters, θ̂0 ∈ Θ, with vector of residuals, η̂t. Let m̃S(θ) be
a N ×N matrix of dependence measures computed using S simulations
from FX(θ), and {Xs}Ss=1 and let m̂T be the corresponding vector of
dependence measures computed using the standardized residuals {ηt}Tt=1.

We will now explain the three estimation methods used in this paper
to obtain the values of the factor copula parameters.

Simulated Method of Moments

Define the difference between these as

gT,S(θ) ≡ m̂T − m̃S(θ), (10)

This SMM estimator is based on searching across θ ∈ Θ to make 10 as
small as possible. The estimator is defined as QT,S(θ) where

QT,S(θ) ≡ g′
T,S(θ)ŴTgT,S(θ), (11)

so
θ̂T,S ≡ argmin

θ∈Θ
QT,S(θ). (12)

Weight matrix ŴT is a positive definite matrix, which may depend
on the data. First, we use equation 5 for estimating parameter θ. We
use the closing price of each stock to obtain daily returns and sort them
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by date. We used time series models and estimate unknown parameters
using the same model. The reason why we used daily returns instead
of stock prices is that time series analysis of returns is more appropriate
than price time series and we expect the returns (not prices) change
linearly. So, we obtained the residual variables using the GARCH model.
We also estimated their marginal distributions empirically and finally
obtained the Tau-Kendall rank dependency measures in the sample mood,
it means R̂r

T . We set m̂T as the vector of the calculated dependency
measurements of the standard residues {η̂t}Tt=1. According to proposition
4 [1], let m̂T = R̂r

T , Which is a N × N matrix. Then the number of
latent factors returns the kth-largest eigenvalue of the matrix R̂r

T which
is greater than 1. Moreover, we used data from S&P500. Our data, Yi,
is related to the price of 500 US stocks from 2013 to 2018, which is 1258
workable days. This data includes stock name, stock date, open and close
prices, highest and lowest price and volume. We sorted the stocks by date
in a table whose columns bear the names of stocks and the rows of that
date and stock yield in each sheet.

We have removed sheets whose yields have not been defined (price
information is incomplete), and finally, the number of our stocks became
equal to N = 470. The reason why we use returns instead of prices is
that we expect returns to change linearly. Also, the dependence between
returns is not very interesting for us, and what is important for us is the
dependence between the residuals. The eigenvalue greater than 1 with
N = 470 is equal to:

K̂T = max{k : gk(R̂
r
T ) > 1} = 67
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Figure 1: Number of latent factors with 470 returns

109.595546 19.723693 10.608553 7.50174234 5.9589867 5.3865252

4.78211970 4.4297649 3.4951303 2.81086816 2.6780819 2.5997679

2.49934868 2.2946449 2.1583033 2.01111380 2.0072519 1.9677944

1.94252628 1.8877604 1.7358756 1.71122559 1.6496980 1.6233613

1.58726184 1.5445178 1.5050240 1.48155870 1.4568980 1.4422919

1.40280982 1.3870849 1.3687812 1.33594704 1.3214989 1.2980555

1.27601869 1.2611421 1.2521566 1.24031450 1.2291115 1.2244026

1.20202774 1.1876368 1.1780731 1.16482782 1.1592405 1.1562463

1.14476479 1.1336676 1.1163572 1.11225577 1.1042156 1.1009008

1.08945546 1.0793844 1.0679219 1.05886555 1.0532051 1.0491200

1.04006913 1.0279877 1.0198420 1.01858352 1.0134598 1.0065245

1.00231535

We drew the Scree plot of eigenvalues. Since the first and the second
eigenvalues are much larger than the third eigenvalue, we cut off them
from the figure to have an obvious figure.

In this article, we took 10 stocks from the S&P500 index, and the
number of latent factors being equal to one. Then, we can see its results
and scree plot:

K̂T = max{k : gk(R̂
r
T ) > 1} = 1

3.2215 0.9858 0.8845 0.8331 0.7903

0.7454 0.6731 0.6534 0.6091 0.6035
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Figure 2: The number of latent factors with 10 returns

According to the SMM estimator, we also obtain m̃S(θ). As we said,
matrix m̃S(θ) is the measure of dependence calculated from the 1000
simulations of FX(θ) and {Xs}Ss=1. We calculate the Tau-Kendall depen-
dency measure with the simulated latent variables, and let them, m̃S(θ).
Furthermore, This vector is a function with the parameter θ which in-
cludes the skewness λ and the latent factor coefficients matrix Z, which
means βi, i = {1, 2, · · · , N}. The results are given in chapter .

Newton-Raphson Method

Suppose we had a family of distributions, p(x|θ), and we wish to estimate
the r-dimensional parameter vector θ by matching a m-dimensional vector
of moments, µ(θ) = E[m̃S(x)|θ], to a fixed vector µ0 = m̂T(θ).

If E[m̃S(x)|θ] can be expressed analytically in closed form, we can
obtain the moments estimate θ̂ using the Newton-Raphson method, as
follows [3]. Start with a guessed value, θ1. Then for t = 1, 2, · · · , update
the guess to

θt+1 = θt + [E[m̃S(x)|θt]′]−1(m̂T(θ)− E[m̃S(x)|θt]) (13)

where µ′(θt) = E[m̃S(x)|θt]′ is the matrix of derivatives of µ(θt) =
E[m̃S(x)|θt] with respect to θ. Here we are concerned with problems
for which E[m̃S(x)|θt] cannot be computed in closed form; instead, we
can estimate it, for any given value of θ, by simulation of N draws of X
from the distribution p(x|θ).
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Suppose now the problem is overdetermined, with more moments spec-
ified than parameters in the model, and we would like the θ that gives
the best least-squares fit, minimizing ||m̂T(θ)−E[m̃S(x)|θt]||2. The nor-
mal equations are E[m̃S(x)|θt]′(m̂T(θ)−E[m̃S(x)|θt]) = 0, which we can
again solve by Newton-Raphson, using iterative least squares. Starting
out at a guess θ1, for t = 1, 2, · · · , the updated guess is

θt+1 = θt + [least squares regression of (µ0 − µ(θt)]) on the matrixµ′(θt)].
(14)

After solving equation 14, θt+1 will equal with θt+(µT (θt)µ(θt))
−1µ′(t)T (µ0−

µ(θt)). One can apply the Monte Carlo method as before, using the es-
timates µ̂(θ) and µ̂′(θ) from the previous sections and converging to an
approximate least squares fit by simulating a large number N of draws
once the estimate θt is close to convergence [3].

As we know, obtaining E[m̃S(x)|θt] with closed-form which is random
function, is impossible. Therefore, we cannot compute E[m̃S(x)|θt]′. We
used Secant method and as a result of Broyden’s method that because
of matrix form. The secant method is a root-finding algorithm that uses
a succession of roots of secant lines to better approximate a root of a
function f. The secant method can be thought of as a finite-difference
approximation of Newton’s method. The secant method is defined by the
recurrence relation:

θt+1 = θt + (
µ(θt)− µ(θt−1)

θt − θt−1

)−1(µ0 − µ(θt)) (15)

As can be seen from the recurrence relation, the Secant method requires
two initial values, θ0 and θ1, which should ideally be chosen to lie close to
the root [4,5]. Broyden’s method is a generalization of the secant method
to more than one dimension. In numerical analysis, Broyden’s method is a
quasi-Newton method for finding roots in r variables. Newton’s method
for solving µ(θ) = 0 uses the Jacobian matrix, J , at every iteration.
However, computing this Jacobian is a difficult and expensive operation.
The idea behind Broyden’s method is to compute the whole Jacobian only
at the first iteration and to do rank-one updates at other iterations [6,7].

We supposed µ(θt)→ µt and µ
′(θt)→ Jt which ism×r matrix (m = r).

So

Jt = Jt−1 +
(µt − µt−1)− Jt−1(θt − θt−1)

||θt − θt−1||2
(θt − θt−1)

T , (16)
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and
θt+1 = θt + J−1

t (µ0 − µt). (17)

If m > r, we have equation 16 and

θt+1 = θt + (JT
t Jt)

−1JT
t (µ0 − µt). (18)

Finally we used our data for calculating of parameters, θ, and MSE in
chapter .

Robbins-Monroe algorithm

The RobbinsMonro algorithm, introduced in 1951 by Herbert Robbins
and Sutton Monro, presented a methodology for solving a root problem,
where the function is represented as an expected value.

Assume that we have a function M(θ), and a constant α, such that
the equation M(θ) = α has a unique root at θ0. It is assumed that while
we cannot directly observe the function M(θ), we can instead obtain
measurements of the random variable N(θ) where E[N(θ)] =M(θ). The
structure of the algorithm is to then generate iterates of the form:

θn+1 = θn − an(N(θn)− α)

Here, a1, a2, . . . is a sequence of positive step sizes. Robbins and Monro
proved [8] that θn converges in L2 (also in probability) to θ, and Blum [9]
later proved the convergence is actually with probability one, provided
that:

• N(θ) is uniformly bounded,

• M(θ) is nondecreasing,

• M ′(θ0) exists and is positive, and

• The sequence an satisfies the following requirements:

∞∑
n=1

an =∞,
∞∑
n=1

a2n <∞.

In this algorithm using SMM method, we let:

(i) Moment of m̃S(θ) as a function with random parameter θ.
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(ii) A particular sequence of steps which satisfy these conditions, and
was suggested by RobbinsMonro, have the form: an = a

n
, for a > 0.

Other series are possible but in order to average out the noise in
N(θ), the above condition must be met.

(iii) Suppose we obtain m̂T empirically, which is equal to α. Our pur-
pose is that m̃S(θ) equal to α as much as possible.

(iv) For updating θ in each step, we have:

θn+1 = θn − an(m̃S(θ)− m̂T), (19)

(v) Also we simulated with 1000 samples to 1000 times.

(vi) To estimate the parameters of λ, β, we used two elements of mo-
ments [0,1] and [1,2]. Then, we update the parameters every times
by 19.

We obtain the optimal value of θ and MSE, and the results are given in
chapter .

Numerical result

In this chapter, we fit the model with the three methods described in
Chapter with S&P500 index data. For simplicity, we consider N=10 to
have one latent factor and a state that latent factor coefficients are com-
mon, it means: β1 = · · · = β10 = β. The reason why we used the model
with one latent factor is that the first factor is significantly different from
the other factors, so the one-factor model is a good model to estimate.??
For simplicity, we assumed the weight matrix ŴT in Equation 32 is Iden-
tity matrix, ŴT = I. The results for simulated method of moment are
shown in the below table:

On the other hand, we estimated the value of Q and that was 9.68755201.
Although this method failed to reduce the value of objective function, it
could be a optimal method to estimate the parameters of copula. We also
fit the data on the Newton-Raphson method and we obtained results in
blow table, when m = 3, r = 2:
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Table 1: The result of parameters with the Simulation Method of Moment

Parameter Initial value Optimal value

β -0.6 −0.5999985
λ -2 −1.9991886

MSE = 8.0508306e− 09

Table 2: The result of parameters with the Newton-Raphson Method

Parameter Initial value Optimal value

β -0.6 0.6158638421

λ -2 −0.5999471132
MSE = 0.000924684

For the Robbins-Monro algorithm, we have brought the results in the
blow table:

Table 3: The result of parameters with the Robbins-Monro algorithm

Parameter Initial value Optimal value

β -0.6 −0.55929763
λ -2 −2.13245125

MSE = 0.05362494

Conclusion

By comparing the results, we found that although the simulated method
of moment was performed with more time, the MSE value decreased and
the optimal parameters values became closer to the initial parameters
values. Therefore, this method is more suitable than the other two meth-
ods.1

Also, despite the fact that Newton-Raphson method is faster to process,
it cannot be a good method to estimate copula parameters because of
calculating the values of parameters.2
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It should be noted that the Robbins-Monro algorithm is a good esti-
mator, too. In this method, the values of optimal parameters is approx-
imately close to initial parameters. Therefore, it can be an appropriate
method to estimate the factor copula parameters.3
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