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Abstract:
In this paper, we discuss the calibration of geometric Brownian motion
model equipped with Markov-switching factor. Since the motivation for
this research comes from a recent stream of literature in stock economics,
we propose an efficient estimation method to sample series of stock prices
based on the expectation-maximization algorithm. We also implement
an empirical application to evaluate the performance of the suggested
model. For this purpose, based on the proposed Markov-switching model,
we classify market data under various economic regimes by estimating
the smoothed probabilities of hidden Markov chain states. Numerical
results through the classification of the data set show that the proposed
Markov-switching model fits the actual stock prices and reflects the main
stylized facts of market dynamics.
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Introduction

There are several researches in the literature, which their purpose to
present a more realistic reflection of financial markets. The stochastic
models can be broadly divided into: local volatility, stochastic volatility,
volatility as an unknown process and Markov-switching models. The
stochastic volatility model as an unknown process was first presented by
[2]. However, as pointed out in [3], these models complicate the solution
of financial market derivatives, because they involve additional nonlinear
factors in ordinary differential equations.

From [8] and [6], local volatility models have been proposed by de-
terministic function of asset price and time horizon. Fast calibration
of these volatility models types was extensively studied by [10]. As we
know, the model requires a smooth and continuous implied volatility,
while numerical methods considered for the local volatility models can
yield unstable results. According to studies conducted by [7] and [16],
the performance of the local volatility model is not satisfactory because
these models are highly restrictive. The stochastic models were generally
investigated by [1]. It should be noted that the stochastic models are too
popular for pricing financial derivatives and these models are also able
to produce implied volatility smile well (see [12], [26] and [11]). However,
stochastic models are not able to take into account different economic
states without the regime-switching factor. Under such circumstances,
these models may not reflect well the significant events that occur in the
dynamics of financial time series.

Many financial time series sporadically show significant interruptions
in their behavior that are associated with events such as war, climate
change, recession, inflation, and so on (see [29] and [4]). In these situa-
tions, economists tend to use variables that change the behavior of time
series dynamics. The model that can analyze these changes is called the
Markov-switching model. This model can consider the intermittent and
repetitive changes of economic regimes endogenously, while in the other
models, these changes are usually as specific and exogenous. In most re-
searches, there may be little information about the times that the param-
eters change. Therefore, we need to make results for milestones so that
the change of parameters is significant. In this regard, some researchers
first considered models that only one regime change occurs in the data,
then models with more than one regime were designed. The probability
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of switching depends on the path of the asset. This dependence intro-
duced as Markov-switching models (see [19]). Markov-switching (regime-
switching) models are among the models that take the sudden changes
into account and have been widely used to evaluate asset prices. Such
models have recently been considered not only in econometrics but also in
other areas such as population dynamics, river flow analysis, and speech
recognition (see [21], [14] and [17]). Further, a comparison of various
types of Markov-switching models for exchange rate can be found in [28].
Newly, [15] and [23] have experimentally shown that adding the Markov-
switching factor to the volatility dynamics leads to more non-Gaussianity
stock returns.

In order to compare the prices obtained by the model and the actual
market data, calibration by model parameters estimation is evermore
implicated (see [25], [13] and [24]). This challenging process under the
Markov-switching model is the focus of this paper. Given the latent
switching mechanism, in which the model parameters change based on
sudden changes over time, it is necessary to estimate these parameters
by deriving model parameters and the state values of the hidden Markov
chain process simultaneously. In this paper, we calibrate the geometric
Brownian motion (GBM) model equipped with the hidden Markov chain.
To do this, we use the method proposed by [20], in which the parame-
ters of the hidden Markov model were estimated using the expectation-
maximization (EM) algorithm. The proposed model actually demon-
strates the Markov-switching GBM (MSGBM) dynamics, such that the
stock price can be classified based on its calibration.

The MSGBM model framework

Suppose that (Ω,F ,P) is a probability space and [0, T ] is a time interval
with a maturity time of T > 0. Also, let Y := {Y (t)}t∈[0,T ] be a hidden
Markov chain with N state on probability space (Ω,F ,P) that the set of
chain states is E = {e1, . . . , eN}. Without loss of the generality, suppose
that the hidden Markov chain states are considered as singular vectors;
That is, for every j = 1, . . . , N , jth component of ej is one and the rest
is zero. Let Π = (πjk)j,k=1,...,N be a hidden Markov chain rate matrix,
where πjk is the intensity of the chain transition from state ej (regime j)
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into state ek (regime k). Such that for every j, k = 1, . . . , N we have

πjk =


πjk ≥ 0 j ̸= k,

−
∑N

j=1,j ̸=k πjk j = k.

Consider the hidden Markov chain transition matrix Y as P = (pjk),
which includes the probabilities pjk = P(Y (t) = ek|Y (t − 1) = ej), such
that pjk means switching regime j (state ej) at time t − 1 to regime k
(state ek) at time t. For instance, if the hidden Markov chain has two
states (N = 2), then

P =

p11 p12

p21 p22

 =

p11 1− p11

p21 1− p21

 .

Here, the considered Markov chain in the Markov-switching model has
two-state, i.e., N = 2. Generalizing the model to more states is similar
to the two-state model.

Let µ = (µ1, µ2) ∈ R2 and σ = (σ1, σ2) ∈ R2 be dependent on Y (t).
We define

µ(t) := µ(Y (t)) = ⟨µ, Y (t)⟩ =
∑2

j=1 µj⟨Y (t), ej⟩,

σ(t) := σ(Y (t)) = ⟨σ, Y (t)⟩ =
∑2

j=1 σj⟨Y (t), ej⟩, σj > 0, j = 1, 2,

(1)

where ⟨·, ·⟩ represents the inner product in R2. On the other hand, as
expressed in [9], Y (t) has the following expression

dY (t) = ΠY (t)dt+ dV (t), (2)

where R2-value process {V (t)}t∈[0,T ] is an FY -martingale process, such
that FY := FY {(t)}t∈[0,T ] indicates the filtration generated by the hidden
Markov chain Y . We define f(t, y) = e−Πty. Then from Eq. (2) and by
applying Ito’s lemma to f(t, y), we obtain

df(s, y) = fsds+ fydY (s) +
1

2
fyydY (s)dY (s)

= −Πe−ΠsY (s)ds+ e−Πs(ΠY (s)ds+ dV (s))

= e−ΠsdV (s).



Paper 8: Markov-switching model with application 115

Integrating with respect to s from 0 to t and multiplying the sides by eΠt

we have

Y (t) = eΠtY (0) +

∫ t

0

eΠ(t−s)dV (s).

Therefore

E[Y (t)] =eΠtE[Y (0)]

=eΠt (e1 × P(Y (0) = e1) + e2 × P(Y (0) = e2)) .

We put m := (e1 × P(Y (0) = e1) + e2 × P(Y (0) = e2)). In this case, us-
ing Eq. (1), we have

E[r(Y (t))] = ⟨µ,E[Y (t)]⟩ = ⟨µ,meΠt⟩,

E[σ(Y (t))] = ⟨σ,E[Y (t)]⟩ = ⟨σ,meΠt⟩.
(3)

Suppose that S(t) is the stock price at the moment t ∈ [0, T ]. In this
case, the RSGBM model under the accurate probability measure P can
be expressed as follows

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dB(t), S(0) = s,

wherein (µ(t))t∈[0,T ] and (σ(t))t∈[0,T ] are the average rates of return and
market volatility, respectively, which depend on the hidden Markov chain
Y (t). Also, B(t) is a Brownian motion under the probability measure P.
Recently [27], showed that the RSGBM model under the neutral risk

probability measure Q could be expressed as follows

dS(t) = r(t)S(t)dt+ σ(t)S(t)dW (t), S(0) = s, (4)

where (r(t))t∈[0,T ] is the interest rate that depends on the hidden Markov
chain Y (t). W (t) is also the standard Brownian motion under the prob-
ability measure Q. In general, S(t) can be expressed as follows

S(t) =


S1(t) if Y (t) in state e1 (regime 1),

S2(t) if Y (t) in state e2 (regime 2),

(5)

where,

dSi(t) = riSi(t)dt+ σiSi(t)dW (t), i = 1 ∨ 2.

Here and everywhere, it is always assumed that the Markov chain process
Y and the Brownian motionW are independent of each other. Therefore,
Y is considered as an external factor of market information. Assume
that FW

t is a filtration generated by Brownian motion W . We define
Ft := FW

t ∨ FY
t as a global filtration.



116 Journal of Mathematics and Modeling in Finance

Implementation of the EM algorithm

The expectation-maximization algorithm or EM algorithm is an efficient
iterative method for calculating the maximum likelihood estimation in
the presence of missing or hidden information. In contrast, in the maxi-
mum likelihood estimation method, the parameters are estimated in the
presence of visible data. [5] first introduced the EM algorithm. Each step
of the EM algorithm consists of two steps: expectation (E) and maxi-
mization (M). In step E, the confidential data are estimated based on
a conditional expectation based on the observed data and the available
model parameters. In stepM , the likelihood function is maximized under
the assumption that the lost data is known.

Assume that Z is a random vector derived from a parametric family to
derive the EM algorithm. We want to find Λ so that P(Z|Λ) is maximized.
The logarithm likelihood function is defined as follows

L(Λ) = log(P(Z|Λ)), (6)

where the likelihood function is considered as a function of the Λ pa-
rameter for X data. Since the logarithm function is a strictly ascending
function, the value Λ, which maximizes P(Z|Λ), will also maximize L(Λ).

As mentioned, the EM algorithm is an iterative method for maximizing
L(Λ), in which Λ(m) is an estimate of Λ after mth iteration. Since the
goal is to maximize L(Λ), we want to calculate the updated estimate of
Λ, such that,

L(Λ) > L(Λ(m)).

It means that we can maximize the difference between the terms L(Λ)
and L(Λ(m)) and we can write

L(Λ)− L(Λ(m)) = log(P(Z|Λ))− log(P(Z|Λ(m))). (7)

So far we have not considered any missing or hidden variables, the EM al-
gorithm provides a framework for including such information in problems
where there is such information. Suppose that Y is a hidden random vec-
tor composed of random variables y. Now we write the total probability
P(Z|Λ) based on the hidden variable y. In this case, we have

P(Z|Λ) =
∑
y

P(Z|y,Λ)P(y|Λ). (8)
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Therefore, Eq. (7) can be rewritten as follows

L(Λ)− L(Λ(m)) = log

(∑
y

P(Z|y,Λ)P(y|Λ)

)
− log(P(Z|Λ(m))). (9)

Given the Jensen inequality for each convex function such as f and for
nonnegative Λj, that is applied in the condition

∑n
j=1 Λj = 1, we have

f

(
n∑

j=1

Λjxj

)
≤

n∑
j=1

Λjf(xj).

In this case, using Jensen inequality for Eq. (9), we obtain

L(Λ)− L(Λ(m)) = log

(∑
y

P(Z|y,Λ)P(y|Λ)

)
− log(P(Z|Λ(m)))

= log

(∑
y

P(Z|y,Λ)P(y|Λ)P(y|Z,Λ
(m))

P(y|Z,Λ(m))

)
− log(P(Z|Λ(m)))

= log

(∑
y

P(y|Z,Λ(m))

(
P(Z|y,Λ)P(y|Λ)
P(y|Z,Λ(m))

))
− log(P(Z|Λ(m)))

≥
∑
y

(
P(y|Z,Λ(m)) log

(
P(Z|y,Λ)P(y|Λ)
P(y|Z,Λ(m))

))
− log(P(Z|Λ(m)))

=
∑
y

(
P(y|Z,Λ(m)) log

(
P(Z|y,Λ)P(y|Λ)

P(y|Z,Λ(m))P(Z|Λ(m))

))
≜ ∆(Λ|Λ(m)). (10)

As a result

L(Λ) ≥ L(Λ(m)) + ∆(Λ|Λ(m)). (11)

From l
(
Λ|Λ(m)

)
≜ L(Λ(m))+∆(Λ|Λ(m)), the inequality of expression (11)

is written as follows

L(Λ) ≥ l(Λ|Λ(m)). (12)

Therefore l(Λ|Λ(m)) is an upper bound for the maximum likelihood func-
tion L(Λ).
Now we show that the function l(Λ|Λ(m)) and L(Λ) are equals for each
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Λ = Λ(m).

l(Λ(m)|Λ(m)) = L(Λ(m)) + ∆(Λ|Λ(m))

= L(Λ(m)) +
∑
y

P(y|Z,Λ(m)) log

(
P(Z|y,Λ(m))P(y|Λ(m))

P(y|Z,Λ(m))P(Z|Λ(m))

)

= L(Λ(m)) +
∑
y

P(y|Z,Λ(m)) log

(
P(Z, y|Λ(m))

P(Z, y|Λ(m))

)
= L(Λ(m)). (13)

As can be seen, the function l(Λ|Λ(m)) is an upper bound for the likelihood
function L(Λ), which is equal to Λ = Λ(m), and the value of l(Λ|Λ(m+1))
is maximized for Λ = Λ(m+1). Since l(Λ) ≥ l(Λ|Λ(m)), an increase of
l(Λ|Λ(m)) is guaranteed and the value of the likelihood function L(Λ)
increases with each step.

Now we just need to calculate the value Λ(m+1). Therefore we have

Λ(m+1) = argmax
Λ

{l(Λ|Λ(m)}

= argmax
Λ

{
L(Λ(m)) +

∑
y

P(y|Z,Λ(m)) log

(
P(Z|y,Λ)P(y|Λ)

P(y|Z,Λ(m))P(Z|Λ(m))

)}
. (14)

Excluding sentences that are fixed relative to Λ, we have

Λ(m+1) = argmax
Λ

{∑
y

P(y|Z,Λ(m)) log (P(Z|y,Λ)P(y|Λ))

}

= argmax
Λ

{∑
y

P(y|Z,Λ(m)) log

(
P(Z, y,Λ)P(y,Λ)

P(y,Λ)P(Λ)

)}

= argmax
Λ

{∑
y

P(y|Z,Λ(m)) log (P(Z, y|Λ))

}

= argmax
Λ

{
EY |Z,Λ(m) [log (P(Z, y|Λ))]

}
. (15)

As we can see, in Eq. (15), the phases of expectation and maximization
have appeared. Thus the EM algorithm includes the following iterations

(i) Step E: Determine the conditional expectation EY |Z,Λ(m) [logP(Y, y|Λ)].

(ii) Step M: Maximize the expression EY |Z,Λ(m) [logP(Y, y|Λ)] relative to
Λ.
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Estimation of the MSGBM model parame-

ters

In this section, we use the EM algorithm based on the actual market
data to estimate the Markov-switching times of the MSGBM model, the
transition probabilities of the Markov chain, and the parameters that
depend on the hidden Markov chain, i.e., (r(t), σ(t)). Using the same
strategy, the Markov-switching model parameter with more states can
be estimated.

Before estimating the Markov-switching model parameters in Eq. (4),
we consider its discrete form by using the Euler method as follows

S(tj) = S(tj−1) + r(t)S(tj−1) + σ(tj)S(tj−1)
√
δϵj , (16)

where {0 = t0 < t1 < . . . < tn = T} is a partition of interval [0, T ]
with step length δ := tj − tj−1 . Also ϵ1, . . . , ϵn is a random instance of
the standard normal distribution. Since the ϵj has a standard normal
distribution, then S(tj) has a normal distribution with mean S(tj−1) +
r(tj)S(tj−1) and variance σ2(tj)S

2(tj−1)δ, conditional upon the S(tj−1)
and Y (tj). Therefore, assuming that the number of Markov chain states
is two, the density function of S(tj) conditional upon the S(tj−1) and
Y (tj) is expressed as follows

f (S(tj)|S(tj−1), Y (tj) = ek,Λ) =

(
1√

2πσ2
kS

2(tj−1)δ

)

× exp

{
− (S(tj)− S(tj−1)− rkS(tj−1))

2

2σ2
kS

2(tj−1)δ

}
, k = 1, 2,

(17)

where Λ := {r1, r2, σ1, σ2, P} is a set of parameters that we want to
estimate. Consider the likelihood function based on the parameter Λ as
follows

L(Λ|S,Y) =

n∏
j=1

f (S(tj)|S(tj−1), Y (tj) = ek,Λ) , (18)

where S = (S(t1), . . . , S(tn)) and Y = (Y (t1), . . . , Y (tn)). In this case,
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the logarithm likelihood function is obtained as follows

L(Λ|S,Y) = ln

(
n∏

j=1

f (S(tj)|S(tj−1), Y (tj) = ek,Λ)

)

=

n∑
j=1

ln f (S(tj)|S(tj−1), Y (tj) = ek,Λ)

= −1

2

n∑
j=1

ln(2πσ2
kS

2(tj−1)δ)−
n∑

j=1

[
(S(tj)− S(tj−1)− rkS(tj−1))

2

2σ2
kS

2(tj−1)δ

]

= −1

2

n∑
j=1

[
ln(2πσ2

kS
2(tj−1)δ) +

(S(tj)− S(tj−1)− rkS(tj−1))
2

σ2
kS

2(tj−1)δ

]
. (19)

As mentioned before, the EM algorithm maximizes the probability func-
tion (4) for models with missing observations or unobserved variables.
Its purpose is to maximize the probability function in the presence of
unobserved data. This algorithm is an iterative method consisting of the
following two steps in (m+ 1)th iteration.

(i) Step E: Determine the following conditional expectation

EY|S,Λ(m)

[
lnP

(
S,Y | Λ(m+1)

)]
:=

2∑
k=1

n∑
j=1

lnP
(
S,Y | Λ(m+1)

)
P
(
Y (tj) = ek | S,Λ(m)

)
.

(20)

(ii) Step M: Maximize the problem (20) relative to Λ. In this case,
the logarithm likelihood function of Eq. (19) is maximized rela-
tive to the model parameters, and Λ(m+1) is obtained in (m+ 1)th
iterations.

Next, using Theorems 0.3 and 0.4, we specify steps E and M of the
EM algorithm, respectively, to estimate the parameters of the MSGBM
model.

Theorem 0.3. Conditional expectation EY|S,Λ(m) [lnP(S,Y|Λ(m+1))], in
step E of the EM algorithm is as follows

EY|S,Λ(m)

[
lnP

(
S,Y | Λ(m+1)

)]
=

2∑
k=1

n∑
j=1

P
(
Y (tj) = ek|S,Λ(m)

)
(21)

× ln f
(
S(tj)|S(tj−1), Y (tj) = ek,Λ

(m+1)
)
.

Proof. See [22].
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The value E [Y (tj) = ek|S(tj),Λ] is known as the ”filtering inference”
and is a linear combination of the observation vector S(tj) and the prob-
ability P (Y (tj) = ek|S(tj),Λ) is calculated. Since Y (t) is hidden and not
directly visible, the expected values of the Markov chain process can be
observed by the observation vector E [Y (tj) = ek|S(tj),Λ]] to be calcu-
lated. These expected results are known as ”smoothed inference” and
calculate the conditional probability P (Y (tj) = ek|S,Λ). In order to cal-
culate the smoothed probability, the filtering step must be completed.

The expression P (Y (tj) = ek|S(tj),Λ) in the Theorem 0.3, consists of
two stages of filtering and smoothing. Let the parameter vector be ob-
tained by step M in step (m−1), in this case, as examined by [20], the two-
step filtering and smoothing algorithm to obtain P

(
Y (tj) = ek|S(tj),Λ(m)

)
is expressed as follows

(i) Filtering: For j = 1, . . . , n, as long as P
(
Y (tn) = ek|S(tn),Λ(m)

)
is

obtained, we calculate the following probability

P
(
Y (ti) = ek|S(tj),Λ(m)

)
=

P
(
Y (tj) = ek|S(tj−1),Λ

(m)
)
f
(
S(tj)|Y (tj) = ek, S(tj−1),Λ

(m)
)

∑2
i=1 [P (Z(tj) = ei|S(tj−1),Λ(m)) f (S(tj)|Y (tj) = ei, S(tj−1),Λ(m))]

,

where

P
(
Y (tj+1) = ek|S(tj),Λ(m)

)
=

2∑
i=1

P
(m)
ki P

(
Y (tj) = ei|S(tj),Λ(m)

)
.

(ii) Smoothing: For j = n− 1, . . . , 1, we calculate the following proba-
bility

P
(
Y (tj) = ek|S,Λ(m)

)
=

2∑
i=1

P
(
Y (tj+1) = ei|S,Λ(m)

)
P
(
Y (tj) = ek|S(tj),Λ(m)

)
P

(m)
ik

P (Y (tj+1) = ei|S(tj),Λ(m))

 ,

where, the probability of transition is as follows

P
(m+1)
ik =

∑n
j=1

[
P
(
Y (tj+1) = ei | S(tj+1),Λ

(m)
)(

P
(m)
ik

P(Y (tj)=ek|S,Λ(m))
P(Y (tj+1)=ei|S(tj),Λ

(m))

)]
∑n

j=1 P (Y (tj) = ek | S,Λ(m))
.

In addition, as a starting point of the algorithm we have

h
(m)
j = P

(
Y (t1) = ej |S(t0),Λ(m)

)
,
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and we will have the following iterations

hj(m+ 1) = P
(
Y (t1) = ej |S,Λ(m)

)
,

where h
(0)
j for each j = 1, 2 must be given as input to the algorithm

(see [18]).

Theorem 0.4. The maximum value of the relationship

EY|S,Λ(m)

[
lnP

(
S,Y|Λ(m+1)

)]
In step M of the EM algorithm, under the MSGBM model, the following
points are obtained

r̂k =

∑n
j=1 P

(
Y (tj) = ek|S,Λ(m)

)(
S(tj)−S(tj−1)

S(tj−1)

)
∑n

j=1 P (Y (tj) = ek|S,Λ(m))
, (22)

σ̂k =

√√√√√∑n
j=1

[
(P (Y (tj) = ek|S,Λ(m)))

(
(S(tj)−S(tj−1)−r̂kS(tj−1))

2

S2(tj−1)δ

)]
∑n

j=1 P (Y (tj) = ek|S,Λ(m))
. (23)

Proof. According to Theorem 0.3, we have

EY|S,Λ(m)

[
lnP

(
S,Y | Λ(m+1)

)]
=

2∑
k=1

n∑
j=1

P
(
Y (tj) = ek|S,Λ(m)

)
× ln f

(
S(tj)|S(tj−1), Y (tj) = ek,Λ

(m+1)
)
.

Substituting Eq. (19) in the expression above gives

EY|S,Λ(m)

[
lnP

(
S,Y | Λ(m+1)

)]
=

2∑
k=1

n∑
j=1

[
P
(
Y (tj) = ek|S,Λ(m)

)

×

(
−1

2

[
ln
(
2πσ2

kS
2(tj−1)δ

)
+
(S(tj)− S(tj−1)− rkS(tj−1))

2

σ2
kS

2(tj−1)δ

])]
. (24)

To obtain the maximum points of Eq. (24), we differentiate from rk and
σk (k = 1, 2) and then set it to zero. Differentiating Eq. (24) with respect
to rk and set it equal to zero, we obtain

1

2σ2
kδ

n∑
j=1

[
P
(
Y (tj) = ek|S,Λ(m)

)(2S(tj−1) (S(tj)− S(tj−1)− rkS(tj−1))

S2(tj−1)

)]
= 0

⇒
n∑

j=1

P
(
Y (tj) = ek|S,Λ(m)

)(S(tj)− S(tj−1)− rkS(tj−1)

S(tj−1)

)
= 0

⇒
n∑

j=1

P
(
Y (tj) = ek|S,Λ(m)

)(S(tj)− S(tj−1)

S(tj−1)

)
= rk

n∑
j=1

P
(
Y (tj) = ek|S,Λ(m)

)
.
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Therefore, estimation of the parameter rk for k = 1, 2 is obtained as
follows

r̂k =

∑n
j=1

[(
P
(
Y (tj) = ek|S,Λ(m)

))(
S(tj)−S(tj−1)

S(tj−1)

)]
∑n

j=1 P (Y (tj) = ek|S,Λ(m))
,

which indicates the interest rate parameter is in the kth regime.
Now we differentiate from Eq. (24) with respect to σk and then set it

to zero, in which case we have

n∑
j=1

[
P
(
Y (tj) = ek|S,Λ(m)

)(
−1

2

[
2

σk
− 2 (S(tj)− S(tj−1)− r̂kS(tj−1))

2

σ3
kS

2(tj−1)δ

])]
= 0

⇒ 1

σ3
k

n∑
j=1

[
P
(
Y (tj) = ek|S,Λ(m)

)(
σ2
k − (S(tj)− S(tj−1)− r̂jS(tj−1))

2

S2(tj−1)δ

)]
= 0

⇒
n∑

j=1

[(
P
(
Y (tj) = ek|S,Λ(m)

))( (S(tj)− S(tj−1)− r̂kS(tj−1))
2

S2(tj−1)δ

)]

= σ2
k

n∑
j=1

P
(
Y (tj) = ek|S,Λ(m)

)
.

Therefore, estimation of the parameter σk for k = 1, 2 is obtained as
follows

σ̂k =

√√√√√∑n
j=1

[
(P (Y (tj) = ek|S,Λ(m)))

(
(S(tj)−S(tj−1)−r̂kS(tj−1))

2

S2(tj−1)δ

)]
∑n

j=1 P (Y (tj) = ek|S,Λ(m))
,

which indicates the market volatility is in the kth regime.

After estimating the Markov-switching model parameters, the data
should be classified according to the smoothed probabilities in regimes
1 and 2. More precisely, if the probability P (Y (tj) = e2|S) is greater
than P (Y (tj) = e1|S), then the model dynamic is currently in regime
2, otherwise it is in regime 1. In other words, since P (Y (tj) = e2|S) +
P (Y (tj) = e1|S) = 1, if the smoothed probability for state e2 at time
tj is greater than 0.5, that is, if P (Y (tj) = e2|S) > 0.5, then the model
dynamic at time tj is in regime 2, otherwise at time tj it is currently in
regime 1.
To estimate the parameters of the RSGBM model, we use the daily

stock price data of Microsoft and Intel companies from 01/01/2017 to
01/01/2020 (Figures 1 and 2). We set the maximum number of iterations
of the EM algorithm to 20. The likelihood estimation results are reported
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Table 1: Estimation of the MSGBM model parameters by using the EM
algorithm.

Market Regime 1 Regime 2 Transition probability

r̂ σ̂ r̂ σ̂ P11 P12 P21 P22

Microsoft 0.00201 0.05292 0.00082 0.17487 0.94606 0.05394 0.05654 0.94346

Intel 0.00140 0.06050 -0.00025 0.21297 0.89718 0.10282 0.10431 0.89569
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Figure 1: Microsoft stock price from 01/01/2017 to 01/01/2020.
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Figure 2: Intel stock price from 01/01/2017 to 01/01/2020.
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in the last iteration of the EM algorithm in Table 1 for the Microsoft and
Intel markets. We can also see the trend of this algorithm in estimating
the parameters of the RSGBM model and transition probability of the
Markov chain states (transition probability of hidden Markov chain) with
various iterations for Microsoft and Intel markets in Figures 3 and 4,
respectively. As it is known, the values of the parameters converge to a
certain level after several iterations, which indicate the estimated value
of the parameter.

Figures 5 and 6 show Microsoft and Intel stock price data classification
based on smoothed probability in state e1 (regime 1) and state e2 (regime
2), respectively. Significant results are obtained from each regime and
give each one a real economic concept. As shown in Table 1, regime 1
corresponds to a low-volatility regime, and regime 2 represents a high-
stress state constantly changing between periods. The reflection of this
feature for the fundamental market data of Microsoft and Intel from
01/01/2018 to 01/01/2019 are shown in Figures 5 and 6.

0 5 10 15 20

Iteration

0

0.005

0.01

r 1

0 5 10 15 20

Iteration

-5

0

5

r 2

×10-3

0 5 10 15 20

Iteration

0.05

0.1

0.15

σ
1

0 5 10 15 20

Iteration

0.1

0.15

0.2

σ
2

0 5 10 15 20

Iteration

0

0.5

1

P
11

0 5 10 15 20

Iteration

0

0.5

1

P
12

0 5 10 15 20

Iteration

0

0.5

1

P
21

0 5 10 15 20

Iteration

0

0.5

1

P
22

Figure 3: Estimation of the MSGBM model parameters for Microsoft
data by the EM algorithm with various iterations.
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Figure 4: Estimation of the MSGBM model parameters for Intel data by
the EM algorithm with various iterations.
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Figure 5: Microsoft stock price classification from 01/01/2018 to
01/01/2019 by regimes 1 and 2 under the MSGBM model.

Conclusion

In this paper, a stochastic model based on the two-state hidden Markov
chain is studied. The proposed model represents a Markov-switching
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Figure 6: Intel stock price classification from 01/01/2018 to 01/01/2019
by regimes 1 and 2 under the MSGBM model.

model whose parameters depend on the hidden Markov chain and change
over time. We estimated the model parameters based on the actual data
using the EM algorithm, where the conditional expectation of E-step,
is obtained by the two-step filtering-smoothing algorithm. According
to the obtained numerical results, in the first and second regimes, the
interest rates are high and low, respectively, and also in these two regimes,
the market volatility is low and high, respectively. These cases, which
represent a healthy stock economy in the first regime and a sick stock
economy in the second regime, were evaluated by classifying real data.
Numerical results show that the proposed MSGBM model can well reflect
these market realities.
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