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Abstract:
Abstract:
Given the widespread increase in classical and emerging models for asset allocation
in investment portfolios available in the capital market, investors find it challenging
to easily compare classical methods and machine learning techniques to identify
the optimal investment combination. The aim of this research is to compare asset
allocation based on the Nested Clustering Algorithm (NCO) with classical port-
folios. This study has been conducted in a practical and descriptive-analytical
manner, with the statistical population consisting of all companies listed on the
Tehran Stock Exchange and the Iran Farabourse from 2013 to 2022. After screen-
ing, adjusted daily data from 88 companies were selected as the final sample for
statistical analysis. In this context, the Kruskal-Wallis test was used to examine
the hypotheses, and Python, SPSS, and Excel software were utilized. Based on
the overall performance evaluation criteria for portfolios (Sharpe ratio, Sortino ra-
tio, maximum drawdown, value at risk, and expected shortfall), the results of the
hypothesis tests in this research indicate that the methods based on the Nested
Clustering Optimization Algorithm outperform their classical counterparts signif-
icantly. Therefore, it can be concluded that portfolios based on machine learning
algorithms perform better than classical portfolios.

Keywords: Asset Allocation, Hierarchical Clustering, Risk Management, Machine
Learning.
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1 Introduction

In financial markets, risk management and portfolio optimization are among the

primary goals and key challenges for financial professionals and academics. So far,

finding an efficient model for financial asset allocation has been one of the main is-

sues because asset allocation decisions are always made under uncertainty and with
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incomplete information [13]. In financial markets, asset allocation refers to the dis-

tribution of an investment portfolio across various assets such as stocks, bonds, and

cash in order to balance risk and return. The portfolio optimization and asset al-

location model is based on the foundational idea introduced by Markowitz (1952),

which operates within a framework that optimizes based on mean and variance.

Markowitz emphasized that the optimization problem depends on the structure of

the covariance and the expected returns of the assets, not just the returns alone.

Given the practical challenges associated with predicting returns, many have turned

to risk-based portfolio allocation methods that utilize the covariance matrix as a

key input. So far, extensive research has been conducted to reduce errors in mod-

eling related to asset allocation and portfolio optimization. Due to the lack of a

suitable return index for calculation, which could reduce computational errors in

portfolio optimization, in risk-based asset allocation methods, return is not consid-

ered a primary input of the model. Therefore, in asset allocation methods focused

on risk distribution, the goal is to maximize return [23] [24]. On the other hand,

today portfolio construction is recognized as an emerging and promising field in ma-

chine learning. For several decades, the asset management industry has relied on

modifying and refining the Markowitz efficient frontier to create optimal portfolios.

It is clear that many of these models perform optimally in-sample; however, due

to computational instabilities in convex optimization, these models may perform

poorly out-of-sample. In general, there are three common approaches to mitigating

instability in optimal portfolios. First, some researchers have tried to regularize

the solutions by injecting additional information about the mean or variance in a

prior form. Second, others have suggested reducing the solution’s feasible range by

incorporating additional constraints. Third, some researchers have proposed meth-

ods to improve the numerical stability of the inverse covariance matrix [13]. Several

classical approaches have attempted to solve these computational instabilities, each

with varying degrees of success. Among them, machine learning algorithms have

demonstrated the potential to generate robust portfolios that also perform well out-

of-sample. Thanks to their ability to detect sparse hierarchical relationships, tradi-

tional methods are gradually being replaced [12]. The primary goal of this research

is to compare classical methods in this field with the Nested Clustered Optimization

(NCO) algorithm as a representative of unsupervised machine learning algorithms.

In this context, the theory and performance of clustering-based methods are ex-

amined and compared with minimum variance portfolios, maximum diversification,

and equal risk contribution approaches. Additionally, the performance of portfo-

lios based on machine learning algorithms is compared to one another as well as to

their classical counterparts. To meaningfully evaluate the differences in the mean

values of performance evaluation metrics for portfolios formed by each model in

terms of risk and return, the results from the performance evaluation criteria of

various portfolio models will be analyzed using the Kruskal-Wallis test (or the H

test), which is a non-parametric test.
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2 Theory

Machine learning (ML) methods are designed to manage large datasets and have

proven to be particularly accurate in fields such as investment and computer sci-

ence. Today, some research in the field of finance examines whether ML models

can be adapted to improve the performance of traditional asset allocation models

in finance [32]. In fact, such applications allow us to more easily solve both linear

and nonlinear problems, which traditional models cannot address. This has led to

the widespread application of deep learning and machine learning techniques, as

subsets of artificial intelligence, in the financial domain [1]. Given the importance

of this topic, the main goal of this research is to review and introduce recent devel-

opments in computational methods. This research highlights findings that enhance

our understanding of the application of ML in asset allocation and risk manage-

ment. Some of the risk-based asset allocation strategies examined in this study

include:

2.1 Minimum Variance Portfolio (MV)

Markowitz (1952) introduced the mean-variance framework, presenting a new so-

lution for portfolio optimization to the world. His theory was further developed

into a more general model known as Modern Portfolio Theory (MPT) with the

publication of his later book [19]. Markowitz (1952) formulated a model in which,

for a portfolio composed of diversified risky assets, the investor can achieve the

minimum risk for a given level of return. Mathematically, this formulation can be

expressed as a quadratic problem, as shown in Equation (1):

min
ω

ω⊤Σω

s.t. ω⊤1 = 1

ω⊤µ ≥ R (1)

Where ω represents the weight vector of the assets in the portfolio and Σ is the

covariance-variance matrix of the assets. In general, portfolios constructed using the

Markowitz model tend to produce concentrated weights because the primary goal

of optimization is to optimize volatility diversification, not the weights. The result

of solving the optimization problem from Equation (1) is presented in Equation

(2):

ωMV =

∑−1
1

1⊤
∑−1

1
(2)

Where Σ is the covariance matrix, 1 is a vector of ones, and 1⊤ is the transpose of

the vector of ones.
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2.2 Maximum Diversification Portfolio (MD)

Choueifaty (2006) introduced the maximum diversification framework to the aca-

demic literature and provided a ratio for measuring diversification within a portfo-

lio. Choueifaty and Coignard (2008) expanded this framework with the Maximum

Diversification Portfolio. This method operates based on the diversification ratio,

serving as an efficient alternative to minimum variance portfolios [6]. Choueifaty

and his colleagues (2013) defined the diversification ratio as shown in Equation

(3), representing the ratio of the weighted average volatility of the portfolio to its

overall volatility [7].

DR =
w⊤σ√
w⊤Σw

(3)

Where w is the weight vector of the assets and σ is the vector of asset volatilities.

n∑
i=1

wiσi = w⊤σ (4)

Equation (4) serves as a metric for the diversification index, as in a portfolio of

assets, the volatilities of the assets are less than or equal to the weighted sum of the

asset volatilities, given that correlations are not perfectly positive. Therefore, the

Diversification Ratio (DR) estimates the level of diversification achieved by holding

assets that are not perfectly correlated. It is logical that portfolios in which capital

is spread across many unrelated assets also have a high DR. Choueifaty and his

colleagues (2013) formalized this insight by decomposing the DR of a portfolio into

its weighted correlation metrics and its concentration metrics, denoted as Asset

Concentration (AC) and Risk Concentration (CR).

DR =
1√

AC(1− CR) + CR
(5)

AC is defined as a weighted average correlation of the volatilities of the components

in the portfolio:

AC =

∑
i ̸=j(wiσiwjσjρi,j)∑

i̸=j(wiσiwjσj)
(6)

CR is defined as the weighted concentration ratio of the portfolio’s volatilities:

CR =

∑
i(wiσi)

2

(
∑

i wiσi)
2 (7)

A portfolio consisting of a single long position will have a CR equal to 1, while a

portfolio with equal weights across its assets, reflecting their volatilities, will have

the lowest possible CR, which is equal to the inverse of the number of assets in it.

Therefore, the Diversification Ratio (DR) of a portfolio has an inverse relationship

with both AC and CR, increasing as either of these two metrics decreases. Thus,

the most diversified portfolio is represented by the case where both AC and CR
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are minimized. Additionally, the weight vector WMDP
t is based on maximizing the

diversification ratio.

WMDP
t =

argmaxDR(Wt)

Wt
(8)

2.3 Equal Risk Contribution Portfolio (ERC)

The core idea of this strategy is that the weights of the assets are allocated in

proportion to their risk in the portfolio. In this approach, risk is measured using

variance. This means that if an asset has lower risk (variance), it will receive

a larger weight compared to an asset with higher risk. This method was first

introduced to the capital markets by Bridgewater in 1996, and the term was coined

by Edward Qian in 2005. Qian et al. (2005) argue that the investment portfolio

should be allocated based on risk rather than capital allocation [28]. To understand

the ratios of portfolios with equal risk contribution, Milard et al. (2008) first define

the minimum and maximum risk contributions of different assets using Equation

(9) in the portfolio [18].

MRCi =
∂σ(w)

∂wi
=

(Σw)i
2w⊤Σw

(9)

On the other hand, RM(x1, . . . , xn) is calculated as a measure of portfolio risk,

which is the sum of the products of each asset’s weight and the overall risk of that

asset.

RM(x1, . . . , xn) =

n∑
i=1

xi
∂RM(x1, . . . , xn)

∂xi
(10)

Therefore, the risk contribution of asset iii in the portfolio is defined according to

Equation (11) as follows:

RCi(x1, . . . , xn) = xi
∂RM(x1, . . . , xn)

∂xi
(11)

The risk contribution of asset iii is represented in Equation (12) as follows:

RCi(x1, . . . , xn) = xi

(
∂σ(x)

∂xi

)
= xi

(
(Σx)i√
xTΣx

)
(12)

2.4 Hierarchical Clustering Models

Hierarchical clustering is a clustering method that hierarchically divides data into

clusters in a layered partitioning manner, creating a hierarchy of these clusters.

In this approach, distances between data objects are calculated to be used as a

similarity metric. Various distance measures, such as Euclidean, Manhattan, or

Minkowski distances, can be used to determine the distance between clusters. The

distance matrix also aids the hierarchical clustering algorithm in deciding whether

to merge or split clusters. Furthermore, the linkage method significantly impacts
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the determination of similar clusters. In this method, each object is initially as-

signed to its own cluster, resulting in n clusters for n objects. The most similar

pairs of clusters are then merged based on the defined distance metric and linkage

type, forming a new single super-cluster. Subsequently, the distance between this

new cluster and the remaining clusters is recalculated, and this process continues

until the number of clusters matches the desired count or all objects merge into a

single cluster. This process is crucial, as incorrect selection of a linkage method can

lead to improper and inefficient clustering [30] [26].

Various Linkage Models Based on Distance Measurement Between Clusters in Hi-

erarchical Clustering:

• Single Linkage: This method measures the distance between the closest

points of two clusters. It proves to be proficient in recognizing non-elliptical

geometries, rendering it advantageous for discerning intricate patterns within

datasets. However, it can lead to chaining, where clusters are formed based

on a single close connection, which may cause elongated or stringy clusters.

Despite this, its simplicity and wide usage in various clustering applications

make it a valuable choice for understanding the initial structure of the data.

• Average Linkage: This method computes the average distance between all

points in two clusters, offering a balance between the tendencies of Single

Linkage and Complete Linkage. It performs well in the case of noise between

clusters and produces clusters with equal variance. However, it is somewhat

biased toward globular-shaped clusters. The average linkage method is se-

lected for its robustness in handling noise and ensuring that the resulting

clusters are not overly sensitive to outliers or extreme variations.

• Ward’s Method: Ward’s Method minimizes the total within-cluster vari-

ance by merging clusters that result in the smallest increase in total variance.

This method is effective for creating compact and spherical clusters, making it

a preferred choice for situations where cluster compactness is crucial. While it

may be sensitive to outliers and less effective in recovering elongated clusters,

its ability to minimize variance and produce distinct, well-formed clusters

makes it a solid choice for portfolio clustering in financial contexts [14].

These three methods were chosen due to their provision of an all-encompassing

strategy for clustering, effectively tackling various issues including outliers, noise,

and the compactness of clusters. By combining these methods, the goal is to achieve

robust clustering results that enhance the overall portfolio optimization process. In

Table 1, supplementary explanations are provided. These explanations examine

the criteria based on the relationships between clusters for evaluating clustering

performance. This table also illustrates how different clustering methods can be

compared using these definitions. With this information, the reader can gain a

better understanding of the correlation coefficient metric and its significance in
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Table 1: Types of hierarchical clustering models

distSL(Ci, Cj) = distAL(Ci, Cj) = distWard(Ci, Cj) =

min(x∈Ci,x′∈Cj) dist(x, x
′) 1

|Ci|·|Cj |
∑

x∈Ci

∑
x′∈Cj

D(x, x′)
|Ci|·|Cj |
|Ci|+|Cj |dist(ci, cj)

Where:
distSL(Ci, Cj): The distance between two clusters using the single linkage
method.
distAL(Ci, Cj): The distance between two clusters using the average linkage method.
distWard(Ci, Cj): The distance between two clusters using Ward’s method.
Ci: Center of the first group.
Cj : Center of the second group.
x: Member of the first group.
x′: Member of the second group.

hierarchical clustering. Using these hierarchical clustering models, the results of

the NCO clustering can be enhanced, leading to a better categorization of the

data. Each of these models has its unique characteristics based on how they utilize

distances and similarities.

Nested Cluster Optimization Algorithm (NCO)

According to Markowitz’s mean-variance model, Markowitz’s curse is an issue that

arises in portfolio optimization, especially when there are either strong or low cor-

relations between the assets in the portfolio [13]. To address Markowitz’s curse in

highly correlated portfolio assets, Lopez de Prado presented the Nested Clustered

Optimization (NCO) algorithm. The process, which has its roots in Markowitz’s

mean-variance technique, attempts to distribute the portfolio’s volatility among

its component blocks. To do this, a clustering technique is used, and a set of

stable weights is obtained by computing the best intracluster and intercluster allo-

cations [29]. Ref. [11] describes the NCO algorithm’s initial suggestion. The nested

cluster assignment is implemented through a four-phase approach:

Phase 1: Hierarchical Correlation Clustering

Initially, the correlation matrix is converted into a distance matrix. The distance
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matrix is then used to form clusters through hierarchical clustering algorithms.

The structure of the clusters formed in this phase is utilized in the next phase to

estimate the actual cluster constituents.

Phase 2: Optimal Number of Clusters

In this phase, the optimal number of clusters is determined. The optimal number

of clusters ultimately defines the final constituents of the clusters from which the

cluster correlations are extracted.

Phase 3: Intra-cluster Weight Assignment

In this stage, the intra-cluster weight assignment is conducted using the clusters

formed in the previous phase. This is achieved by creating a correlation matrix for

the cluster constituents and optimizing it using a portfolio optimization method.

Given that NCO is considered a framework that can be applied to any convex

optimization-based portfolio allocation method.

Phase 4: Inter-cluster Weight Assignment

In this phase, the reduced covariance matrix is established, considering only the

variances and correlations between clusters. Using this matrix, the weight assign-

ment between clusters is calculated using the same optimization method employed

in the intra-cluster weight assignment phase [31] [13].

In this research, after determining the weights of each asset, the research vari-

ables are calculated as per the equations presented in Table 2.

The following abbreviations, as outlined in Table 3, will be used to facilitate

better understanding of the concepts and to avoid lengthy explanations in the

discussion and evaluation of various portfolio assessment models.

3 Literature Review

Many decision-makers, such as fund managers and investors, face serious challenges

in their decision-making processes due to a lack of accurate and comprehensive in-

formation. A common approach to making these decisions is to provide answers as

solutions to a convex optimization problem, where the goal is to maximize a spec-

ified objective function subject to a series of inequality constraints. The Critical

Line Algorithm (CLA) is one of the most common methods for solving convex op-

timization problems with inequality constraints [19], [3]. Although this algorithm

is mathematically valid, it is known to be a weak estimator for obtaining out-of-

sample optimal solutions [20], [10], [16]. Two main reasons that indicate significant

estimation errors in CLA are: (a) noisy inputs and (b) signal structure that destabi-

lizes CLA. Various analytical approaches have attempted to reduce the estimation

error of CLA by solving this error with three alternative methods: (1) introducing

strong constraints [15], (2) adding preliminaries [4], [9], and (3) shrinking the co-

variance matrix [17]. Although these methods seem practically useful, they do not

directly address the two contextual reasons that lead to instability in CLA. Marcus

Lopez de Prado first stated in 2016 in his article that the instability of convex
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Table 2: Measurement Methods for Research Variables

No. Variable Formula

1 rt: Stock Return rt = ln
(

pt
pt−1

)
pt: Current Price, pt−1: Previous Price

2 σ2
t : Stock Variance σ2

t = 1
T

∑T
t=1(rt − r̄)2 · d

rt: Daily Geometric Return, d: Number of Trading Days

3 σmn: Covariance Be-
tween Two Stocks

σmn = E [(rm − E[rm])(rn − E[rn])]

rm: Return of Stock m, E[rm]: Expected Value of Stock
m

rn: Return of Stock n, E[rn]: Expected Value of Stock n

4 Sharpe Ratio Sharpe =
µ−rf

σ

µ: Average Return, rf : Risk-Free Rate, σ: Standard
Deviation

5 Sortino Ratio Sortino = r̄−rMAR
σMAR

r̄: Expected Portfolio Return, rMAR: Minimum Accept-
able Return

σMAR: Downside Risk

6 MDD: Maximum
Drawdown

MDD = maxτ∈[0,t]
Wτ−Wt

Wτ

Wt: Lowest Portfolio Value in the Interval [0, T ]

7 VaR: Value at Risk VaR = µ+ σr ·N−1(α)

N−1(α): Cumulative Distribution Function at confidence
level α

8 CVaR: Conditional
Value at Risk

CVaR = 1
α

∫ α

0
VaR(α,X) dx

optimization solutions can be traced to two sources: (1) noise in input variables

and (2) signal structure that amplifies estimation errors in input variables. The

innovation of this paper is the introduction of the Nested Clustering Optimization

(NCO) algorithm, a method that addresses both sources of instability. Vito Cisirti

and Andrea Biasi (2023) introduced a new model for portfolio optimization using a

tree method with minimal nested clusters in their research. This model is capable

of overcoming the limitations of asset allocation through classical methods, such

as instability and excessive concentration of portfolio weights, and it provides a

defensive mechanism against increased systematic risk during high-volatility peri-

ods. To achieve this, the authors utilized graph theory and followed a multi-step

clustering-based approach to ultimately improve volatility. They also claimed that
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Table 3: Abbreviations Used in Machine Learning and Classical Portfolio Models

Row Abbreviation Model
Type

Name

1 NCO ward MV Machine
Learning

Minimum Variance Model implemented in the Nested Clus-
ter Optimization Algorithm with Ward linkage

2 NCO ward MD Machine
Learning

Maximum Diversification Model Implemented in Nested
Cluster Optimization Algorithm with Ward linkage

3 NCO ward ERC Machine
Learning

Equal Risk Contribution Model Implemented in Nested
Cluster Optimization Algorithm with Ward linkage

4 NCO single MV Machine
Learning

Minimum Variance Model implemented in the Nested Clus-
ter Optimization Algorithm with Single Linkage

5 NCO single MD Machine
Learning

Maximum Diversification Model implemented in the Nested
Cluster Optimization Algorithm with Single Linkage

6 NCO single ERC Machine
Learning

Equal Risk Contribution Model implemented in the Nested
Cluster Optimization Algorithm with Single Linkage

7 NCO average MV Machine
Learning

Minimum Variance Model implemented in the Nested Clus-
ter Optimization Algorithm with Average Linkage

8 NCO average MD Machine
Learning

Maximum Diversification Model implemented in the Nested
Cluster Optimization Algorithm with Average Linkage

9 NCO average ERC Machine
Learning

Equal Risk Contribution Model implemented in the Nested
Cluster Optimization Algorithm with Average Linkage

10 MD Classical Maximum Diversification

11 MV Classical Minimum Variance

12 ERC Classical Equal Risk Contribution

by employing the bootstrap method, they can produce more diverse and stable

portfolios that, compared to competing methods, result in improved skewness met-

rics and lower tail risk [8]. Banouchir and Khadri (2021) sought to find a method to

enhance the out-of-sample performance of portfolio weights in their research. Using

hierarchical clustering, they proposed an alternative cluster-based portfolio to ob-

tain a sequence of clustered assets. Based on the Gram-Schmidt orthogonalization,

the risk estimation of the dataset is converted to the sum of the cluster estimates in

the sequence. The performance of this method and its competitors was empirically

compared through various simulations in high dimensions [5]. Pouletabo and Spiri-

donova (2021) proposed a method for reducing the dimensionality of input data

based on hierarchical clustering of available securities for investment. Initially, the

Pearson pairwise correlation coefficient is used as a measure of proximity among

securities for hierarchical clustering. In the next step, the impact of the proposed

method on the quality of the optimal solution obtained using several samples, with

respect to the Markowitz model, is examined. The effect of hierarchical clustering

parameters (distance metrics between clusters and clustering threshold values) on

the change in the quality of the optimal solution obtained is also investigated. The

dependency between the returns of the target portfolio and dimensionality reduc-

tion using the proposed method is analyzed [27]. Noor Ahmadi and Sadeghi (2022)

employed hierarchical risk parity machine learning techniques in their research and

compared the results with a minimum variance approach. For this research, the

adjusted closing prices of 30 listed companies over 760 trading days from 2018 to



Paper 9: Nested Clustered Optimization Algorithm (NCO) 147

2020 were utilized. The Sharpe ratio was used to assess portfolio performance for

both in-sample and out-of-sample periods. The results from in-sample and out-of-

sample analysis indicated that the hierarchical risk parity approach outperformed

the minimum variance approach [25]. Mirlouhi and Toudeshki (2020) aimed to

present a suitable method for portfolio optimization using market data and its clus-

tering. The outcome of this comparison illustrates the success rate of optimization

based on clustering compared to a benchmark portfolio [21].

4 Hypotheses of the Research

• Hypothesis 1: The performance of the Minimum Variance model imple-

mented in the Nested Cluster Optimization algorithm (NCO MV) is better

than that of the Minimum Variance model (MV).

• Hypothesis 2: The performance of the Equal Risk Contribution model im-

plemented in the Nested Cluster Optimization algorithm (NCO ERC) is bet-

ter than that of the Equal Risk Contribution model (ERC).

• Hypothesis 3: The performance of the Maximum Diversification model im-

plemented in the Nested Cluster Optimization algorithm (NCO MD) is better

than that of the Maximum Diversification model (MD).

5 Methodology

This research is classified as a quantitative method due to the use of numerical mea-

surements in the results of the study, and it falls under applied research in terms

of outcomes. From the perspective of research philosophy, it is interpretative, and

in terms of research approach, it is inductive, aimed at analyzing quantitative and

scattered data and transforming them into rich and detailed information. Addi-

tionally, the research strategy for identifying and compiling related factors under a

common condition is correlational, and the research objectives, in terms of imple-

mentation logic, are descriptive. Regarding data collection methods, both field and

library studies are utilized. In this research, in the first step, the adjusted price data

after the distribution of cash dividends and capital increases of the sample stocks

is extracted for a ten-year period. After normalizing and cleaning the data, in the

second step, all classic models, including minimum variance portfolio, equal risk

contribution portfolio, and maximum diversification portfolio, as well as machine

learning models using cumulative hierarchical clustering, are calculated according

to the research assumptions in the Python software environment. In the third step,

the performance in terms of profitability and risk measurement of different models

is assessed using modern and postmodern portfolio indicators. In the fourth step,

the Kruskal-Wallis statistical test is employed to measure the performance supe-

riority of each strategy. This test is used to compare the means of two or more
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populations. In this test, the variables being compared are quantitative, and the

sample sizes are small, or their distribution is not normal [22]. The statistical popu-

lation of this research includes the securities of all active issuers in the Tehran Stock

Exchange and Iran Fara bourse during the period from the beginning of 2013 to

the end of 2022. The research sample for the period from April 25, 2013, to March

18, 2023, is selected based on 2,408 trading days. The sampling is conducted after

applying the following restrictions:

1) The issuers’ stocks must be accepted in the Tehran Stock Exchange by the

end of 2022.

2) The stock symbol must be listed on the board and have a complete price

history on all years considered.

3) In each year, the stocks must have been traded in an eligible state for more

than 160 days.

Ultimately, the research sample consists of daily adjusted data for 88 companies

among all companies listed on the Tehran Stock Exchange that have performed

satisfactorily and met the above conditions.

Data collection was conducted in Excel, while data refinement and processing,

algorithm execution, variable calculations relevant to the research, and hypothesis

testing to identify the statistical significance of differences in average errors were

carried out using Python version 3.9.7. In this software, the libraries NumPy,

Pandas, Matplotlib, Seaborn, SciPy, Scikit-learn, FinPy, and CvxPy were utilized.

Finally, for hypothesis testing, SPSS software was used, and for data analysis and

creating related graphs, Excel was employed.

6 Main results

Table 4 provides a summary of the descriptive statistics for the returns of different

portfolio strategies under review over a 10-year period from 2013 to 2022 (Persian

calendar years 1392 to 1401).

Based on the information in Table 4, the following conclusions can be drawn:

1. High Mean Return of NCO ward MD: Despite having a higher standard

deviation than the average among the models (17.56%), the NCO ward MD

strategy shows the highest average return of 141.27%. This indicates that

this strategy, while potentially riskier, yields greater returns.

2. Lowest Standard Deviation for MV: The MV strategy has the lowest

standard deviation (11.20%), suggesting that it offers more consistent perfor-

mance compared to other strategies. This can be particularly appealing for

risk-averse investors.
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Table 4: Statistical Summary of Machine Learning and Classic Algorithms

3. Skewness and Kurtosis of NCO ward MD: The NCO ward MD strategy

also exhibits the highest skewness (2.461) and kurtosis (6.654), indicating that

its return distribution is more asymmetrical and has heavier tails compared

to the others. This suggests a higher likelihood of extreme returns (both

positive and negative).

4. Overall Performance of NCO Strategies: The NCO strategies generally

demonstrate high returns; however, they also come with increased standard

deviation. This implies that while they may offer attractive returns, they also

entail a higher level of risk.

These observations highlight the trade-off between risk and return in different

portfolio strategies, which is essential for investors to consider when making deci-

sions. Classic models are suitable for investors seeking simplicity. However, these

strategies may not be the best choice for maximizing returns or minimizing risk.

Based on these values, it can be said that machine learning algorithms have higher

averages compared to classic algorithms. Additionally, the standard deviation of

machine learning algorithms is also higher, indicating that their results are more
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varied. Figure 1 illustrates the return and risk associated with 12 different models.

Figure 1: Return and Risk Graph of Different Portfolios

In this Figure, the attention to standard deviation in the NCO ward MD strategy

indicates that its average return is the highest. This result suggests that the NCO

ward MD method is recognized as a suitable approach for selecting a portfolio while

considering an acceptable standard deviation. Regarding the NCO methods, it is

observed that their average returns are higher than those of the machine learning

methods MD and MV, indicating the superiority of these NCO methods compared

to MD and MV. As shown in Figure 2, the NCO ward MD and NCO single MD

portfolios have achieved higher cumulative returns compared to other portfolios.

The NCO average ERC and MV portfolios have lower cumulative returns than

the others. Additionally, among the three classic models, the MD portfolio has

outperformed the other two methods in terms of returns.

6.1 Review of Risk-Based Performance Evaluation Variables

In this section, the performance of each of the classic portfolios and machine learn-

ing, using the metrics provided in Table 5 including maximum drawdown, annu-

alized risk-adjusted return, annual expected shortfall, Sharpe ratio, and Sortino

ratio, has been evaluated. This table shows the risk-based performance metrics

of the portfolios over a 10-year period. As observed in the table, based on the

average Sortino ratio and the average Sharpe ratio, the machine learning model

NCO ward MD has the best overall performance. This algorithm has the highest



Paper 9: Nested Clustered Optimization Algorithm (NCO) 151

Figure 2: Annual Cumulative Return Trend of Different Portfolios

average Sortino ratio and average Sharpe ratio. Considering the value at risk at the

5% level and the expected shortfall at the 5% level, the classic MV algorithm has

lower risk. The NCO average MD algorithm has the lowest value (14.89%) for the

maximum drawdown metric. Given the average Sortino ratio, the MD algorithm

is more suitable for investors seeking high returns, as it has the highest average

Sortino ratio. In contrast, based on the value at risk at the 5% level and the ex-

pected shortfall at the 5% level, the classic MV algorithm is more appropriate for

investors looking for low risk. However, on the other hand, this algorithm has the

lowest return values.

6.2 Hypothesis Testing of the Research

The Kruskal-Wallis test is a non-parametric test used to compare the rankings of

different groups, particularly for two or more groups. This test has two outputs:

In the first output, groups are categorized based on the rankings of the variables,

where higher ranks indicate better performance of the related method in that cri-

terion, while lower ranks signify poorer performance of the method in the same

criterion. In the second output, values related to the Kruskal-Wallis test and their

significance levels are reported. In this study, if the significance level is less than

10%, the hypothesis under investigation will be confirmed. The use of a 10% sig-

nificance threshold has been selected to effectively simulate hidden and unforeseen

risks. In risk analysis, particularly under critical conditions or economic crises,

a higher threshold allows researchers to identify new patterns and the effects of
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Table 5: Average Values of Risk-Based Performance Metrics for Machine Learning
and Classical Portfolios

Algorithm Maximum
Drawdown

Value
at Risk

Expected
Shortfall

Average
Sharpe
Ratio

Average
Sortino
Ratio

Machine Learning Algorithms

NCO ward MV 19.79% 21.45% 28.55% 2.04 4.73

NCO ward MD 19.66% 21.75% 31.03% 5.68 8.36

NCO ward ERC 22.07% 25.43% 32.74% 2.82 5.41

NCO single MV 18.56% 19.33% 27.38% 4.25 8.18

NCO single MD 18.30% 20.09% 29.05% 5.23 8.14

NCO single ERC 19.21% 22.15% 29.11% 2.82 5.41

NCO average MV 14.93% 16.07% 22.25% 1.88 4.06

NCO average MD 14.89% 15.32% 21.58% 2.12 4.78

NCO average ERC 15.12% 15.90% 21.95% 3.12 6.30

Classic Models

MD 16.77% 17.58% 23.59% 2.42 5.41

MV 14.97% 14.93% 21.46% 1.93 4.26

ERC 21.88% 24.80% 31.46% 2.54 4.62

uncertain risks. This choice facilitates the simulation of worst-case scenarios and

enhances protection against unexpected risks. Furthermore, when data is subject

to noise or significant deviations, a 10% threshold helps identify weaker yet critical

relationships. Consequently, this approach is considered logical and beneficial for

examining long-term risks and complex economic conditions.

Overall, there is a direct relationship between higher values and ranks of the

Sharpe and Sortino ratios and the superior performance of the models. In other

words, models that obtain higher values and ranks for these indices demonstrate

better performance in terms of risk-adjusted returns and return-to-volatility ratios.

Additionally, there is an inverse relationship between lower values and ranks

of maximum drawdown, value at risk, and expected shortfall, and the superior

performance of the models. This means that models with lower values and ranks

for these criteria show better performance in terms of stability and reduced risk of

loss.

The results from the ranking of the Kruskal-Wallis test based on the five relevant

criteria, broken down by different clustering linkage methods, are summarized in

Table 6.

According to Table 6, in the assessment of the Sharpe ratio, the MV method

has an average rank, while the NCO single MV method has performed better with
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Table 6: Mean Ranks and Kruskal-Wallis (KW) test results for different models

**Statistical significance is indicated at the 10% level.

a higher rank. From the perspective of the Sortino ratio, the NCO single MV

method has also shown better performance. In terms of maximum drawdown,

and considering its nature, the MV method has performed better with a lower

rank. Regarding Value at Risk and expected drawdown, the MV method has

outperformed the NCO single MV method despite having a lower rank. With

the increase in the significance level to 10%, the significance values for the Sharpe

ratio (0.076) and the Sortino ratio (0.086) become less than 0.1. This indicates the

rejection of the null hypothesis or, in other words, the acceptance of the alternative

hypothesis at the 10% statistical significance level. This reveals evidence of a

difference in the ranking of the models for these two criteria. Therefore, it can

be concluded that the observed differences in the rankings of the models for the

Sharpe ratio and the Sortino ratio are considered statistically significant at the 10%

level.

Based on the average values of the performance metrics in Table 5 and the

analyses conducted, it can be concluded that the average rank of the Sharpe ratio

variable for the minimum variance model within the nested clustering optimization
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algorithm using the single link method (µNCO single MV Sharpe) is better than the

average rank of the Sharpe ratio variable for the classical minimum variance model

(µMV Sharpe). Additionally, the average rank of the Sortino ratio variable for the

minimum variance model within the nested clustering optimization algorithm using

the single link method - (µNCO single MV Sortino) is also better than the average rank

of the Sortino ratio variable for the classical minimum variance model (µMV Sortino).

Therefore, the first hypothesis related to this topic is accepted.

Table 6 also shows that the NCO average ERC model has a better rank compared

to the ERC model in terms of the Sharpe ratio, Sortino ratio, expected drawdown,

and value at risk variables. The significance level for the expected drawdown vari-

able is 0.082, and for the value at risk variable, it is 0.096, both of which are less

than the significance level of 0.1. These results indicate that there is sufficient sta-

tistical evidence to reject the null hypothesis for these two criteria. In other words,

it can be concluded that the distribution of expected drawdown and value at risk

between the NCO average ERC and ERC models likely has a significant difference.

Considering Table 5, and noting that the average rank of the NCO average ERC

model is better than that of the classical ERC model in terms of risk as shown in

Table 6, it can be concluded that the alternative hypothesis is accepted, and no

reason is found to reject the claim. Because at an almost equal level of return, this

machine learning model performs better than its classical counterpart. Looking at

Table 6, it can be observed that the NCO single MD model has higher average

ranks compared to the MD model, especially regarding the Sharpe and Sortino

ratio variables. However, for the expected drawdown and value at risk variables,

the NCO single MD model has lower average ranks compared to the MD model.

For the Sharpe and Sortino ratios, the significance levels are below 0.1, indicating a

significant difference between the two models. Therefore, based on the results from

this table and the results from Table 5, which show a better rank for the NCO sin-

gle MD model in the Sharpe and Sortino ratios compared to the MD model, it can

be concluded that the performance of the NCO single MD model has been better

than that of the classical MD model. Additionally, referring to Table 6, it can be

observed that the NCO ward MD model has achieved better average ranks than

the MD model in the Sharpe and Sortino ratio criteria. This indicates the poten-

tial advantage of the NCO ward MD model concerning these performance metrics.

However, in the expected drawdown and value at risk criteria, the MD model has

demonstrated better performance. According to the table above, for the Sharpe

and Sortino ratio variables, the significance levels are less than 0.1, indicating a

statistically significant difference between the two models. However, for the other

variables, the significance levels are greater than 0.1, meaning there is no statisti-

cally significant difference between the two models. Based on the ranking results

and the statistical test in Table 6, it can be concluded that the NCO ward MD

model performs better than the MD model in the Sharpe and Sortino ratios. Given

the lack of a significant difference between the two models in the other variables,
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the author’s decision is to accept the alternative hypothesis.

7 Conclusion and Recommendations

This research examines asset allocation by comparing the Nested Cluster Optimiza-

tion (NCO) algorithm, a machine learning method, with classical approaches. With

the growing use of machine learning in portfolio management, the study rigorously

evaluates the performance of this algorithm. NCO, introduced by López de Prado

in 2016, was compared against classical models. Results from the Kruskal-Wallis

test revealed that the NCO single MV algorithm outperformed the MV model, NCO

single MD and NCO ward MD algorithms surpassed the MD model in Sharpe and

Sortino ratios, and the NCO average ERC algorithm excelled over the ERC model

in value at risk and expected drawdown. Based on the findings, the nested cluster-

ing algorithm is recommended for investment banks, portfolio management firms,

institutional investors, and stock market managers as an effective machine learning

approach for asset allocation. The results align with prior studies. Mirlouhi and

Toodeshki (2020) demonstrated the superiority of clustering methods over classical

portfolios. Soltani Nejad and Davallou (2016) improved portfolio performance using

single and average linkage clustering methods. Ciciretti and Bocci (2023) developed

a nested tree-based model to enhance portfolio performance during high volatility

using graph theory. Garćıa-Medina and Rodŕıguez-Camejo. (2024) found that the

asset allocation problem poses challenges due to instability arising from high corre-

lation among assets and structural changes in financial markets; however, the use

of RMT and NCO methods can help improve portfolio performance and reduce

investment risk. Raffinot (2017) highlighted the robustness and diversification of

hierarchical clustering-based portfolios, showing better risk-adjusted performance

and stability than traditional techniques. López de Prado (2016) addressed the

inefficiencies of convex optimization in financial calculations and proposed NCO to

improve stability and efficiency. The study faced challenges such as data variability,

overfitting risks, and market uncertainties, which impacted the accuracy of results.

Historical constraints also contributed to variations in outcomes. Future research

could explore generalizing these findings to other markets.
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