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Abstract:
Abstract:
In order to reduce the risk of financial markets, various tools have emerged, and
option contracts are the most common tools in this regard. The Black-Scholes
model is used to price a wide range of options contracts. The basic assumption in
this model is to follow the normal distribution of returns. But the reality of the
market indicates the skewness and kurtosis of the data, which reduces the accuracy
of calculating the option price. The Gram-Charlie model has more flexibility than
Black-Scholes model with abnormal skewness and kurtosis. The main purpose of
this research is to determine the European call option price using non-normal data.
In this regard, we present new models, fractional Gram-Charlier model and mixed
fractional Gram-Charlier model, for option pricing. For this purpose, the data
of Shasta and Khodro symbols have been selected from Iran Stock Exchange that
Khodro in the period 2020-07-27 to 2023-11-1 and Shasta in the period 2022-7-25 to
2023-11-1 have been used. The results of this research show that Shasta has more
abnormal skewness and kurtosis than Khodro. The option price calculated with
the Gram-Charlier and extended models of Gram-Charlier are shown a smaller
error compared to other models in the Shasta. Also, the results show that under
abnormal skewness and kurtosis, our new models have more flexibility than the
Black-Scholes model and fractional models.

Keywords: Black-Scholes model, fractional Brownian motion model, Gram-
Charlier expansion, Option pricing, Stochastic volatility;
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1 Introduction

The most famous model for the valuation of European options is called the Black-

Scholes model, which was presented in 1973. The Black-Scholes model assumes

that stock returns follow a normal distribution with constant volatility. Hull (1993)

and Natenberg (1994) point out that stock returns show non-normal skewness and

kurtosis, and volatility deviations are the result of empirical violations of the nor-

mality assumption [12, 17]. Despite its advantages, such as simplicity and having
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an explicit form for the transaction price, this model has always faced criticism due

to unrealistic assumptions. The fundamental premise of the Black-Scholes model

is that the future price distribution of the underlying assets follows a log-normal

pattern. However, in actual financial markets, the price dynamics of assets exhibit

a heavier tail than that of log-normal. In this way, we will face different distribu-

tions of the prices of buying or selling options, the difference of which is in the

tail of the distribution. On the other hand, in the Black-Scholes model, the stock

price volatility is considered constant, while the empirical results show that the

underlying asset price volatility is non-constant. Also, in the Black-Scholes model,

the constancy of volatility is considered as the main assumption, while it became

clear over time, this assumption does not apply to options that have different ex-

ercise prices. Volatility smile and asymmetric volatility were famous phenomena

that violated this assumption. These phenomena have been proposed in the form

of abnormal behavior in asset return rate distribution. In fact, the distribution of

the real fluctuation, in comparison with the bell curve, has a normal, asymmetric,

skewed distribution and also has a long-term memory.

One of the major problems we face in financial economics is Brownian motion,

which is considered a source of uncertainty and is used in option pricing. A stochas-

tic process Bτ is a Brownian motion if the following condition holds:

(i) For τ > s; v > u and u > τ , Bτ −Bs and Bv −Bu are independent.

(ii) For all τ > s; Bτ −Bs ∼ N(0, τ − s).

(iii) B0 = 0.

In spite of allure universal request in various positions, practical evidence has

abandoned to substantiate Brownian motion as the beginning of uncertainty. Cause

return distributions noticed in fiscal markets do not trail the Gaussian law and

occasion succession of return distributions exhibit complete dependency.

To overcome the interpretation, various weighty tailed distributions have hap-

pened evaluated as attainable opportunities in the writing of return distribution and

partial Brownian motion has happened introduced to capture the general reliance

of financial data.

To address this interpretation, several heavy-tailed distributions have been as-

sessed as viable options for modeling return distributions. Additionally, partial

Brownian motion has been introduced to capture the dependencies commonly ob-

served in financial time series.

Fractional Brownian motion is a generalization of standard Brownian motion

acquired by adjoining individual parameter, named the Hurst parameter, that was

introduced in 1968 by Mandelbrot and Van Ness [14]. On the other hand, frac-

tional Geometric Brownian Motion is a generalization of Geometric Brownian Mo-

tion (GBM). GBM is a continuous-time stochastic process in which the logarithm

of the randomly varying quantity follows a Brownian motion. It is an important ex-

ample of stochastic processes satisfying a SDE. GBM was used in the BlackScholes

model. Fractional Brownian motion is an extention of Brownian motion. Unlike
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classical Brownian motion, the increments of Fractional Brownian motion need not

be independent [21].

The Brownian dynamics in stochastic volatility have gradually been supplanted

by more elaborate Gaussian processes, particularly those exhibiting long-range de-

pendence. (Comte and Renault, 1998) [4]. This is true for fractional Brownian

motion when H > 0.5. See also Breidt et al. (1998) [3] and Sottinen (2001) [22]

among many others.

Definition 1.1. Let H be a constant belonging to (0, 1). A fractional Brownian

motion (GFBM), BH
τ , with the Hurst indexH is a continuous and centred Gaussian

process with covariance function:

E(BH
τ B

H
s ) =

1

2
(τ2H + s2H − |τ − s|2H)

that

(i) BH
0 = 0 and E(BH

τ ) = 0 for every τ ≥ 0.

(ii) For τ > s, v > u and u > τ , the increments Bτ − Bs and Bv − Bu are

independent.

(iii) For all τ > s; Bτ −Bs ∼ N(0, |τ − s|2H).

(iv) BH , has continuous trajectories.

The Hurst exponent details the the quality of being rough on the surface of

the resultant motion, accompanying a greater value leading to a more flowing mo-

tion. If H = 0.5 therefore the process is really a Brownian motion; if H > 0.5

so the increments of the process are definitely equated; if H < 0.5 therefore the

increments of the process are negatively correlated [22]. Fractional Brownian mo-

tion has found applications in modeling random processes appearing in economics,

finance, hydrology, wave propagation in random media, etc [21].

Barunik et al. (2012) apply the genealized Hurst parameter to multifractal

analysis [1]. Gu et al. (2012), Meng and Wang (2010), and Xiao et al. (2010) regard

fractional Brownian motion as a fundamental diffusive process [8, 15, 23]. Most of

the literature focuses on arbitrage and its exclusion in fractional Brownian motion

models. Rogers (1997), used fractional Brownian motion within financial models.

Bender (2003) and Dasgupta and Kallianpur (2000) made an explicit arbitrage

strategy within the fractional market [2,5]. Cheridito (2003) successfully developed

arbitrage strategies within both the fractional Bachelier model and the fractional

Black-Scholes model [9]. In continuation, Hu and Øksendal (2003) gave the result

of a fractional BlackScholes model excluding arbitrage provided [11]. They showed

that the correct usage of fractional Brownian motion inherently implies dynamic

market incompleteness (see also Della Ratta et al., 2008, [6]).

Necula (2002) give the following formula for the European call option by frac-

tional Brownian motion [19]:

C(τ, T ) = SτN(ζ1)−Ke−r(T−τ)N(ζ2), (1)
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where

ζ1 =
ln(Sτ

K ) + r(T − τ) + 1
2σ

2(T 2H − τ2H)

σ
√
T 2H − τ2H

,

ζ2 =
ln(Sτ

K ) + r(T − τ)− 1
2σ

2(T 2H − τ2H)

σ
√
T 2H − τ2H

.

Rostek (2009) gave a formula for pricing European options using conditional

expectation [20]. Also, Rostek and Schöbel gave a note on the use of fractional

Brownian motion for financial modeling [21]. Ghasemifard et al. (2022) considered

option valuation in markets with finite liquidity under fractional CEV assets [7].

Nasiri et al. (2022) gave a numerical method for solving the underlying price

problem driven by a fractional Levy process [18].

In the following give the asset price dynamics that follows geometric Brownian

motion (GBM) and geometric fractional Brownian motion (GFBM) [?]. A stochas-

tic process Xt is said to follow a geometric Brownian motion (GBM) if the asset

price evolves according to the following dynamics:

dXt = µXtdt+ σXtdBt, (2)

where Bt is a Brownian motion, µ is the constant drift, and σ is the constant

volatility. The solution to Eq. (2) for any chosen initial value X0 is expressed as

follows:

Xt = X0 exp(µt−
1

2
σ2t+ σBt).

Also, stochastic process St follows a GFBM if the asset price follows the following

dynamics:

dXt = µXtdt+ σXtdB
H
t , (3)

where BH
t is an FBM with H ∈ (0, 1), µ is the constant drift, and r is the constant

volatility. By using the Wick Ito Skorohod integrals for GFBM, the solution to Eq.

(3) for any chosen initial value X0 is expressed as follows

Xt = X0 exp(µt−
1

2
σ2t2H + σBH

t ).

2 Materials and Methods

2.1 Hurst parameter estimation

A number of rough approaches were suggested for figuring out the parameter H.

These non-parametric methods are primarily useful as illustrative tools and are

particularly chosen to provide an initial estimate of H. They are still less accept-

able for statistical conclusion, as, for most of these methods, it is not easy to get

confidence intervals.
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Aggregate variance technique

An important property of long-memory processes is that the variance of the sample

mean converges to 0 than 1
n , that N is dimension of the sample. Therefore, it

can be inferred that var(X̄n) ≈ ϵn2H−2 , that ϵ > 0 and X̄n = 1
n

∑n
i=1Xi. This

consideration allows to introduce the following procedure to estimate H. Hence

H ≈ 1 +
1

2
(slope). (4)

For short-range dependence or independence among the observations, the slope is

equal to 1.

Least square regression

In the frequency domain, analyzing time series is simply the examination of a

stationary process using its spectral representation at the origin. Hence the least

square regression in the spectral domain exploits:

g(ζ) ≈ cg|ζ|1−2H ,

An estimator for the spectral density function g(ζ) is the periodogram, given by

I(ζj) =
1

2πn
|

n∑
s=1

(Xt − X̄n)e
isζj |2 =

1

2π

n−1∑
k=−(n−1)

γ̄(k)eikζj

that ζj = 2πj/n are the Fourier frequencies. For long-memory processes, the

following result can be demonstrated:

log I(ζj,n) ≈ log cf + (1− 2H) log ζj,n + log ξj (5)

that ξj are independent standard exponential random variables. Hence 1−2H and

so H can be estimated by least square regression.

Maximum Likelihood Estimators

Aggregate variance and least squares regression are the primary heuristic methods

for estimating H. While these methods are effective for assessing the presence of

long-memory, they are inadequate for analyzing short-term properties and are also

unsuitable for statistical inference. Maximum Likelihood is a possible alternative

approach is to use parametric models for estimating H, that assumes a functional

form for the spectral density g(ζ) and considers minimizing parameters based upon

specific assumptions about the model.

Maximum Likelihood Estimators are more efficient; however, calculating them

precisely presents computational challenges. This is due to the potential numerical

instability in evaluating the inverse and determinant of the variance matrix, and the

number of operations required increases with the square of the dataset’s dimension.
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2.2 Mixed models for European call option

I. Gram-Charlier expansion model

The Gram-Charlier expansion, if properly used (Hung et al., 2015 [10]), allows the

generation of distributions with the desired volatility, skewness and kurtosis with

µ3, µ4, µ5 are skewness, kurtosis, and super skewness respectively.

BSG=BS + µ3Q3 + (µ4 − 3)Q4, (6)

which BS is the call option price of BlackScholes model, i.e.

BS=S0N(ζ)−Ke−rTN
(
ζ − σ

√
T

)
,

ζ=
ln
(
S0

K

)
+
[
r + 1

2

(
σ2

)]
T

σ
√
T

,

Q3=
1

3!
S0σ

√
T (

(
2σ

√
T − ζ

)
n (ζ) + σ2TN (ζ)),

and

Q4=
1

4!
S0σ

√
T
((
ζ2 − 1− 3σ

√
T
(
ζ − σ

√
T
))

n (ζ) + σ3T
3
2N(ζ)

)
.

Also, the model of Gram-Charlier expansion by super skewness:

BCGS=BS + µ3Q3 + (µ4 − 3)Q4 + (µ5 − 10µ3)Q5, (7)

which

Q5=
1

120
S0σ

√
T
(
σ4T 2N (ζ) +N(ζ)

[
4σ3T

3
2 − 6ζσ2T + 3ζ2σ

√
T + ζσ

√
T − 3σ

√
T − ζ3 + 3ζ

])
.

II. Fractional Gram-Charlier expansion model

The formula that Rostek derives is given as follows [20]

BSf (t, T ) = StN(ζH1 )−Ke−r(T−t)N(ζH2 ), (8)

where

ζH1 =
ln(St

K
) + r(T − t) + 1

2
ρHσ2(T − t)2H

√
ρHσ(T − t)H

and

ζH2 =
ln(St

K
) + r(T − t)− 1

2
ρHσ2(T − t)2H

√
ρHσ(T − t)H

.

Hence, in the following we give the mixed model of Gram-Charlier expansion and

formula Rostek

BSGf=BSf + µ3Q3 + (µ4 − 3)Q4 (9)

Also, the mixed model of Gram-Charlier expansion and Rostek formula by super

skewness:

BSGSf=BSf + µ3Q3 + (µ4 − 3)Q4 + (µ5 − 10µ3)Q5. (10)
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III. Mixed fractional Gram-Charlier expansion model

Let H be a constant belonging to (0, 1). An mixed fractional Brownian motions of

parameter H, a and b is a stochastic process MH = {MH
t , t ≥ 0} define as follows

MH
t = aBH

t + bBt. (11)

In the following we give and consider some special cases of the mixed fractional

Brownian motion of (11). If a = b = 1√
2
then (11) is the mixed fractional Brownian

motion (Mliki, 2023 [?]) for which the European call option is given by

BSm=S0N(ζ1)−Ke−rTN(ζ2)

where

ζ1 =
ln(St

K
) + r(T − t) + 1

2
σ2(T 2H − t2H) + 1

2
σ2(T − t)√

σ(T 2H − t2H) + 1
2
σ2(T − t)

and

ζ2 =
ln(St

K
) + r(T − t)− 1

2
σ2(T 2H − t2H)− 1

2
σ2(T − t)√

σ(T 2H − t2H) + 1
2
σ2(T − t)

.

Hence, in the following we give mixed model of Gram-Charlier expansion and for-

mula Rostek

BSGm=BSm + µ3Q3 + (µ4 − 3)Q4. (12)

Also, mixed fractional Brownian motion model and Gram-Charlier expansion and

formula Rostek by super skewness:

BSGSm=BSm + µ3Q3 + (µ4 − 3)Q4 + (µ5 − 10µ3)Q5. (13)

3 Results and Discussion

In this paper, we utilized daily data for the Shasta and Khodro symbols selected

from the Iran Stock Exchange. The data for Khodro covers the period from July

27, 2020, to November 1, 2023, while the data for Shasta spans from July 25, 2022,

to November 1, 2023. The closing price is the last price closed in 2023. Their

simulation was obtained using matlab and R. The reason for choosing these two

companies is the biggest companies in the Iran. It should be noted that the skewness

and kurtosis of these two companies are different and they give in Table 1.

Table 1: Descriptive statistics of daily returns

kurtosis skewness super skewness SD mean

Khodro 2.17270 0.07925 0.44583 0.02872 0.0016

Shasta 13.64985 -1.5719 -75.1722 0.02309 0.0006
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The normality test of the daily returns of Khodro and Shasta is given in Table 2.

The results of both Jarque-bera and Shapiro-Wilk tests show that the data for the

two stocks are non-normal. The next step is to draw the quantile-quantile diagram,

Table 2: Normality test of daily returns

Variable analysis Jarque-bera Shapiro-Wilk

X-squared p-value W p-value

Khodro 21.138 0.00002 0.97383 0.00000

Shasta 1515.6 0.00000 0.86809 0.00000

which is presented in Figure 1.

(a) Normal Q-Q Plot Khodro (b) Normal Q-Q Plot Shasta

Figure 1: Normal QQ-plots

In the following, distribution selection is examined using information criteria.

Table 3: select the optimal distribution

Khodro Shasta

Criteria AIC * BIC ** AIC BIC

nornal -3087.102 -3077.929 -1359.629 -1352.289

snormal -3086.733 -3072.975 -1358.951 -1347.941

STD -3085.102 -3071.343 -1441.579 -1430.570

SSTD -3084.725 -3066.380 -1440.800 -1426.120

GED -3140.913 -3127.155 -1360.108 -1349.099

SGED -3091.987 -3073.642 -1361.609 -1346.929

* Akaike Information Criterion
** Bayesian Information Criterionn

The model that has the lowest information criteria value is the most optimal.
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From Table 3 Generalized Error distribution (GED) has the least value of the

information criterias for Khodro and student-t distribution (STD) as the least value

of the information criterias for Shasta.

(a) MLEHurst parameter Khodro (b) MLE Hurst parameter Shasta

Figure 2: Exact MLE estimation Hurst parameter

European call option price of Black-Scholes (BS) model, Gram-Charlier model

(BSG) and Gram-Charlier model by super skewness (BSGS) with r = 0.23 of Khodro

is given in Table 4.

Table 4: The comparison between the value of European call options

T S K Market BS BCG BCGS

price % e price % e price % e

28 2319 2000 362 365.9378 1.09 364.6487 0.73 364.4219 0.67

28 2319 2400 96 99.25377 3.39 103.46992 7.78 103.67383 7.99

28 2319 2800 21 12.94990 38.33 11.88692 43.40 12.27243 41.56

56 23191 1800 633 589.4080 6.89 587.3591 7.21 587.2982 7.22

56 2319 2400 192 166.0433 13.52 172.0282 10.40 172.1133 10.36

56 2319 3000 71 23.64182 66.70 22.28358 68.61 23.02892 67.56

91 2319 1900 598 554.9489 7.20 554.5788 7.26 554.0341 7.35

91 2319 2400 312 235.2170 24.61 242.6619 22.22 242.5834 22.25

91 2319 3000 108 60.65129 43.84 61.78932 42.79 63.12465 41.55

European call option price of BS, BSG and BSGS models with r = 0.23 of Shasta

is given in Table 5.

In the short term, the Black-Scholes model has better answers than most of the ex-

isting models, even models with stochastic volatility (for instance Heston’s model).

But, according to the Table 4, in the short term, medium term and long term op-

tion prices are estimated with less error than the Black-Scholes model. The error of

Maximum Likelihood Estimation
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Table 5: The comparison between the value of European call options

T S K Market BS BCG BSGS

price % e price % e price % e

35 1106 712 400 409.5316 2.38 409.2637 2.31 409.5313 2.38

35 1106 1112 44 59.30488 34.78 37.26692 15.30 28.90709 34.30

35 1106 1312 5 6.01506 20.30 7.63074 52.61 37.00496 640

63 1106 712 466 421.7409 9.50 422.5649 9.32 426.6728 8.44

63 1106 1112 1 86.30157 8530 57.92916 5692 39.59546 3859

63 1106 1312 40 19.36014 51.60 5.98926 85.03 71.52772 78.82

119 1106 512 656 630.9897 3.81 629.3970 4.05 629.6654 4.01

119 1106 1112 128 131.10958 2.43 94.90941 25.85 57.85335 54.80

119 1106 1512 54 16.60369 69.25 16.00521 70.36 101.50041 87.96

the option price in Shasta (Table 5) is more than that of Khodro (Table 4), which

is due to the negative skewness in Shasta.

Due to the negative skewness in Shasta, the error has increased compared to

Khodro. Also, from Table 4 it can be seen total errors (E =
∑k

i=1 e
2
i ) of Khodro

stock in ITM are EBS = 100.4, EBSG = 105.2 and EBSGS = 106.6. On the other hand,

from Table 5, total errors of Shasta stock in ITM are EBS = 110.4, EBSG = 108.6 and

EBSGS = 93. Hence error European call option price of BSG and BSGS models is

less than of BS model, and so they are better models.

(a) ITM (b) ATM (c) OTM

Figure 3: Khodro call option price of BS, BSG, BSGS and Market

European call option price with fractional Black-Scholes (BSf ), , BSGf and

BSGSf models with r = 0.23 and H=0.652 of Khodro is given in Table 6.

European call option price with fractional Black-Scholes (BSf ), BSGf and BSGSf

models with r = 0.23 and H=0.587 of Shasta is given in Table 7.

In ATM, the BSf model has less error in Khodro’s option price than BSGf and

BSGSf . On the other hands, the BSf model has more error in Shasta’s option price

than BSGf and BSGSf .
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(a) ITM (b) ATM (c) OTM

Figure 4: Shasta call option price of BS, BSG, BSGS and Market

Table 6: The comparison between the value of European call options

T S K Market BS f BSG f BSGS f

Price %Error Price %Error Price %Error

28 2319 2000 362 355.4096 1.82 354.1205 2.18 353.8938 2.24

28 2319 2400 96 58.73695 38.81 62.95309 34.42 63.15701 34.21

28 2319 2800 21 1.42589 93.21 0.36291 98.27 0.74842 96.43

56 2319 1800 633 582.5686 7.96 580.5197 8.29 580.4589 8.30

56 2319 2400 192 120.6450 37.16 126.6300 34.04 126.7151 34.00

56 2319 3000 71 5.86296 91.74 4.50471 93.655 5.25 92.60

91 2319 1900 598 536.9017 10.21 536.5317 10.27 535.9870 10.37

91 2319 2400 312 190.0439 39.09 197.4888 36.70 197.4104 36.72

91 2319 3000 108 29.58709 72.60 30.72512 71.55 32.06045 70.31

Table 7: The comparison between the value of European call options

T S K Market BSf BSGf BSGSf

Price % Er-
ror

Price % Er-
ror

Price % Er-
ror

35 1106 712 400 409.5311 2.38 409.2632 2.31 409.5308 2.38

35 1106 1112 44 49.86362 13.33 27.82567 36.76 19.46584 55.76

35 1106 1312 5 2.39722 52.05 4.01290 19.74 33.38713 567.74

63 1106 712 466 421.7145 9.50 422.5385 9.33 426.6464 8.44

63 1106 1112 1 76.6825 7568 48.31017 4731 29.97647 2897

63 1106 1312 40 12.39484 69.01 0 100 64.73 61.82

119 1106 512 656 630.9889 3.81 629.3962 4.05 629.6646 4.01

119 1106 1112 128 122.60296 4.22 86.40279 32.50 49.34673 61.45

119 1106 1512 54 11.45402 78.79 10.85554 79.90 96.35074 78.43

Also, from Table 6 it can be seen total errors of Khodro stock in ITM are

EBSf
= 171.2, EBSGf

= 179.1 and EBSGSf
= 181.4. On the other hand, from Table

7, that the total errors of Shasta in ITM are EBSf
= 110.5, EBSGf

= 108.2 and

EBSGSf
= 107.9. Hence error European call option price of BSGf and BSGSf models
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is less than that of the of BSf model, and so they are better models.

Comparing models BS, BSG and BSGS with models BSf , BSGf and BSGSf ,

respectively, the error in Shasta is not changed, while in Khodro, shows that the

error is increased. Hence this means that there is no significant difference in symbols

with skewness and kurtosis of fractional and non-fractional models of option pricing.

(a) ITM (b) ATM (c) OTM

Figure 5: Khodro call option price of BSf , BSGf , BSGSf and Market

(a) ITM (b) ATM (c) OTM

Figure 6: Shasta call option price of BSf , BSGf , BSGSf and Market

European call option price with mixed of BSm, BSGm and BSGSm models with

r = 0.23 and H=0.652 of Khodro were given in Table 8.

European call option price with BSm, BSGm and BSGSm models with r = 0.23

and H=0.587 of Shasta were given in Table 8.

Also, from Table 8 it can be seen total errors of Khodro stock in ITM are EBSm =

44.2, EBSGm = 44.74 and EBSGSm = 44.74. On the other hand, from Table 9, total

errors of Shasta stock in ITM are EBSm = 230.8, EBSGm = 220.7 and EBSGSm = 206.6.

Hence error European call option price of BSGm and BSGSm models is less than of

BSm model, and so they are better models.

Therefore, it can be seen that Shasta, which has more skewness and kurtosis

than Khodro, the option price error has increased more than 5 times. Also, based

on the observations, it is concluded that methods 2 and 3 have a better answer than

method 1. That is, in stocks with skewness and kurtosis, methods 2 and 3 have
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Table 8: The comparison between the value of European call options

T S K Market BS m BSG m BSGS m

Price % Er-
ror

Price % Er-
ror

Price % Er-
ror

28 2319 2000 362 376.7804 4.08 375.4926 3.73 375.2669 3.67

28 2319 2400 96 123.24822 28.38 127.46437 32.77 127.66828 32.99

28 2319 2800 21 25.21250 20.06 24.14952 14.99 24.53504 16.83

56 2319 1800 633 602.0100 4.89 599.9611 5.22 599.9003 5.23

56 2319 2400 192 207.0553 7.84 213.0403 10.9 213.1254 11.00

56 2319 3000 71 48.40346 31.82 47.04522 33.74 47.79056 32.69

91 2319 1900 598 586.99 1.84 586.63 1.90 586.0852 1.99

91 2319 2400 312 293.8871 5.80 301.3320 3.42 301.2536 3.44

91 2319 3000 108 109.45361 1.34593 110.5916 2.40 111.9269 3.63

Table 9: The comparison between the value of European call options

T S K Market BS m BSG m BSGS m

Price % Er-
ror

Price % Er-
ror

Price % Er-
ror

35 1106 712 400 409.5588 2.39 409.2909 2.32 409.5585 2.39

35 1106 1112 44 73.5610 67.18 51.5231 17.09 43.1633 1.90

35 1106 1312 5 14.0789 181.58 15.6946 213.89 45.0688 801.37

63 1106 712 466 422.1950 9.40 424.0190 9.22 427.1269 8.34

63 1106 1112 1 106.7970 10579 78.4246 7742 60.0909 5909

63 1106 1312 40 36.5079 8.73 23.2113 41.97 88.84 122.10

119 1106 512 656 631.0689 3.8 629.4762 4.04 629.7445 4.00

119 1106 1112 128 160.84372 25.65 124.6435 2.62 87.5875 31.57

119 1106 1512 54 39.0801 27.63 38.4816 28.74 123.9768 129.59

(a) ITM (b) ATM (c) OTM

Figure 7: Khodro call option price of BSm, BSGm, BSGSm and Market

better answers. For the share of Khodro, the combined method in Table 8 gives a

better answer than the fractional and normal method in Tables 4 and 7. But for

Shasta, which has skewness and kurtosis, according to Table 9, the error increases
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(a) ITM (b) ATM (c) OTM

Figure 8: Shasta call option price of BSm, BSGm, BSGSm and Market

greatly.

4 Conclusion and Suggestions

Conclusion

Considering the fundamental role of financial markets in the economic development

of any country, a detailed examination of these markets from different aspects seems

necessary. Option trading is one of the trading tools introduced to the financial

markets in order to reduce risk. In this regard, it is customary to use the Black-

Scholes model for pricing a wide range of options contracts. In this model, the

normality of data distribution is a basic assumption. The Gram-Charlie model has

more flexibility than Black-Scholes model with abnormal skewness and kurtosis.

The main purpose of this research is to determine the European call option

price using a non-normal data. In this regard, extended models of Gram-Charlier

in fractional and mixed with titles BSGSf and BSGSm were presented.

The data of Shasta and Khodro symbols have been selected from Iran Stock

Exchange that Khodro in the period 2020-07-27 to 2023-11-1 and Shasta in the

period 2022-7-25 to 2023-11-1 have been used. The results of this research show

that Shasta has more abnormal skewness and kurtosis than Khodro. The option

price calculated with the Gram-Charlier and extended models of Gram-Charlier

(i.e. BSGSf and BSGSm) were shown a smaller error compared to other models in

the Shasta. Also, the results of this research show that European option pricing by

using BSGSm has more flexibility than the Black-Scholes, models of the fractional

Brownian motion (for instance [21]), models of the mixed fractional Brownian mo-

tion (for instance [?]) and also BSGSf with abnormal skewness and kurtosis.

Suggestions

The following are some suggested ideas for future research, focusing on option

pricing models:
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• Create a hybrid model that combines the strengths of the Heston model with

the flexibility of the Gram-Charlier model.

• Studying the effect of different levels of market volatility on the accuracy of

the Gram Charlier model in option pricing.

• Comparing machine learning techniques with the Gram-Charlier model to

improve option pricing accuracy.
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