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Abstract:
Abstract:
This paper compares stochastic models for simulating leveraged Exchange-Traded
Funds (LETFs) price paths, focusing on their applications in risk management
and option pricing. Using TQQQ (a 3x leveraged ETF tracking NASDAQ-100) as
our case study, we evaluate Geometric Brownian Motion (GBM), Generalized Au-
toregressive Conditional Heteroskedasticity (GARCH), Heston stochastic volatil-
ity, Stochastic Volatility with Jumps (SVJD), and propose a novel Multi-Scale
Volatility with Jumps (MSVJ) model that captures both fast and slow volatility
components. Furthermore, we develop a comprehensive evaluation framework that
examines both price and volatility characteristics of the simulated paths against
the actual TQQQ data. Our analysis spans different market conditions, including
the COVID-19 crash and the 2022 market drawdown. While our proposed MSVJ
model excels in capturing volatility dynamics and price range estimation, we find
that each model exhibits unique strengths in different aspects of LETFs’ behav-
ior. The choice of most appropriate model depends on specific considerations for
different applications, such as risk assessment, options pricing, or portfolio man-
agement.
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1 Introduction

Leveraged exchange-traded funds (LETFs) have gained significant popularity among

investors due to their ability to amplify returns and provide exposure to specific

market sectors. These financial instruments are designed to deliver multiples of the

daily returns of their underlying indices, making them attractive for traders seeking

to capitalize on short-term market movements [12].

Two of the most prominent LETFs are the ProShares UltraPro QQQ (TQQQ)

and the ProShares UltraPro S&P500 (UPRO). TQQQ aims to provide three times

the daily return of the NASDAQ-100 Index, while UPRO seeks to offer three times

the daily return of the S&P 500 Index. In particular, TQQQ has attracted signif-

icant attention from both retail and institutional investors, with its assets under
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management (AUM) reaching $22.95 billion as of September 2024 [31]. The fund’s

focus on the technology sector and its potential for amplified returns have con-

tributed to its growing popularity. Similarly, UPRO’s AUM has experienced sub-

stantial growth over the last five years, increasing from $1.3 billion in September

2019 to $4 billion in September 2024 [30].

The academic literature on LETFs has evolved significantly over the past decade.

Avellaneda and Zhang (2010) [5] established a fundamental framework demonstrat-

ing that LETF values depend on both the underlying index movement and the

accumulated variance over time. Cheng and Madhavan (2009) [12] provided early

insights into LETFs’ behavior, showing how their daily rebalancing mechanism can

affect market volatility and create path-dependent returns that may lead to value

destruction for long-term investors. Building on these foundations, Leung and Sir-

car (2015) [20] developed methods for analyzing implied volatility of LETFs options

by first modeling the underlying ETF using stochastic volatility models and then

deriving LETFs dynamics through Itô’s lemma for option pricing purposes, while

Leung and Santoli (2016) [19] provided a comprehensive treatment of LETFs price

dynamics and options valuation. These theoretical frameworks have been further

developed by Ahn et al. (2015) [1], who proposed consistent pricing approaches for

LETFs options.

While these theoretical and empirical frameworks provide valuable insights, LETFs

trade as independent instruments with their own market dynamics, including dedi-

cated options markets and specific trading patterns. This market reality motivates

our approach of directly modeling LETFs price dynamics for practical applications

in risk management and option pricing.

Using TQQQ as our case study, we evaluate various stochastic models includ-

ing Geometric Brownian Motion (GBM), Heston stochastic volatility, Stochastic

Volatility with Jumps (SVJD), and a proposed Multi-Scale Volatility with Jumps

(MSVJ) model. We compare both price and volatility characteristics of the simu-

lated paths with actual TQQQ data. For price dynamics, we evaluate path trajec-

tories using Dynamic Time Warping distance, price range capture using multi-band

metrics, and return distributions using Kolmogorov-Smirnov tests. For volatility

dynamics, we analyze realized volatility regression, volatility persistence, jump cap-

ture, and volatility of volatility similarity through specific statistical measures. Our

analysis includes periods of significant market events, such as the COVID-19 crash

and the 2022 market drawdown, to assess each model’s ability to generate paths

that reflect both price and volatility behavior observed in the market. This com-

prehensive evaluation provides insights for applications in risk management, option

pricing, and trading strategy development.

The remainder of this paper is organized as follows. Section 2 presents the theo-

retical framework for each model under consideration. Section 3 describes the data

sources, preprocessing techniques, and TQQQ data analysis. Section 4 outlines the

model calibration methodology and optimization techniques. Section 5 presents the
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evaluation framework and performance metrics used to assess the models focusing

on price path and volatility. Section 6 presents the results of our comparative anal-

ysis, including the models’ performance in path pricing, volatility modeling, and

capturing distributional properties of returns. In Subsection 6.4, we also assess the

models’ capability to capture and simulate both short-term market crashes, such

as the COVID-19 crash, and long-term drawdowns, like the 2022 market decline

driven by recession fears. Section 7 discusses the practical implications and appli-

cations of our findings in context of risk management, option pricing, and portfolio

optimization. Finally, Section 8 summarizes the key findings and contributions and

suggests directions for future research.

2 Theoretical Framework

Existing approaches to modeling LETFs have primarily focused on their theoretical

relationship with underlying indices. Leung and Santoli (2016) [19] model the

reference index using stochastic volatility to derive LETF option prices that are

arbitrage-free across different leverage ratios. Other studies by Dobi and Avellaneda

(2012) [14] and Tang and Xu (2013) [29] have analyzed tracking error and return

deviations through the lens of the underlying index relationship.

We propose a different approach by directly modeling the LETF as an indepen-

dent financial instrument, focusing on practical applications in risk management

and trading. We evaluate the following stochastic models:

2.1 Geometric Brownian Motion (GBM)

Geometric Brownian Motion (GBM) models asset price dynamics with the assump-

tion that the logarithm of the asset price follows a Brownian motion with drift, as

shown by Black and Scholes (1973) [9] and Merton (1973) [23]. The dynamics of an

asset price under GBM are given by the following stochastic differential equation:

dSt = µStdt+ σStdWt (1)

where St is the asset price at time t, µ is the drift term (expected return), σ is the

volatility, and Wt is a standard Wiener process.

The GBM model is implemented using a discretized version of the stochastic

differential equation:

St+∆t = St exp

(
(µ− 1

2
σ2)∆t+ σ

√
∆tZt

)
(2)

where ∆t is the time step size and Zt is a random variable drawn from a t-

distribution with df degrees of freedom, scaled to have the same variance as the

standard normal distribution. This modification allows for the simulation of returns

with heavier tails, capturing extreme events observed in financial markets [25].
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However, the GBM model with t-distributed random variables still assumes con-

stant drift and volatility, which is unrealistic for many financial assets. It does not

capture other important stylized facts of asset returns, such as volatility clustering

and asymmetric volatility. More sophisticated models, such as stochastic volatil-

ity models (e.g., Heston model) [18] and Stochastic Volatility with Jump-Diffusion

(SVJD) models (e.g., Bates model) [7], have been developed to address these limita-

tions, allowing for both time-varying volatility and discontinuous price movements

which we incorporate and are discussed in the sections below.

2.2 Generalized Autoregressive Conditional Heteroskedastic-
ity (GARCH)

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model,

introduced by Bollerslev (1986) [10], is an extension of the Autoregressive Con-

ditional Heteroskedasticity (ARCH) model proposed by Engle (1982) [15]. The

GARCH model is widely used to capture the time-varying volatility of asset re-

turns. In this implementation, we consider a GARCH(1,1) model with t-distributed

innovations, defined as follows:

rt = µ∆t+
√
htεt (3)

ht = ω + α(rt−1 − µ∆t)2 + βht−1 (4)

where rt is the return at time t, µ is the drift term, ∆t is the time step size, ht is the

conditional variance at time t, εt is the innovation term following a t-distribution

with ν degrees of freedom, and ω, α, and β are non-negative parameters of the

GARCH model.

The GARCH(1,1) model captures key features of asset returns, such as volatility

clustering and persistence. The innovations are drawn from a t-distribution, allow-

ing for heavier tails compared to the standard normal distribution. The conditional

variance is modeled as a linear function of the previous squared innovation and the

previous conditional variance, with the initial volatility determined based on the

long-term average variance.

The GARCH model can be viewed as an extension of the Geometric Brownian

Motion (GBM) model, as it incorporates time-varying volatility. While the GBM

model assumes constant volatility, the GARCH model allows for the volatility to

evolve overtime based on past returns and conditional variances. This enables the

GARCH model to better capture the dynamic nature of asset return volatility.

2.3 Heston Stochastic Volatility Model

The Heston Stochastic Volatility Model, introduced by Heston (1993) [18], is a

widely used continuous-time model in financial mathematics for capturing the dy-
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namics of asset prices and their volatilities. The Heston model is defined by the

following system of stochastic differential equations:

dSt = µStdt+
√
vtStdW

S
t (5)

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t (6)

dWS
t dW

v
t = ρdt (7)

where St is the asset price at time t, vt is the instantaneous variance (squared

volatility) at time t, µ is the drift term representing the expected return of the

asset, κ is the mean reversion speed determining how quickly the variance reverts

to its long-term mean, θ is the long-term mean of the variance process representing

the average level of volatility over the long run, σ is the volatility of the variance

process controlling the speed at which the volatility changes, WS
t and W v

t are

correlated Wiener processes, and ρ is the correlation coefficient between the asset

price and the variance process, capturing the leverage effect.

The Heston model improves the Black-Scholes model and the GBM model by

incorporating stochastic volatility, allowing for more realistic modelling of asset

price dynamics. While the GBM model assumes that the asset price follows a

log-normal distribution with constant volatility, the Heston model allows for time-

varying volatility that follows a Cox-Ingersoll-Ross (CIR) process. This enables the

Heston model to capture the volatility clustering and the leverage effect observed

in financial markets. Compared to the GARCH model, which is a discrete-time

model for capturing volatility clustering and time-varying volatility, the Heston

model provides a continuous-time framework. The GARCH model models the

conditional variance of asset returns as a function of past squared returns and past

conditional variances, while the Heston model treats the instantaneous variance as

a separate stochastic process following a CIR process. The continuous-time nature

of the Heston model allows for more flexible modeling of volatility dynamics and

enables the derivation of closed-form solutions for European option prices.

2.4 Stochastic Volatility with Jump-Diffusion (SVJD)Model

The Stochastic Volatility with Jump-Diffusion (SVJD) model, also known as the

Bates model, introduced by Bates (1996) [7], aims to capture both the continuous

and discontinuous components of asset price dynamics, as well as the time-varying

volatility for financial modeling and option pricing. The SVJD model is defined by

the following system of stochastic differential equations:
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dSt

St
= (µ− λk̄)dt+

√
vtdW

S
t + JtdNt (8)

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t (9)

dWS
t dW

v
t = ρdt (10)

Jt ∼ N(µjump, σ
2
jump) (11)

Nt ∼ Poisson(λt) (12)

where St is the asset price at time t, vt is the instantaneous variance (squared

volatility) at time t, µ is the drift term, κ is the mean reversion speed of the

variance process, θ is the long-term mean of the variance process, σ is the volatility

of the variance process, WS
t and W v

t are correlated Wiener processes, ρ is the

correlation coefficient between the Wiener processes (capturing the leverage effect),

Jt is the jump size following a normal distribution with mean µjump and standard

deviation σjump, Nt is a Poisson process with intensity λ representing the arrival

of jumps, and k̄ = E[eJt ]− 1 is the compensator term for the jump process.

The SVJD model extends the Heston model by incorporating discontinuous

jumps in the asset price process, allowing for the modelling of sudden and significant

price movements that are not captured by the continuous component alone. The

jump component is modeled using a compound Poisson process, where the jump

sizes follo a normal distribution, and the arrival of jumps modeled by the intensity

parameter λ.

2.5 Multi-Scale Volatility with Jumps (MSVJ) Model

The Multi-Scale Volatility with Jumps (MSVJ) model incorporates both fast and

slow volatility components to better capture the complex volatility dynamics ob-

served in financial markets, particularly in the context of LETFs. This model is

inspired by the work of Fouque et al. (2000) [17] on multi-scale stochastic volatility

models. The proposed model is defined as follows:

dSt = µStdt+
√
VtStdW

S
t + St−dJt (13)

Vt = V f
t + V s

t (14)

dV f
t = κf (θf − V f

t )dt+ σf

√
V f
t dW

f
t (15)

dV s
t = κs(θs − V s

t )dt+ σs
√
V s
t dW

s
t (16)

dWS
t dW

f
t = ρdt (17)

where St is the asset price at time t, V f
t and V s

t are the fast and slow volatility

components at time t, respectively, Vt is the combined volatility at time t, µ is the

drift term, κf and κs are the mean reversion rates, θf and θs are the long-term

means, σf and σs are the volatilities of the fast and slow volatility components,
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WS
t and W f

t are correlated Wiener processes, ρ is the correlation coefficient, and

Jt is a jump process with intensity λ and jump size distribution ν.

The MSVJ model extends the concepts introduced in the previous sections by in-

corporating multiple volatility components operating at different time scales. While

the Geometric Brownian Motion (GBM) model assumes constant volatility and the

Heston model introduces a single stochastic volatility component, the MSVJ model

allows for a more flexible representation of volatility dynamics by considering both

fast and slow volatility components. The fast volatility component, V f
t , captures

short-term fluctuations in volatility, while the slow volatility component, V s
t , repre-

sents longer-term trends. The asset price dynamics in the MSVJ model are driven

by the combined volatility, Vt, which is the sum of the fast (V f
t ) and slow (V s

t )

volatility components. This allows the model to capture both short-term and long-

term volatility effects on the asset price.

Similar to the SVJD model, the MSVJ model also includes a jump component,

which enhances its ability to represent the discontinuous and abrupt price move-

ments in addition to the continuous price dynamics captured by the diffusion com-

ponent.

3 Data and Methodology

3.1 Data Sources and Preprocessing

For this study, we used the historical daily price data of the ProShares UltraPro

QQQ (TQQQ), a 3X-leveraged exchange-traded fund (ETF) that seeks to provide

three times the daily investment results of the NASDAQ-100 Index over a 14-year

period from September 1, 2010, to September 1, 2024. This timeframe captures

various market regimes, including periods of low and high volatility, bull and bear

markets, and significant economic events, providing a comprehensive dataset for

model calibration and evaluation.

We split the dataset into two subsets: a calibration set and a testing set. The

calibration set consists of data from September 1, 2010, to August 31, 2019, and

is used to estimate the parameters of the various models under consideration. The

testing set, spanning from September 1, 2019, to September 1, 2024, is used to

assess the performance of the calibrated models in an out-of-sample setting. For the

testing set, for each model, we generated 1,000 one-year simulations starting from

September 1, 2019, and compared the simulated paths to the realized data. This

process is repeated for each year from 2019 to 2024, providing a rigorous framework

for evaluating the models’ ability to capture the dynamics of the TQQQ ETF.

3.2 TQQQ Data Analysis

Figure 1 displays the auto-correlation function (ACF) and partial auto-correlation

function (PACF) of TQQQ daily log returns, indicating minimal serial correlation
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Table 1: Descriptive Statistics and Risk Analysis of TQQQ Daily Log Returns

Metric Value

Mean 0.0014

Median 0.0035

Standard Deviation 0.0386

Skewness -0.8913

Kurtosis 8.4526

Leverage Effect -0.0204

ADF Test p-value 0.0000

KPSS Test p-value 0.1000

GPD Shape Parameter 0.1752

GPD Scale Parameter 0.0000

Value at Risk (95%) -0.0635

Expected Shortfall (95%) -0.0969

Figure 1: Auto-correlation and Partial Auto-correlation Functions of TQQQ Daily
Log Returns
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in the return series. Table 1 provides some of the descriptive statistics associ-

ated with TQQQ which suggest a left-skewed distribution with heavy tails. The

resulting Pearson correlation coefficient (-0.0204) suggests a weak negative relation-

ship between returns and volatility. To assess the stationarity of the returns, we

employed the Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) tests. The ADF test rejects the null hypothesis of a unit root, while

the KPSS test fails to reject the null hypothesis of stationarity at the 5% significance

level indicating TQQQ daily log returns are indeed stationary.

4 Model Calibration

In this study, we calibrated the stochastic models using TQQQ’s historical equity

data. For volatility estimation, we relied solely on realized volatility, different from

the common practice of using both realized and implied volatility for option pricing.

Our approach may not fully capture market expectations of future volatility, which

is typically reflected in implied volatility. Despite this potential limitation, our

calibration method provided valuable insights into the models’ capacity to replicate

TQQQ’s historical dynamics and predict future volatility movements.

4.1 Calibration Methodology

Rolling Window Calibration

To account for the time-varying nature of model parameters, we employed a rolling

window calibration approach. The models were re-calibrated daily using a 252-

day (approximately one trading year) lookback window. This approach allowed

the models to adapt to evolving market conditions while maintaining a sufficient

historical context for parameter estimation.

Objective Function

An objective function was designed to provide a comprehensive measure of the

model’s fit to the observed TQQQ data. It incorporated multiple metrics to capture

various aspects of the price dynamics, including the accuracy of return and volatility

estimates, the similarity of return distributions, and the matching of higher-order

moments. The objective function was constructed as a weighted sum of the follow-

ing components:

(i) Mean Squared Error (MSE) of returns

(ii) Mean Squared Error (MSE) of volatility

(iii) Skewness difference

(iv) Kurtosis difference
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(v) Dynamic Time Warping (DTW) on price path

(vi) Dynamic Time Warping (DTW) distance on rolling volatility

The combined objective function was expressed as a weighted sum of these com-

ponents, with weights determined through sensitivity analysis.

Optimization Algorithm

We employed a custom optimization algorithm inspired by the Differential Evo-

lution (DE) algorithm [28] for parameter optimization. The pseudo-code for the

optimization procedure is presented in Algorithm 1. The algorithm combines ran-

dom exploration and exploitation of the best-performing parameters to calibrate

the stochastic models using a rolling-window approach.

Algorithm 1 Calibrating Stochastic Models

1: Main Script:
2: Load data, split into historical and last year data
3: Define parameter bounds for optimization
4: Start with some initial set of parameters
5: Rolling Window Optimization:
6: for each window in data do
7: Initialize starting stock price S0 for the simulations
8: for each iteration do
9: if first iteration or random exploration then

10: Generate random parameters within bounds
11: else
12: Select top parameters and perturb them
13: end if
14: Generate simulated price paths using the model with current params
15: Evaluate objective function, update best parameters if better score
16: end for
17: Store best parameters and score for the window
18: end for
19: Extract optimized parameters and performance scores from results
20: Select top 25 percentile results based on performance scores
21: Calculate median of top performing parameter sets to get best parameters

5 Model Evaluation

To evaluate how well each stochastic model captures TQQQ’s price and volatility

characteristics, we employ a comprehensive set of statistical measures. For price

dynamics, we assess path trajectories using Dynamic Time Warping distance, price

range capture using multi-band metrics, and return distributions using Kolmogorov-

Smirnov tests. For volatility dynamics, we analyze realized volatility regression,
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volatility persistence, jump capture, and volatility of volatility similarity through

specific statistical measures.

5.1 Price Path Metrics

Dynamic Time Warping (DTW) Price

The Dynamic Time Warping (DTW) distance [8, 24] measures the similarity be-

tween the simulated price paths and the actual price path by finding the optimal

alignment between them. The Dynamic Time Warping (DTW) distance between

two time series X and Y after being normalized to Xnorm and Ynorm is calculated

as follows:

DTW (Xnorm, Ynorm) = min
w∈W

√√√√ K∑
k=1

d(wk) (18)

wherew = (w1, . . . , wK) is a warping path in the set of all possible warping paths

W, and d(wk) is the Euclidean distance between the corresponding elements of

Xnorm and Ynorm on the warping path. The warping path w represents a mapping

between the indices of Xnorm and Ynorm that minimizes the total distance while

satisfying certain constraints, such as monotonicity and continuity. Lower DTW

values indicate better performance, suggesting a higher degree of similarity in shape

and timing between the simulated price paths and the actual price path.

Weighted Multi-band Capture Rate (WMCR) Price

The Weighted Multi-band Capture Rate (WMCR) Price metric assesses the model’s

ability to generate simulated price paths that capture the actual price path within

specified percentage bands. It is calculated as follows:

WMCR(X, X̂) =
∑
b∈B

wb ·
1

T

T∑
t=1

I
(
Mt · (1−

pb
100

) ≤ Xt ≤Mt · (1 +
pb
100

)
)

(19)

where X is the actual price path, X̂ represents the ensemble of simulated

price paths, B is a set of percentage bands, wb are band-specific weights, Mt =
min(X̂t)+max(X̂t)

2 is the midpoint price derived from the simulated paths at time t,

pb is the percentage deviation corresponding to band b, I(·) is the indicator function,
and T is the total number of time steps. The WMCR Price metric assigns higher

weights to tighter bands, emphasizing the importance of the simulated price paths

capturing the actual price path more closely. Higher WMCR Price values indicate

better performance, suggesting that the actual price path consistently falls within

the specified percentage bands derived from the simulated price paths. We used

percentage bands from 20% to 60%, with weights decreasing as the band widens.
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The 20% band had the highest weight of 5, while the 60% band had the lowest

weight of 1.

Path Momentum Consistency (PMC)

The Path Momentum Consistency (PMC) metric measures the alignment of mo-

mentum characteristics between the simulated price paths and the actual price

path. It is calculated using rolling windows to capture the momentum dynamics

over time. The PMC metric is defined as follows:

PMC =
1

N(T − w + 1)

N∑
i=1

T∑
t=w

⊮(sign(msimi
t−w+1:t) = sign(mactual

t−w+1:t)) (20)

where N is the number of simulated price paths, T is the total number of time

steps, w is the size of the rolling window,msimi
t−w+1:t represents the rolling momentum

of the i-th simulated price path from time t− w + 1 to t, mactual
t−w+1:t represents the

rolling momentum of the actual price path from time t−w+1 to t, and ⊮(·) is the
indicator function. The rolling momentum is calculated as the average return over

the specified window. Higher PMC values indicate better alignment of momentum

characteristics between the simulated and actual price paths.

Tail-Weighted Anderson-Darling (TWAD)

The Tail-Weighted Anderson-Darling (TWAD) metric is a modification of the orig-

inal Anderson-Darling test [4] that places more emphasis on the tails of the distri-

bution. The TWAD metric is defined as:

TWAD = n

∫ ∞

−∞

(Fn(x)− F (x))2

F (x)(1− F (x))
ψ(x)dF (x) (21)

where Fn(x) is the empirical cumulative distribution function (CDF) of the sim-

ulated returns, F (x) is the CDF of the actual returns, n is the sample size, and

ψ(x) is a weight function that emphasizes the tails of the distribution. A common

choice for the weight function is ψ(x) = (F (x)(1 − F (x)))−1, which assigns more

weight to the tails compared to the center of the distribution. Lower TWAD values

indicate better agreement between the simulated and actual return distributions,

particularly in the tails.

Kolmogorov-Smirnov (KS) Test

The Kolmogorov-Smirnov (KS) test is a non-parametric test that measures the

maximum absolute difference between the empirical cumulative distribution func-

tions (CDFs) of two samples [22]. It is used to determine whether two samples

come from the same underlying distribution. The KS test statistic is defined as:



Paper 2: Comparative analysis of stochastic models for simulating leveraged ETF price paths 27

Dn,m = sup
x

|Fn(x)−Gm(x)| (22)

where Fn(x) and Gm(x) are the empirical CDFs of the two samples, n and m

are the respective sample sizes, and sup denotes the supremum (maximum) over

all x values.

Lower values of the KS test statistic indicate better agreement between the two

distributions being compared. Unlike the TWAD test which focuses on capturing

tail behavior, the KS test provides a general measure of the difference between two

distributions.

5.2 Volatility Metrics

Weighted Multi-band Capture Rate (WMCR) Volatility

Similar to WMCR Price, this metric measures the capture rate of the real volatility

within the volatility bands derived from the simulated volatility. Higher values

suggest better performance.

Dynamic Time Warping (DTW) Volatility

Similar to DTW Price, this metric measures the similarity between simulated and

actual volatility paths using the DTW distance. Lower values indicate better per-

formance.

Realized Volatility Regression (RVR)

The Realized Volatility Regression (RVR) metric assesses the model’s ability to cap-

ture the relationship between the realized volatility and the model-implied volatility.

It is estimated as follows:

RVt = β0 + β1σ̂t + ϵt (23)

where RVt is the realized volatility at time t, and σ̂t is the model-implied volatil-

ity [3]. We evaluate models based on the R2 (values closer to 1 indicate better

explanatory power) and the deviation of β1 from 1 (values closer to 1 suggest bet-

ter performance).

Volatility of Volatility Similarity (VVS)

The Volatility of Volatility Similarity (VVS) metric measures the similarity between

the volatility of volatility (VoV) of the simulated paths and the VoV of the realized

volatility. It is calculated as follows:

V V S = 1− |V oVσ̂ − V oVRV |
V oVσ̂ + V oVRV

(24)
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where V oVσ̂ is the average VoV across all simulated paths, and V oVRV is the VoV

of the realized volatility [13].

For each simulated path i, the VoV is calculated as:

V oV
(i)
σ̂ =

√√√√ 1

T − 1

T−1∑
t=1

(∆σ̂
(i)
t −∆σ̂(i))2, ∆σ̂

(i)
t = |σ̂(i)

t − σ̂
(i)
t−1| (25)

where σ̂
(i)
t is the simulated volatility of path i at time t, ∆σ̂

(i)
t is the absolute change

in simulated volatility from time t− 1 to t, and ∆σ̂(i) is the mean of the absolute

changes in simulated volatility for path i.

The VVS metric ranges from 0 to 1, with values closer to 1 indicating a higher

similarity between the VoV of the simulated paths and the VoV of the realized

volatility, suggesting that the model captures the variability of volatility changes

more accurately.

Volatility Persistence Ratio (VPR)

The Volatility Persistence Ratio (VPR) measures the similarity between the per-

sistence of volatility in the simulated paths and the persistence of volatility in the

actual data. It is calculated as the ratio of the autocovariance of the simulated

volatility to the autocovariance of the actual volatility:

V PR =

∑T−1
i=1 (σ̂i+ 1sim − ¯̂σsim)(σ̂isim − ¯̂σsim)∑

i = 1T−1(σi+ 1actual − σ̄actual)(σactual
i − σ̄actual)

(26)

where σ̂sim
i is the simulated volatility at time i, ¯̂σsim is the average simulated

volatility, σactual
i is the actual volatility at time i, σ̄actual is the average actual

volatility, and T is the total number of time steps [2]. The autocovariance measures

the degree to which volatility at time i is related to volatility at time i+1. A higher

autocovariance indicates stronger persistence in volatility, meaning that high (low)

volatility periods tend to be followed by high (low) volatility periods.

The VPR compares the autocovariance of the simulated volatility to that of the

actual volatility. A VPR close to 1 suggests that the model accurately captures the

persistence of volatility observed in the actual data. Values greater than 1 indicate

that the model overestimates volatility persistence, while values less than 1 indicate

that the model underestimates volatility persistence.

Volatility Jump Capture (VJC)

The Volatility Jump Capture (VJC) metric measures the model’s ability to capture

sudden and significant changes (jumps) in volatility. It is calculated as the average

proportion of actual volatility jumps that are successfully captured by the simulated

volatility paths:
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V JC =
1

Nsim

Nsim∑
i=1

∑NJ

j=1 I(|σ̂tjsimi − σ̂tj − 1simi | > θi)∑NJ

j=1 I(|σactual
tj − σactual

tj−1 | > θactual)
(27)

where Nsim is the number of simulated volatility paths, NJ is the number of

actual volatility jumps, tj are the times at which jumps occur, σ̂tj
simi is the sim-

ulated volatility of path i at time tj , σtj
actual is the actual volatility at time tj , θi

is the jump threshold for the i-th simulated path, θactual is the jump threshold for

the actual volatility, and I(·) is an indicator function that equals 1 if the condition

inside the parentheses is true and 0 otherwise [6]. Higher values indicating better

jump capture performance.

6 Results

In this section, we present the results of our comparative analysis of the Multi-

Scale, GBM, SVJD, Heston, and GARCH models in capturing the dynamics of

the TQQQ leveraged ETF. We evaluated the models’ performance across three key

aspects: path pricing, volatility modeling, and distributional properties of returns,

using a comprehensive set of metrics and tests. Table 2 provides an overview of

the models’ performance across various metrics, highlighting their strengths and

weaknesses in modelling the TQQQ leveraged ETF.

The performance metrics presented in Table 2 are averaged over the last five years

of data, from September 2019 to September 2024. This period encompasses a wide

range of market conditions, from low to high volatility, making it an ideal testing

ground for evaluating the models’ ability to capture the complex dynamics of the

TQQQ leveraged ETF. In addition, we also conducted a more focused investigation

of the models’ performance using data from September 2023 to September 2024.

During this one-year period, TQQQ experienced a significant surge of over 60%,

reflecting a primarily bullish market sentiment. However, this period also witnessed

substantial volatility, with TQQQ suffering a drawdown of 20% or more on four

separate occasions and the VIX index, a measure of market volatility, reaching a

value of 20 or higher four times, with it peaking at 65 during this timeframe.

6.1 Path Pricing Performance

To assess the models’ ability to capture the overall price dynamics of TQQQ,

we looked at the Dynamic Time Warping distance for price (DTWPrice) and the

Weighted Multi-band Capture Rate for price (WMCRPrice).

The SVJD model achieved the lowest DTWPrice of 18.5719, closely followed

by the GBM model (18.7055) and the Heston model (19.527), suggesting that

these models best capture the overall price dynamics of TQQQ. The SVJD model’s

DTWPrice performance was nearly similar to that of GBM, GARCH performs the

worst of all the models.
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(a) GARCH Model (b) GBM Model

(c) MSVJ model (d) Heston model

(e) SVJD model

Figure 2: DTW Price distance for models from September 2023 to September 2024.
A lower DTW distance indicates better performance in capturing the price path
dynamics during this period.
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(a) GARCH Model (b) GBM Model

(c) MSVJ model (d) Heston model

(e) SVJD model

Figure 3: WMCR Price for all models from September 2023 to September 2024. A
higher value indicates better performance in capturing the price paths dynamics
within the specified range.
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Metric GARCH Heston GBM SVJD MSVJ

DTWPrice 20.0342 19.527 18.7055 18.5719 19.8595

DTWVolatility 5.5814 2.9608 2.9401 2.9353 3.1328

WMCRPrice 0.7420 0.7510 0.7665 0.6916 0.7699

WMCRVolatility 0.4143 0.4427 0.4313 0.4478 0.4741

RVRR2 0.0729 0.0795 0.0713 0.1003 0.1239

RVRBeta -0.0326 0.0073 0.0059 0.0388 0.0016

VPR -0.0003 0.0009 -0.0022 0.0416 0.0034

VJC 0.0691 0.0910 0.0908 0.1079 0.0951

VVS 0.6893 0.7357 0.7357 0.7396 0.7403

PMC 0.5045 0.5119 0.5132 0.5103 0.5246

TWAD 101.4809 8.8335 8.3610 17.0285 6.8949

KS Statistic 0.2292 0.1273 0.1247 0.1259 0.1196

Median 0.0002 -0.0001 0.0007 0.0006 0.0013

Mean 0.0003 0.0005 0.0014 0.0001 0.0010

Standard Deviation 0.0146 0.0363 0.0384 0.0273 0.0352

VAR5% -0.0222 -0.0569 -0.0593 -0.0449 -0.0567

ES5% -0.0314 -0.0746 -0.0777 -0.0576 -0.0768

Table 2: Model performance comparison across various metrics, with the best values
for each metric highlighted in bold

The MSVJ model also achieved the highest WMCRPrice of 0.7699 followed by

second best GBM model (0.7665), outperforming the other models, indicating its

effectiveness in capturing price dynamics across multiple time scales.

To further evaluate the models’ ability to capture the momentum characteristics

of the price paths, we looked at the Path Momentum Consistency (PMC) metric.

The MSVJ model achieved the highest PMC of 0.5246, suggesting better alignment

of momentum characteristics compared to the other models.

Figure 2 illustrates the DTW distance for the simulated price paths of each model

compared to the actual TQQQ price path from September 2023 to September 2024.

The SVJD and Heston demonstrated the closest alignment with the actual price

path, consistent with their strong average DTWPrice metric performance in Table

2.

Figure 3 presents the WMCR Price distance for the models over the same period,

with the MSVJ model exhibiting the highest capture rate followed by GBM model,

consistent with its strong average WMCRPrice metric performance in Table 2.

These results suggest that the SVJD and GBM models excel at capturing the

overall price dynamics of TQQQ, as evidenced by their low DTWPrice values. The
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MSVJ, on the other hand, was most effective in capturing the overall price range

bands and aligning momentum characteristics, as indicated by its high WMCRPrice

and PMC values. In the next section, we consider other aspects of the models’

performance, such as volatility modeling and distributional properties, to gain a

more comprehensive understanding of their suitability for modeling LETFs.

6.2 Volatility Modeling Performance

Accurate modelling of volatility dynamics is crucial for capturing the complex be-

haviour of LETFs like TQQQ. We assessed the models’ volatility modeling perfor-

mance using various metrics, including the DTW distance for volatility (DTWVolatility),

Weighted Multi-band Capture Rate for volatility (WMCRVolatility), Realized Volatil-

ity Regression (RVR) metrics, Volatility of Volatility Similarity (VVS), Volatility

Persistence Ratio (VPR), and Volatility Jump Capture (VJC).

The SVJD model achieved the lowest DTWVolatility of 2.9353, suggesting that

it best captured the overall volatility dynamics of TQQQ. The GBM model followed

with a DTWVolatility of 2.9401, and the Heston model with 2.9608. The MSVJ

model achieved the highest WMCRVolatility of 0.4741, followed by the SVJD model

with 0.4478, indicating their effectiveness in capturing volatility dynamics across

different percentage bands.

The MSVJ model exhibited the highest RVRR2 value of 0.1239, indicating its

superior explanatory power in predicting realized volatility. This suggests that the

MSVJ model captured a larger proportion of the variation in the realized volatility

compared to the other models. In contrast, the SVJD model had the RVRBeta coef-

ficient closest to 1 (0.0388), implying the least bias in predicting realized volatility.

In terms of capturing the variance of volatility, the MSVJ model also achieved

the highest VVS of 0.7403. The SVJD model, on the other hand, performed better

in capturing the VPR and VJC, with values of 0.0416 and 0.1079, respectively,

suggesting its effectiveness in modelling volatility persistence and jumps.

Figure 4 illustrates the DTW distance for the simulated volatility paths of

each model compared to the actual TQQQ volatility path from September 2023

to September 2024. The Heston model and the SVJD model demonstrated the

closest alignment with the actual volatility path, consistent with their strong aver-

age DTWVolatility metric performance in Table 2. Subsequently, Figure 5 presents

the WMCR Volatility metric for the models over the same period, with the MSVJ

model and SVJD model exhibiting the highest capture rate across multiple per-

centage bands, also consistent with their strong average WMCRVolatility metric

performance in Table 2.

These results highlight the strengths of different models in capturing various as-

pects of volatility dynamics. The SVJD model demonstrated superior performance

in capturing the overall volatility dynamics, as evidenced by its low DTWVolatility

and high WMCRVolatility. The MSVJ model also excelled in capturing volatility

dynamics across different percentage bands, as indicated by its highWMCRVolatility.
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(a) GARCH model (b) GBM model

(c) MSVJ model (d) Heston model

(e) SVJD model

Figure 4: DTW rolling volatility distance for models from September 2023 to
September 2024. A lower DTW distance indicates better performance in capturing
the volatility path dynamics during this period.

Additionally, the MSVJ model showed the best explanatory power in predicting re-

alized volatility and capturing the variability in volatility, as demonstrated by its

high RVRR2 and VVS values. The SVJD model also showed effectiveness in mod-

eling volatility persistence and jumps, as demonstrated by its strong VPR and

VJC values. In the next section, we analyze the distributional properties of our

simulated returns compared to the actual returns.
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(a) GARCH model (b) GBM model

(c) MSVJ model (d) Heston model

(e) SVJD model

Figure 5: WMCR Volatility for all models from September 2023 to September 2024.
A higher value indicates better performance in capturing the volatility dynamics
within the specified range.
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6.3 Distributional Properties of Returns

To assess the models’ ability to reproduce the distributional properties of TQQQ

returns, we compare the simulated return distributions with the actual TQQQ

return distribution using various metrics and tests, as shown in Table 2.

The Tail-Weighted Anderson-Darling (TWAD) test [4] measures the goodness

of fit between the simulated and actual return distributions, with lower values indi-

cating better performance. The MSVJ model achieved the lowest TWAD of 6.8949,

suggesting that it best captured the overall distribution of returns, particularly in

the tails. The Kolmogorov-Smirnov (KS) test statistic [22], which measures the

maximum distance between the empirical cumulative distribution functions of the

simulated and actual returns, also favored the MSVJ, with the lowest KS statistic

of 0.1196. While the MSVJ model achieved the closest median (0.0013), the GBM

model achieved the closest mean (0.0014) and standard deviation (0.0384) to the

actual returns. The GBM model also achieved the closest Value at Risk (VaR) and

Expected Shortfall (ES) at the 5% significance level to the actual returns, with a

VaR of -0.0593 and an ES of -0.0777.

Figure 6 presents the return distributions for the simulated returns of each model

compared to the actual TQQQ return distribution from September 2023 to Septem-

ber 2024. The MSVJ model and SVJD model demonstrate the closest alignment

with the actual return distribution, consistent with their strong performance in

the KS statistic and other distributional metrics. These results suggest that the

MSVJ model was the most effective in capturing the overall distribution of returns,

particularly in the tails, while the GBM model excelled in reproducing the key

distributional properties, such as mean, standard deviation, VaR, and ES.

The results underscore the importance of considering multiple evaluation met-

rics and choosing models based on the specific objectives and constraints of the

application at hand, such as the relative importance of capturing price dynamics,

volatility characteristics, or distributional properties.

6.4 Evaluating Historical Crashes

In the previous section, we assessed the models’ general performance over the last

five years and specifically analyzed their performance from September 2023 to

September 2024, which was an overall bullish period. In this section, we assess

the performance of different models in capturing the dynamics of bear market pe-

riods and historical crash events. We compared the simulated return distributions

with the actual TQQQ return distribution during two significant market downturns:

the COVID-19 crash in 2020 and the recent 2022 market drawdown driven by re-

cession fears. The COVID-19 crash was characterized by a sharp and rapid decline

in stock prices, with the S&P 500 falling by approximately 34% between February

and March 2020 [32]. The 2022 market drawdown, on the other hand, was a more

prolonged decline, with the S&P 500 dropping 27.5% from its peak and the Nasdaq-
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(a) GARCH model (b) GBM model

(c) MSVJ model (d) Heston model

(e) SVJD model

Figure 6: Kolmogorov-Smirnov (KS) test for comparing the return distributions of
various models with the actual TQQQ return distribution from September 2023 to
September 2024. A lower KS statistic indicates a better fit between the simulated
and actual return distributions.
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100 (QQQ) declining by 32.5% overall, with TQQQ suffering a drawdown of 80%,

marking the worst annual performance since the 2008 financial crisis [26].

To evaluate the models’ ability to capture these historical crashes, we focused on

two key aspects: the similarity of the simulated return distributions to the actual

TQQQ return distribution during the crash periods and the models’ ability to

generate realistic drawdown scenarios for both rapid and prolonged market declines.

First, we compared the simulated return distributions with the actual TQQQ re-

turn distribution during the COVID-19 crash and the 2022 market drawdown using

the Kolmogorov-Smirnov (KS) test [22] and the Tail Weighted Anderson-Darling

(TWAD) statistic [4]. The KS test measures the maximum absolute difference be-

tween the empirical cumulative distribution functions (CDFs) of two samples, while

the TWAD statistic places more emphasis on the tails of the distribution, making

it better for model evaluation in extreme market events.

Table 3 presents the KS and TWAD statistics for each model during the COVID-

19 crash and the 2022 market drawdown, with lower values indicating better per-

formance. The results show that the Heston model generated return distributions

that closely matched the actual TQQQ return distribution during the COVID-19

crash, capturing the extreme negative returns and fat tails. The GBM model was

the second-best performer in this regard. On the other hand, the GBM model

was able to capture the more gradual and prolonged drawdown observed during

the 2022 market crash better than the other models, with the Heston model being

the second-best performer. These findings suggest that both the Heston and GBM

model were well-suited for capturing the return distributions during different types

of market crashes.

Model COVID-19 KS COVID-19 TWAD 2022 Decline KS 2022 Decline TWAD

MSVJ 0.4396 36.2375 0.2097 43.0122

GBM 0.2622 2.2647 0.1722 31.6651

SVJD 0.2962 6.9383 0.2392 101.0898

Heston 0.2495 1.6266 0.1834 39.8259

GARCH 0.4204 27.6852 0.3672 283.5072

Table 3: Kolmogorov-Smirnov (KS) and Tail Weighted Anderson-Darling (TWAD)
statistics for each model during historical crash periods.

In addition to the distributional metrics, we assessed the models’ ability to gener-

ate realistic price paths and price path ranges that simulated the crash periods using

the DTW distance and the WMCR metric. The WMCR Price metric measured

the proportion of simulated price paths that fall within certain percentage bands

around the actual price path, with higher weights assigned to narrower bands. Ta-

ble 4 presents the WMCR Price values for each model during the COVID-19 crash

and the 2022 market drawdown. The results showed that the SVJD model achieved
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(a) GARCH model (b) GBM model

(c) MSVJ model (d) Heston model

(e) SVJD model

Figure 7: DTW distance for models during the 2020 COVID-19 Market crash.
The SVJD model has the lowest DTW distance, indicating better performance in
capturing the price path during the crash.
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(a) GARCH Model (b) GBM Model

(c) MSVJ model (d) Heston Model

(e) SVJD Model

Figure 8: DTW distance for various models during the 2022 market drawdown.
The SVJD model has the lowest DTW distance, indicating better performance in
capturing the price path during the decline.
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Model COVID-19 WMCR Price 2022 Recession WMCR Price

MSVJ 0.3057 0.1043

GBM 0.2437 0.1480

SVJD 0.3862 0.1955

Heston 0.3287 0.1571

GARCH 0.1908 0.0923

Table 4: WMCR Price for models during the 2020 COVID-19 crash and 2022
market drawdown

the highest WMCR Price values for both crash periods, followed by the Heston and

MSVJ.

To visualize the similarity between the simulated and actual price paths during

the crash periods, we plotted the DTW distances for each model. Figure 8 presents

the DTW distance plots for the 2022 market drawdown and Figure 7 shows the

DTW distance plots for the COVID-19 crash. In these plots, a smaller DTW

distance indicates a higher similarity between the simulated and actual price paths.

The DTW distance plots reveal that the SVJD model generated most similar price

paths to the actual TQQQ price path during both the 2022 market drawdown and

the COVID-19 crash. The Heston model also performs well, ranking as the second-

best model in terms of generating price paths that closely resemble the actual

TQQQ price path during these crash events.

The evaluation of historical crashes using multiple metrics highlight the strengths

of different models in capturing various aspects of market crashes. The Heston and

GBM models exceled at reproducing the return distributions during the COVID-

19 crash and the 2022 market drawdown, respectively, making them well-suited for

risk management purposes.

The SVJDmodel demonstrated superior performance in generating realistic price

paths and price path ranges during both crash periods, as evidenced by highWMCR

Price values and low DTW distances. The Heston model offered a good balance

between capturing return distributions and generating realistic price paths, with

competitive performance in both the DTW distance and WMCR Price metrics.

In summary, the choice of model for simulating LETF dynamics during market

crashes should be based on the specific characteristics of the crash event and the

desired application. For risk management purposes, the Heston and GBM models

may be preferred, while for applications that prioritize accurate price path simula-

tion and realistic price path ranges, such as stress testing or scenario analysis, the

SVJD model is the most appropriate choice.
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7 Discussion

The findings of this study highlight the importance of selecting the appropriate

stochastic model for simulating TQQQ price paths based on the specific objectives,

market conditions and applications in quantitative finance.

Application Best 2nd
Best

Key Users & Applications

Modeling Sharp
Crashes

Heston GBM
• Risk Mgrs: estimating VaR/ES
• Port. Mgrs: designing crash protection

Modeling Bear
Markets

GBM Heston
• Risk Mgrs: extended drawdown testing
• Port. Mgrs: defensive rebalancing

Estimating Price
Range

MSVJ GBM
• Options: barrier/range option pricing
• Traders: setting profit targets/stops

Simulating Price
Paths

SVJD GBM
• Traders: backtesting strategies
• Risk Mgrs: stress testing portfolios

Simulating
Volatility Paths

SVJD GBM
• Traders: mean reversion strategies
• Risk Mgrs: volatility regime testing

Table 5: Model performance summary

Table 5 provides a comprehensive summary of model performance across different

applications based on our findings.

When the objective is to evaluate and simulate scenarios that reflect market

crashes, both short-term events and long-term crises, models such as GBM and

the Heston model have been shown to be more effective. These models are bet-

ter equipped to capture the sudden and severe price movements associated with

market crashes, as demonstrated by their performance in reproducing historical

drawdowns and their ability to capture tail risk, as evidenced by the lowest Tail-

Weighted Anderson-Darling (TWAD) and Kolmogorov-Smirnov (KS) values. More-

over, GBM model’s ability to accurately estimate ES and VaR for TQQQ suggests

that it is well-suited for risk management applications.

If the objective is to generate future scenario simulations for option pricing, the

MSVJ model has proven to be the most suitable choice. The MSVJ model’s supe-

rior performance in capturing the range of the actual TQQQ price, as evidenced by

its highest WMCR for both price and volatility, makes it particularly valuable for

option pricing. Options traders can leverage this model’s accuracy in estimating

potential price ranges to price exotic options more effectively, especially for bar-

rier options and other path-dependent derivatives. The model’s high VVS value

indicates its ability to capture volatility dynamics, making it especially useful for

trading volatility-based strategies such as straddles or strangles, where profitability
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depends on accurate volatility forecasts.

When the primary goal is to simulate the most realistic price path and volatility

paths for TQQQ, the SVJD model has demonstrated superior performance. By

capturing both stochastic volatility and jump processes, the SVJD model can gen-

erate price and volatility trajectories that closely resemble the observed dynamics of

TQQQ. Portfolio managers can utilize this model for more accurate backtesting of

trading strategies and better assessment of portfolio risk under various market con-

ditions. The SVJD model’s strong performance in capturing volatility persistence

(VPR) and jumps (VJC) makes it particularly valuable for designing volatility ar-

bitrage strategies, where traders seek to profit from the difference between implied

and realized volatility.

The choice of model should also take into account the computational complexity

and data availability for calibration. More advanced models, such as the MSVJ

model, may require more computational resources and longer calibration times

compared to simpler models like GBM. Practitioners should weigh these computa-

tional costs against the potential benefits of improved accuracy for their specific

application.

8 Conclusion

8.1 Key Contributions

This study provides a comprehensive comparative analysis of advanced stochastic

models for simulating the price paths of TQQQ, a 3X- leveraged ETF tracking the

NASDAQ-100 index. Our findings demonstrate that more sophisticated models,

particularly the proposed MSVJ model and the SVJD model, outperform tradi-

tional approaches in capturing the complex dynamics of LETFs.

The key contributions of this work include:

1. The introduction of a custom MSVJ model that incorporates both slow and

fast volatility components, as well as jump processes. This model effectively cap-

tures the complex volatility dynamics observed in LETFs, which are characterized

by short-term fluctuations and long-term trends. The MSVJ model outperformed

other models in estimating the range of the actual TQQQ price and volatility, as

shown by its highest WMCR. It also best captures the distributional properties of

returns, evident from its lowest TWAD and KS statistics. Furthermore, the MSVJ

model excels in capturing changes in volatility over time, as indicated by its highest

VVS value.

2. A comprehensive evaluation framework combining statistical, distributional,

path-based, and financial performance metrics that provides insights into their

strengths and weaknesses for different applications in quantitative finance.

In conclusion, this study underscores the importance of using sophisticated

stochastic models when dealing with LETFs like TQQQ. As these financial in-
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struments grow in popularity and complexity, the need for accurate simulation

techniques becomes increasingly critical for investors, risk managers, and regula-

tors alike. By providing insights into the best-performing models and their implica-

tions, this work contributes to the development of more reliable and effective tools

for managing the risks and opportunities associated with LETFs.

8.2 Limitations and Future Work

Despite the breadth of stochastic models considered, several complexities of LETF

dynamics may still remain unaddressed. Potential directions include exploring ad-

ditional models such as the Variance Gamma (VG) [21]which can better capture

jump behaviorand the Markov-Switching Multifractal (MSM) [11]which emphasizes

volatility clustering.

A particularly promising avenue is the inclusion of option chain data (implied

volatility) in conjunction with historical (realized) volatility for model calibration.

Our current approach implicitly assumes that historical price data fully encodes

the information needed to forecast future dynamics, but this overlooks the forward-

looking information embedded in options markets. Integrating implied volatility

can benefit both risk management and derivative pricing:

• Better Parameter Estimation: Calibration to both observed price data (real-

world measure) and optionimplied data (riskneutral measure) enables reconcili-

ation of realworld dynamics with market expectations of future variance. This

dual-measure approach improves the capture of volatility term structures and

skew while reducing model misspecification in future state simulations.

• Improved Risk Management: Integration of implied volatility surfaces en-

ables more accurate tailrisk and stresstesting scenarios, as options markets often

anticipate large moves or regime changes before their manifestation in realized

volatility. This capability becomes particularly crucial for LETFs, which experi-

ence amplified volatility during market dislocations.

• Extended Derivative Pricing: Calibration to both historical returns and im-

plied volatility enables direct application to pricing LETFlinked options and

other derivatives. This approach yields riskneutral parameter estimates, essen-

tial for deriving fair values under standard pricing frameworks.

• Enhanced Volatility Surface Analysis: Beyond price path generation, cali-

bration to implied volatility enables simulation of entire volatility surfaces across

strikes and maturities, providing a comprehensive framework for scenario analy-

sis. This capability proves particularly valuable for evaluating complex hedging

strategies in pathdependent LETF options.

Lastly, the computational aspects of simulating LETFs could be further investi-

gated. Future work could explore the use of more advanced optimization algorithms,
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such as Bayesian optimization, particle swarm optimization, or deep learning, for

model calibration [16, 27, 33]. These techniques could help identify optimal model

parameters more efficiently, especially for complex models with numerous parame-

ters.

By addressing these limitations and exploring the suggested avenues for future

research, we can continue to enhance our understanding of LETF dynamics and

develop more accurate and reliable simulation tools for these complex financial

instruments, ultimately benefiting investors, risk managers, and regulators.
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