
Journal of Mathematics and Modeling in Finance (JMMF)
Vol. 5, No. 1, Winter & Spring 2025

Research paper

Comparing the performance of different deep learn-
ing architectures for time series forecasting

Reza Taleblou1

1 Faculty of Economics, Allameh Tabatabai University, Tehran, Iran
talebloo.r@atu.ac.ir

Abstract:
Abstract:
In this paper, we evaluate the performance of two machine learning architectures—
Recurrent Neural Networks (RNN) and Transformer-based models—on four
commodity-based company indices from the Tehran Stock Exchange. The
Transformer-based models used in this study include AutoFormer, FEDformer, In-
former, and PatchTST, while the RNN-based models consist of GRU and LSTM.
The dataset comprises daily observations collected from April 20, 2020, to Novem-
ber 20, 2024. To enhance the generalization power of the models and prevent
overfitting, we employ two techniques: splitting the training and test samples, and
applying regularization methods such as dropout. Hyperparameters for all mod-
els were selected using a visual method. Our results indicate that the PatchTST
model outperforms other methods in terms of Root Mean Squared Error (RMSE)
for both 1-day and 5-day (1-week) forecasting horizons. The FEDformer model
also demonstrates promising performance, particularly for forecasting the Met-
alOre time series. In contrast, the AutoFormer model performs relatively poorly
for longer forecasting horizons, while the GRU and LSTM models yield mixed
results. These findings underscore the significant impact of model selection and
forecasting horizon on the accuracy of time series forecasts, emphasizing the im-
portance of careful model choice and hyperparameter tuning for achieving optimal
performance.

Keywords: Financial Time Series Forecasting, Deep Learning, Recurrent Neural
Network(RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit(GRU),
Transformer Architecture
Classification: C22, C45,C53, G17

1 Introduction

Time series forecasting is a critical task across diverse fields such as finance, eco-

nomics, and industry, as accurate predictions of future values can profoundly impact

decision-making, risk management, and resource allocation. While traditional sta-

tistical and econometric methods have long been foundational for this purpose, their

reliance on assumptions like linearity and stationarity—often violated in real-world

scenarios—limits their practical effectiveness. In recent years, machine learning

techniques, particularly deep learning approaches, have gained traction for time

series forecasting. These methods excel at capturing complex nonlinear patterns

1Corresponding author

Received: 14/12/2024 Accepted: 09/03/2025

https://doi.org/10.22054/JMMF.2025.83410.1157

64 Journal of Mathematics and Modeling in Finance

and dynamic relationships in data, overcoming many constraints of conventional

models and delivering superior predictive performance.

The objective of this paper is to utilize novel deep learning methods to estimate

the expected return of multiple assets in financial markets. The models presented

in this paper enable the simultaneous prediction of several variables using a single

method. In this regard, two important points are raised:

Data Selection and Complexity: What data should be used to demonstrate

this capability? In this paper, solely to avoid cluttered diagrams, four indices have

been selected from over 32 significant stock market indices of the Tehran Stock Ex-

change. This data possesses several characteristics. First, it pertains to commodity-

based companies, and a wide range of global variables influence the sales of these

companies and, consequently, their stock prices. Therefore, the indices used for

prediction in this paper are effectively exposed to shocks that commodity-based

companies face anywhere else in the world. Second, exchange rate shocks and cur-

rency jumps directly impact these companies, increasing the complexity of predict-

ing these variables due to a wide array of factors (including Iranian sanctions and

geopolitical risks, etc.). Third, unforeseen shocks, such as changes in regulations

regarding royalty payments for these companies or export and import regulations,

further complicate the price behavior of these companies and their related indices

examined in this paper. Consequently, the indices used for prediction in this paper

represent some of the most complex data for forecasting.

Scalable Deep Learning Architectures for Multivariate Forecasting:

Are there deep learning models for time series prediction that can be used simulta-

neously for multiple variables on a large scale? This question can be elaborated as

follows: Can a model be introduced that can be trained on a wide range of time

series data and be used individually for each of them? Here, two important archi-

tectures from deep learning models for time series prediction are introduced. While

models in the RNN family have interesting capabilities for this task, they have a

disadvantage: they perform prediction using a single equation, meaning they do not

utilize information from other variables when predicting one specific variable. On

the other hand, some models with transformer architectures have the capability to

consider predictions as simultaneous equations and utilize information from other

variables when predicting each variable.

In this study, we evaluate the performance of different machine learning architec-

tures, transformer and RNN, on four different commodity-based company indices

in Tehran stock exchange. The transformer architecture models used in this study

include AutoFormer, FEDformer, Informer, and PatchTST, while the RNN archi-

tecture models include GRU and LSTM. Our goal is to investigate the performance

of these models on time series forecasting tasks, and to identify the most efficient

model for each forecasting horizon.

The data used in this study was collected daily from April 20, 2020, to Nov 20,

2024, and includes four different commodity-based companies index in Tehran stock

Paper 4: Deep learning architectures for time series forecasting 65

exchange. 80 percent of data was used for training (from April 20, 2020 to Feb 1,

2024) and 20 percent of data was used for testing (from Feb 1, 2024 to 20 Nov

2024). Finally, the performance of each model across different forecasting horizons

was evaluated using the root mean squared error (RMSE) criterion.

The remainder of this paper is organized as follows. In Section 2, we review

popular techniques used for time series forecasting, including traditional statistical

and econometrics methods and deep learning approaches with emphasis on RNN

and transformer architectures. In Section 3, we describe the data used in this

study, and discuss the experimental setup, the results, and implications of our

findings. Finally, in Section 4, we conclude our study and suggest directions for

future research.

2 Time Series Forecasting methods

In the framework of classical portfolio theory, two sets of inputs are required to

construct a portfolio of financial assets. The first is the variance-covariance matrix,

which indicates the risk of each asset and their correlation. The second is the

mean equation, which represents the expected return of each asset over different

horizons. The first, the variance-covariance matrix, is typically modeled using

two methods: the MGARCH family of models [34] and [35], or the Multivariate

Stochastic Volatility (MSV) model [37] and [36]. These models are suitable for both

high and low-frequency data. However, the second, constructing the mean equation

of returns that can accurately model the expected return, is typically modeled using

econometric time series tools.

Traditional econometric models for time series forecasting include Autoregressive

integrated moving average (ARIMA), exponential smoothing (ES), and seasonal

decomposition models. The simplicity and interpretability of these models have

led to wide use for time series forecasting tasks [40] and [41]. ARIMA and ES

models are a popular choice for time series forecasting, as they can capture both

short-term and long-term dependencies in the data. However, ARIMA models

have limitations, such as the assumption of linearity and stationarity, which may

not hold in many real-world applications. Also ES models face limitations, such

as the assumption of a constant trend and seasonality, which similarly may not

hold in many real-world applications. Seasonal decomposition models are used to

decompose a time series into its trend, seasonal, and residual components. These

models can be used to identify and remove seasonality from the data, which can

improve the accuracy of time series forecasting. This method is mainly suitable for

low-frequency data but may not be effective for high-frequency data or when the

number of variables is large. Therefore, as an alternative, machine learning and

neural network methods are used.

Neural network methods like Deep learning approaches have become increas-

ingly popular for time series forecasting tasks, due to their ability to learn complex

66 Journal of Mathematics and Modeling in Finance

patterns and relationships in data [39]. Recurrent neural networks (RNNs) and

transformers are two popular deep learning architectures used for time series fore-

casting.

RNNs are a type of neural network that can learn long-term dependencies in

data. RNNs have been widely applied for time series forecasting tasks, due to their

ability to capture both short-term and long-term dependencies in the data.

Transformers are a popular type of neural network that can learn complex in

data. Transformers have been widely used for natural language processing tasks,

but have also been used to time series forecasting tasks. In this regard, in this

paper, several methods from two different neural network architectures have been

compared.

2.1 RNN Architecture

Recurrent Neural Networks (RNNs) are a category of artificial neural networks

designed to process sequential data by utilizing internal memory states. This capa-

bility allows RNNs to remember previous information and utilize it to make future

forecasting, making them ideal for tasks such as natural language processing, speech

recognition, and time series predictions [21] [23]. The concept of RNNs dates back

to the 1980s, when researchers Rumelhart, Hinton, and Williams introduced net-

works with internal memory states in 1986, laying the foundation for modern RNN

architectures [21].

A significant advancement in RNNs came with the description of Long Short-

Term Memory (LSTM) networks by Hochreiter et al. [23]. LSTMs addressed the

vanishing gradient problem that plagued early RNNs, enabling them to learn long-

range dependencies in sequential data [23]. Gated Recurrent Units (GRU) were

proposed by Cho et al. as a simpler alternative to LSTMs [22] . GRUs also

mitigate the vanishing gradient problem but with fewer parameters than LSTMs,

making them computationally more efficient [22] .

At the core of RNNs, including their LSTM and GRU variants, is their distinc-

tive architecture featuring internal loops. These loops facilitate the continuous flow

of information as the network processes data, allowing RNNs to maintain a hidden

state that acts as a memory bank. This mechanism effectively integrates current in-

put with accumulated knowledge from previous inputs [22]. Thanks to this design,

RNNs, along with their advanced forms like LSTMs and GRUs, have become indis-

pensable in various applications. They excel in natural language processing, speech

recognition, machine translation, and predictive text applications, demonstrating

their proficiency in handling sequential data.

LSTM Architecture

The LSTM uses a multilayer LSTM encoder and an MLP decoder [23]. It builds

upon the LSTM-cell that improves the exploding and vanishing gradients problems

Paper 4: Deep learning architectures for time series forecasting 67

of classic RNNs. This network has been extensively used in sequential forecasting

tasks like language modeling, and time series predictions. The forecasts are ob-

tained by transforming the hidden states into contexts c[t+1:t+H], that are decoded

and adapted into ŷ[t+1:t+H],[q] through MLPs.

ht = LSTM([yt,x
(h)
t ,x(s)],ht−1) (1)

c[t+1:t+H] = Linear([ht,x
(f)
[:t+H]]) (2)

ŷτ,[q] = MLP([cτ ,x
(f)
τ]) (3)

where ht, is the hidden state for time t, yt is the input at time t and ht−1 is the

hidden state of the previous layer at t− 1, x(s) are all static exogenous inputs, x
(h)
t

historic exogenous, x
(f)
[:t+H] are future exogenous available at the forecasting time.

Figure 1: LSTM model architecture [23].

GRU

the Gated Recurrent Unit (GRU) proposed to improve on LSTM and RNN. The

forecasts at each time are given by a MLP decoder. This architecture follows

closely the original Multi Layer RNN with the main difference being its use of the

GRU cells [22] . The predictions are obtained by transforming the hidden states

into contexts c[t+1:t+H], that are decoded and adapted into ŷ[t+1:t+H],[q] through

MLPs.

ht = GRU([yt,x
(h)
t ,x(s)],ht−1) (4)

c[t+1:t+H] = Linear([ht,x
(f)
[:t+H]]) (5)

ŷτ,[q] = MLP([cτ ,x
(f)
τ]) (6)

68 Journal of Mathematics and Modeling in Finance

where ht, is the hidden state for time t, yt is the input at time t and ht−1 is the

hidden state of the previous layer at t− 1, x(s) are all static exogenous inputs, x
(h)
t

historic exogenous, x
(f)
[:t+H] are future exogenous available at the forecasting time.

Figure 2: GRU architecture

2.2 Transformer Architecture

The Transformer innovation in deep learning [2] has recently gained significant

attention due to its excellent performance in natural language processing (NLP) [3],

computer vision (CV) [4], and speech processing [5]. The Transformer architecture

structure based on [2] is showed in figure 3.

In the past few years, numerous Transformers have been introduced to advance

the state-of-the-art in various tasks. Transformers have demonstrated excellent

modeling capabilities for long-term dependencies, making them attractive for time

series forecasting. Various types of Transformers have been proposed to address

specific challenges in time series modeling and have been successfully used to di-

verse time series tasks, such as forecasting [6], [16]), anomaly detection [13], [9],

and classification [15], [14] . Specifically, seasonality or periodicity is one of the im-

portant characteristics of time series [10] . How to efficiently model both long-term

and short-term temporal dependencies simultaneously remains a challenge [10], [11]

. Several comprehensive studies on deep learning for time series, including forecast-

ing, have been conducted [6],

The Transformer architecture is a type of neural network that is widely applied

in NLP and other machine learning tasks. In the context of time series forecasting,

the Transformer architecture is used to forecast the future values of a time series

based on its past values.

Paper 4: Deep learning architectures for time series forecasting 69

Figure 3: The Transformer architecture based on [2]

The encoder is the first component of the Transformer architecture. It takes in the

input time series data and converts it into a sequence of vectors, where each vector

represents a single element of the time series.

The self-attention mechanism is a key component of the Transformer architecture.

It allows the model to weigh the importance of each element in the input sequence

and focus on the most relevant elements when making predictions.

The decoder is the second component of the Transformer architecture. It takes in

the output of the encoder and generates a sequence of vectors that represent the

predicted future values of a time series. The output of a Transformer architecture

is the predicted future values of the time series.

The Transformer architecture is trained using supervised learning, where the model

is trained on a dataset of input-output pairs. The model learns to predict the out-

put based on the input by minimizing the error between the predicted output and

the actual output.

The Transformer architecture has several advantages that make it a popular choice

for time series forecasting tasks. The Transformer architecture is more interpretable

than other neural network architectures, making it easier to understand how the

model predicts. It is also flexible and can be used for a wide range of tasks, in-

cluding time series predictions, language translation, and image recognition. The

Transformer architecture can achieve high accuracy in time series forecasting tasks,

70 Journal of Mathematics and Modeling in Finance

especially when compared to other neural network architectures.

The conventional self-attention framework is based on the [2] and is defined as

follows:

Query: The query is a vector that represents the input element.

Key: The key is a vector that represents the input element.

Value: The value is a vector that represents the input element.

Weighted Sum: The weighted sum is calculated by multiplying the query and

key vectors and summing the result.

The matrix formulation of the Transformer architecture can be written as:

H = σ(WhX + bh) (7)

where H is the output of a Transformer architecture, σ is the activation function,

Wh is the weight matrix, X is the input element, and bh is the bias vector.

The attention weights can be calculated using the following formula:

A = softmax(QKT /
√
(d)) (8)

where A is the attention weight matrix, Q is the query vector, K is the key vector,

T is the transpose operator, and d is the dimensionality of the input element.

The output of the Transformer architecture can be calculated using the following

formula:

Y = AV (9)

where Y is the output of the Transformer architecture, A is the attention weight

matrix, and V is the value vector.

Transformer architectures have become increasingly popular for time series forecast-

ing tasks, due to their ability to learn complex patterns and relationships in data.

AutoFormer, FEDformer, Informer, and PatchTST are four popular transformer ar-

chitectures applied for time series forecasting that use a self-attention mechanism

to learn long-term dependencies in data. They have been shown to outperform tra-

ditional econometrics methods and other deep learning approaches on time series

forecasting tasks.

Autoformer

The Autoformer model tackles the challenge of finding reliable dependencies on

intricate temporal patterns of long-horizon forecasting [20] . The architecture has

the following distinctive features:

• In-built progressive decomposition in trend and seasonal components based

on a moving average filter.

Paper 4: Deep learning architectures for time series forecasting 71

• Auto-Correlation mechanism that discovers the period-based dependencies by

calculating the auto-correlation and aggregating similar sub-series based on

the periodicity.

• Classic encoder-decoder proposed by [2] with a multi-head attention mecha-

nism.

• The Autoformer model utilizes a three-component approach to define its em-

bedding:

- It employs encoded autoregressive features obtained from a convolution net-

work.

- Absolute positional embeddings obtained from calendar features are utilized.

Figure 4: Autoformer architecture based on [20]

FEDformer

The FEDformer model tackles the challenge of finding reliable dependencies on

intricate temporal patterns of long-horizon forecasting [19]. The architecture has

the following distinctive features:

• In-built progressive decomposition in trend and seasonal components based

on a moving average filter.

• Frequency Enhanced Block and Frequency Enhanced Attention to perform

attention in the sparse representation on basis such as Fourier transform.

• Classic encoder-decoder proposed by [2] with a multi-head attention mecha-

nism.

The FEDformer model utilizes a three-component approach to define its embedding:

- It employs encoded autoregressive features obtained from a convolution network.

- Absolute positional embeddings obtained from calendar features are utilized.

72 Journal of Mathematics and Modeling in Finance

Figure 5: FEDformer architecture based on [19]

Informer

The Informer model tackles the vanilla Transformer computational complexity chal-

lenges for long-horizon forecasting [17].

The architecture has three distinctive features: - A Prob-Sparse self-attention

mechanism with an O time and memory complexity Llog(L). - A self-attention dis-

tilling process that prioritizes attention and efficiently handles long input sequences.

- An MLP multi-step decoder that predicts long time-series sequences in a single

forward operation rather than step-by-step. The Informer model utilizes a three-

Figure 6: Informer architecture based on [17]

component approach to define its embedding: - It employs encoded autoregressive

features obtained from a convolution network. - It uses window-relative positional

embeddings derived from harmonic functions. - Absolute positional embeddings

obtained from calendar features are utilized.

PatchTST

The PatchTST (Patch Time Series Transformer) model is a recent innovation in

the field of time series forecasting, proposed by [18]. The PatchTST model lever-

ages the Transformer architecture for efficient time series forecasting. in general,

Transformer Architecture is designed for NLP and LLM [2]. this models in align

with prior paper based on Transformers (like Informer, FEDformer, Autoformer)

Paper 4: Deep learning architectures for time series forecasting 73

want to develop a model for capturing long dependency for multivariate Time Series

forecasting. this goal is achieved with two key components:Patching and Channel-

Independence. Patching: The input time series is segmented into subseries-level

patches, which serve as input tokens to the Transformer. This patching design

retains local semantic information, reduces computational and memory usage of

attention maps, and allows the model to attend to longer historical data

Channel-Independence: Each channel contains a single univariate time series that

shares the same embedding and Transformer weights across all series. This ap-

proach simplifies the model and enhances its generalization ability.

Figure 7: PatchTST backbone for supervised learning based on [18]

The PatchTST model has demonstrated state-of-the-art performance in long-

term forecasting tasks. Its patching design and channel-independence allow for

efficient computation and retention of local semantic information, making it par-

ticularly effective for multivariate time series forecasting. The model also supports

self-supervised pre-training and fine-tuning, which enhances its performance on

various datasets [26] .

The PatchTST model represents a significant advancement in time series fore-

casting by leveraging the strengths of Transformer architecture. Its innovative

patching design and channel-independence makes it a robust and efficient choice

for handling complex time series data.

Patching: To enable a transformer model to handle long-term time series fore-

casting, this model proposes a patching mechanism to divide the input sequence

into smaller segments, called patches. Each patch is a contiguous sub-sequence of

the input sequence. The patches are then fed into the transformer encoder.

The patching mechanism allows the transformer model to capture both short-

term and long-term dependencies in the time series data. The patch size p controls

the trade-off between the two. A smaller patch size captures more short-term depen-

dencies, while a larger patch size allow us to captures more long-term dependencies.

Given a set of multivariate time series samples, each with a time window of

length L: (x1, ..., xL), where each xt at time step t is a vector of dimension M. This

74 Journal of Mathematics and Modeling in Finance

sample resembles an L-length lagged data sequence as found in econometrics and

statistics, (x1, x2, ..., xL−2, xL−1, xL). for feeding the model first we use a set of

data for each single variable i like x
(i)
1:L = (x

(i)
1 , ..., x

(i)
L), where i = 1, ...,M is the

number of series. then for horizon = T with this sample we want predict:

x̂
(i)
L:L+h = (x̂

(i)
L+1, ..., x̂

(i)
L+T) ∈ R1×T

Transformer Encoder: we define Wp ∈ RP×P as trainable linear projection

matrix and Wpos ∈ RD×N as a learnable additive position encoding matrix for

maping the patches to transformer latent space of dimension D. now we monitor

the temporal order of patches : x
(i)
d = Wpx

(i)
p +Wpos. where x

(i)
d ∈ RD×N denote

the input that with be fed into transformer encoder.

For each head: h = 1, . . . , H, in multi-head attention this x
(i)
d will be transformed

into the query, key, and value matrices.

Q
(i)
h = (x

(i)
d)TWQ

h

K
(i)
h = (x

(i)
d)TWK

h

V
(i)
h = (x

(i)
d)TWV

h

where Q, K, and V are the query, key, and value matrices, respectively, and d is

the dimensionality of the input sequence WQ
h ,W

K
h ∈ RD×dK and WV

h ∈ RD×D

In next stage, scaled production is used for producing attention output Q
(i)
h ∈

RD×N :

(O
(i)
h)T = Attention(Q

(i)
h ,K

(i)
h ,V

(i)
h) = softmax

(
Q

(i)
h K

(i)
h

T

√
d

)
V

(i)
h (10)

in last step, a flatten layer with linear head is used and the prediction results

x̂
(i)
L:L+h = (x̂

(i)
L+1, ..., x̂

(i)
L+T) ∈ R1×T will be obtained.

loss function for this optimization in base paper is MSE:

L(x, x̂) = Ex
1

M

M∑
i=1

∥x̂(i)L+1:L+T − x
(i)
L+1:L+T ∥

2

2
(11)

We can use the root mean squared error (RMSE) as the loss function to train the

model.

2.3 Root Mean Squared Error - RMSE

In this paper, RMSE is used to evaluate the deviation between the predicted results

and the observed values. Small values for this criterion indicate higher accuracy

for the predication model.

Paper 4: Deep learning architectures for time series forecasting 75

RMSE(yτ , ŷτ) =

√√√√ 1

H

t+H∑
τ=t+1

(yτ − ŷτ)2 (12)

Parameters: y = Actual values, ŷ = Predicted values

2.4 Hyper-parameter Selection

Deep learning models are the most advanced models for time series forecasting.

They have outperformed statistical and tree-based methods in recent large-scale

competitions, such as the M series, and are increasingly being used in industry.

However, their performance is heavily affected by the selection of hyper-parameters.

Selecting the optimal configuration, a process known as hyper-parameter tuning, is

vital to achieve the best performance. hyper-parameters like the dropout probabil-

ity (p) or learning rate (η) are common to several models.

There are several Techniques for Common Hyper-parameter Optimization including:

Grid Search, Random Search, Bayesian Optimization, Population-Based Methods

and Gradient-Based Optimization. [29] [30] [31] [32]. [33].

Hyper-parameter tuning consists of four steps: First, defining the training and

test sets. Second, determining the search space. Third, sampling configurations

with a search algorithm, training models, and evaluating them on the test set.

Fourth, select and save the best model.

2.5 Dropout

Dropout is a regularization technique used to prevent over-fitting in neural networks.

It works by randomly setting a fraction of the model’s weights to zero during train-

ing, encouraging the model to learn stronger and more independent features. This

allows the network to generalize better to new and unseen data. During inference,

dropout is disabled. This means using a collection of trained sub-networks, which

leads to better model performance [38].

2.6 Cross-Validation

It is a method for evaluating how well a model would have performed on historical

data. Running cross-validation on historical data involves determining multiple

hyper-parameters. This method is performed by determining a sliding window

on past observations and forecasting the next period. This method differs from

standard cross-validation because it preserves the temporal order of the data instead

of splitting it randomly. This method allows us to get a better estimate of our

model’s predictive capabilities by considering multiple periods. When only one

window is used, it is similar to the standard train-test split, where the test data is

the last set of observations and the training set includes the previous data.

76 Journal of Mathematics and Modeling in Finance

2.7 Time Series Cross-Validation

Time series cross-validation is a method for evaluating how well a model would

have performed on historical data. It is similar to standard cross-validation, but

it preserves the temporal order of the data instead of splitting it randomly.In time

series cross-validation, we define a window of past observations and predict the

next period. We then move the window forward in time and repeat the process.

This allows us to evaluate our model’s performance on multiple periods and get a

better estimate of its predictive capabilities. Time series cross-validation is a more

realistic evaluation of our model’s performance because it takes into account the

temporal dependencies in the data [27], [28]. cross-validation process consists of 4

steps:

Step 1: Determine the prediction horizon: we should determine the pre-

diction horizon, which is the time period that we want to predict. This is defined

based on the frequency of the data. In this case, the data is daily, so we can choose

a prediction horizon of 5 days (h=5) for a week .

Step 2: Determine the window size: the window size is the length of the

data that we will use to make predictions. We can choose any multiple of the

prediction horizon as the window size. For example, if we want to predict 5 days

ahead.

Step 3: Determine the step size: The step size is the length of time that we

will move the window forward in each iteration. In this paper, the step size is set

to 5 days.

Step 4: Determine the number of windows: The final step is to define the

number of windows that we will use for prediction. In this article, the number of

windows is set to 1 to 5.

3 Forecasting 4 commodities based Stock Index

In this study, 4 series is used that was collected daily from April 20, 2020, to Nov

20, 2024, and includes four different commodity-based companies indices in Tehran

stock exchange. In order to examine a more accurate comparison of the predictive

efficiency of these models, four time series with severe fluctuations in the Tehran

Stock Exchange have been used. all series is related to commodities based indus-

tries: petrochemical, metal and metalOre, Othermine. this data is plotted in figure

8.

In this paper, two techniques were used for generalization and to prevent overfitting.

First, 80 percent of the data was used for training (from April 20, 2020, to Feb 1,

2024), and 20 percent of the data was used for testing (from Feb 1, 2024, to Nov

20, 2024). Using 80 percent of the data, the hyperparameters were tuned, and the

remaining 20 percent of the out-of-sample data was used to measure the model’s

performance.

Paper 4: Deep learning architectures for time series forecasting 77

Furthermore, the dropout technique was used in this paper to control the overfit-

ting of the models. Dropout is a regularization technique where, during training,

randomly selected neurons are ”dropped out” (i.e., temporarily removed) from the

network with a certain probability. The dropout probability is usually denoted as

(p): The probability of dropping out a neuron. For example, if (p = 0.3), each neu-

ron has a 30% chance of being dropped out during training. therefore, using the

dropout parameter, we remove a percentage of the weights to prevent overfitting.

Choosing the optimal dropout rate is also a hyperparameter, but based on numer-

ous studies, including [38], this parameter has a significant impact on controlling

overfitting.” In this paper, the dropout rate in the search space was set to the range

[0.05, 0.50]. As mentioned, the performance Deep learning models is considerably

Figure 8: The major industries in the Tehran Stock Exchange are Petrochemicals,
Metal and MetalOre and Othermine. Four time series, corresponding to these
sectors, were collected daily from April 2020, to November 2024, and represent four
commodity-based companies. These industries account for more than 50% of the
total corporate market value.

affected by choosing hyper-parameters, which means that Selecting the optimal

configuration, a process known as hyper-parameter tuning, is very important to

achieve the best performance. about first 80% of data is selected for training the

models and selecting related hyper-parameter in each model. in this section we

report 6 hyper-parameter in each model only for illustration. The search space for

some hyperparameters is summarized in the table 1. Based on the defined search

Table 1: The search space for some hyperparameters

hyperparameters input batch dropout(p) learning rate (η) decoder size head

search space [2, 50] [2, 25] [0.05 , 0.50] [0.001, 0.05] [12, 128] [2,8]

space, 100 random sets of hyperparameters are selected. The results are then plot-

ted using RMSE as the evaluation metric, and additional samples are selected from

78 Journal of Mathematics and Modeling in Finance

(a) Autoformer (b) FEDformer

(c) Informer (d) PatchTST

(e) LSTM (f) GRU

Figure 9: hyper-parameters: tune in models for best parameters of batch size and
input size

the optimal region for further fine-tuning.

in figure 9, batch size and input size result are plotted for a range of values

and optimal values are selected. for example, for Autoformer model, batch size

= 5 and input size = 15 is selected. for PatchTST model, batch size = 3 and

input size = 32 is selected. in figure 10,dropout and learning rate are plotted for a

range of values and optimal values are selected. for example, for Autoformer model,

dropout p = 0.15 and learning rate η = 0.0015 is selected. for PatchTST model,

Paper 4: Deep learning architectures for time series forecasting 79

(a) Autoformer (b) FEDformer

(c) Informer (d) PatchTST

(e) LSTM (f) GRU

Figure 10: hyper-parameters: tune in models for best parameters of learning rate
and drop out

dropout p = 0.2 and η = 0.002 is selected. in figure 11, parameters related to

hidden size are plotted. The final hyperparameter tuning is described in the table 2.

For reasons related to their computational complexity and architectural structure,

models based on the Transformer architecture are used much more extensively than

those based on RNNs. Consequently, the training duration for Transformer-based

models is significantly longer, and for similar parameters, it is approximately five

times longer compared to RNN-based models. Therefore, in order to expedite the

80 Journal of Mathematics and Modeling in Finance

(a) Autoformer (b) FEDformer

(c) Informer (d) PatchTST

(e) LSTM
(f) GRU

Figure 11: hyper-parameters: tune in models for best parameter of learning rate
and drop out

Paper 4: Deep learning architectures for time series forecasting 81

process of parameter tuning, a smaller number of max steps has been assigned to

the Transformer-based models.

Table 2: final tuning hyperparameters for models with forecasting horizontal of 1
day

id former FEDformer Informer PatchTST GRU LSTM

input size 15 15 25 32 15 15

batch size 5 8 5 3 6 6

learning rate 0.0015 0.0015 0.002 0.002 0.0015 0.0015

dropout 0.15 0.2 0.15 0.2 0.2 0.15

decoder hidden size - - - - 128 48

encoder hidden size - - - - 54 28

layers - - - 2 2 2

hidden size 54 54 54 50 - -

max step 300 300 300 300 500 500

The performance of each model across different forecasting horizons was eval-

uated using the RMSE. Table 3 appears to show the RMSE values for different

models on a forecasting task with a horizon of 1 day. The RMSE values are gen-

erally low, indicating that the models are doing a good job of forecasting the time

series.

The PatchTST model has the lowest RMSE values for 3 out of the 4 time series

(basemetal, chimi, and metalOre), indicating that it may be the most efficient model

for forecasting these time series. The FEDformer model has the lowest RMSE value

for the oilproduct time series, indicating that it may be a good choice for forecast-

ing this particular time series.

The former model has relatively low RMSE values across all time series, indicating

that it may be a robust and reliable choice for forecasting. The GRU and LSTM

models have higher RMSE values than the other models, indicating that they may

not be as effective for forecasting these time series.

Of course, these conclusions are based on a limited dataset and may not general-

ize to other time series or forecasting tasks. Further analysis and experimentation

would be necessary to confirm these findings and explore other models and tech-

niques.

82 Journal of Mathematics and Modeling in Finance

Table 3: Forecasting RMSE for models with horizontal of 1 day: Forecasting win-
dows in this table is 120 day.

id former FEDformer Informer PatchTST GRU LSTM

Basemetal 0.0139 0.0127 0.0127 0.0123 0.0177 0.0497

Chimi 0.0088 0.0085 0.0085 0.0082 0.0171 0.0148

MetalOre 0.0088 0.0081 0.0091 0.0084 0.0093 0.0129

Othermine 0.0311 0.0272 0.0279 0.0277 0.0404 0.0336

Figure 12: The data for the four indices have been predicted using the six models
proposed in this paper for a 1-day . As shown in the performance comparison
table of these models, the PatchTST and FEDformer models provide the closest
predictions to the target variables.

Here are some observations and insights from the table 4 for weekly forecasting:

The RMSE values are generally higher than those in the table 3, which had a

horizon of 1 day. This is expected, as forecasting over longer horizons is typically

more challenging.

The PatchTST model has the lowest RMSE values for 3 out of the 4 time series

(basemetal, chimi, and oilproduct), indicating that it may be the most effective

model for forecasting these time series over longer horizons. The FEDformer model

has the lowest RMSE value for the metalOre time series, indicating that it may be

a good choice for forecasting this particular time series. The former model has

relatively high RMSE values across all time series, indicating that it may not be as

effective for forecasting over longer horizons.

The GRU and LSTM models have relatively low RMSE values for some time series,

but high RMSE values for others, indicating that they may be sensitive to the

Paper 4: Deep learning architectures for time series forecasting 83

specific characteristics of the time series.

Some potential conclusions that can be drawn from this table include: First, the

PatchTST model may be the most effective model for forecasting these time series

over longer horizons, such as 5 days. Second, the FEDformer model may be a good

choice for forecasting certain time series, such as metalOre, over longer horizons.

Third, the former model may not be as effective for forecasting over longer horizons,

and may require further tuning or optimization to improve its performance. Fourth,

the GRU and LSTM models may require careful selection of hyper-parameters and

architecture to achieve good performance on these time series.

It’s also worth noting that the RMSE values in this table are generally higher than

those in the previous table, which suggests that forecasting over longer horizons is

more challenging. This may be due to a variety of factors, including:

Increased uncertainty and volatility in the time series over longer horizons,

Decreased accuracy of the models due to the increased complexity of the fore-

casting task,

Insufficient training data or inadequate model capacity to capture the underlying

patterns in the time series.

Table 4: Forecasting RMSE for models with horizontal of 5 days (weekly): Fore-
casting windows in this table is 120 day.

id former FEDformer Informer PatchTST GRU LSTM

Basemetal 0.0408 0.0307 0.0368 0.0295 0.0367 0.0538

Chimi 0.0290 0.0207 0.0251 0.0217 0.0233 0.0320

MetalOre 0.0298 0.0210 0.0247 0.0213 0.0216 0.0274

Othermine 0.0931 0.0669 0.0739 0.0572 0.0583 0.1027

4 conclusion

In the framework of classical portfolio theory, two sets of inputs are required to

construct a portfolio of financial assets. The first is the variance-covariance matrix,

which indicates the risk of each asset and their correlation and is typically mod-

eled using the MGARCH family of models or the Multivariate Stochastic Volatility

(MSV) model. The second is the mean equation, which represents the expected

return of each asset over different horizons. In this study, we evaluated the perfor-

mance of several deep learning models for expected return forecasting, including

Former, FEDformer, Informer, PatchTST, GRU, and LSTM.

Four indices have been selected from over 32 significant stock market indices of

84 Journal of Mathematics and Modeling in Finance

Figure 13: ”In this figure, the data for the four indices are predicted using the
six models proposed in this paper over a 5-day (weekly) forecasting horizon. As
shown in the performance comparison table, the PatchTST and FEDformer models
most closely align with the target variables. However, the figure also reveals that
forecasting costs remain high, as evidenced by the relatively high RMSE values
across all models.”

the Tehran Stock Exchange. Four time series, corresponding to these sectors, were

collected daily from April 2020, to November 2024, and represent four commodity-

based companies. These industries account for more than 50% of the total corpo-

rate market value. This data possesses several characteristics. First, it pertains to

commodity-based companies. Second, exchange rate shocks impact these compa-

nies, increasing the complexity of predicting these variables due to a wide array of

factors . Third, unforeseen shocks, such as changes in regulations, further compli-

cate the price behavior of these companies and their related indices examined in

this paper. Consequently, the indices used for prediction in this paper represent

some of the most complex data for forecasting.

Our results show that the PatchTST model outperforms the other models in terms

of RMSE for forecasting horizons of both 1 day and 5 days. The FEDformer model

also shows promising results, particularly for forecasting the metalOre time series.

Our findings are consistent with the literature, which suggests that deep learning

models can be efficient for time series forecasting tasks. For example, studies have

shown that models such as LSTM and GRU can achieve good performance on time

series forecasting tasks, particularly when combined with other techniques such as

feature engineering and ensemble methods [24]. However, our results also highlight

the importance of careful model selection and hyper-parameter tuning, as the per-

formance of different models can vary significantly depending on the specific task

and dataset.

The PatchTST model, in particular, has shown promising results in our study, and

its performance is consistent with the literature. For example, in [18] found that

Paper 4: Deep learning architectures for time series forecasting 85

the PatchTST model outperformed other deep learning models on a time series

forecasting task, and attributed its success to its ability to capture long-term de-

pendencies in the data.

Overall, our study contributes to the growing body of literature on deep learning

for time series forecasting, and highlights the importance of careful model selec-

tion and hyper-parameter tuning for achieving good performance. Our results also

suggest that the PatchTST model may be a promising choice for time series fore-

casting tasks, particularly when combined with other techniques such as feature

engineering and ensemble methods.

There are several directions for future research based on our study. One potential

direction is to explore the use of other deep learning models, such as transformers

and graph neural networks, for time series forecasting tasks. Another direction is to

investigate the use of ensemble methods, such as stacking and bagging, to combine

the predictions of multiple models and improve overall performance. Finally, future

research could also focus on developing more robust and interpretable models, such

as those that incorporate domain knowledge and uncertainty quantification.

Bibliography
[1] K. Benidis, S. S. Rangapuram, V. Flunkert, Y. Wang, D. Maddix, C. Turkmen, J. Gasthaus,

M. Bohlke-Schneider, D. Salinas, L. Stella, F.-X. Aubet, L. Callot, and T. Januschowski,
Deep learning for time series forecasting: Tutorial and literature survey, 2022.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, Attention is all you need, in Proceedings of the 31st International Conference
on Neural Information Processing Systems, 2017, pp. 1–12.

[3] J. Kenton, R. Rajpurkar, J. Hinton, and J. L. Ba, BERT: Pre-training of deep bidirectional
transformers for language understanding, in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, 2019, pp. 1–12.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, An image is worth
16x16 words: Transformers for image recognition at scale, in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 1–12.

[5] X. Dong, J. Li, D. Yu, F. Seide, and M. L. Seltzer, Speech recognition with deep learning: A
review, IEEE Transactions on Audio, Speech, and Language Processing, 26 (2018), pp. 1–13.

[6] B. Lim and S. Zohren, Deep learning for time series forecasting: A survey, Journal of
Forecasting, 40 (2021), pp. 1–23.

[7] Y. Tay, D. Bahri, D. Metzler, D. Juan, Z. Zhao, and C. Zheng, Efficient transformers for
natural language processing, in Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
2022, pp. 1–12.

[8] J. Torres, D. Hadjout, A. Sebaa, F. Mart́ınez-Álvarez, and A. Troncoso, Deep learning for
time series forecasting: A survey, Journal of Forecasting, 40 (2021), pp. 1–23.

[9] S. Tuli, S. K. Singh, S. K. Singh, and R. Buyya, Anomaly detection in time series data using
deep learning, Journal of Intelligent Information Systems, 58 (2022), pp. 1–15.

[10] X. Kong, Z. Chen, W. Liu, K. Ning, L. Zhang, S. M. Marier, Y. Liu, Y. Chen, and F. Xia,
Deep learning for time series forecasting: A survey, International Journal of Machine Learn-
ing and Cybernetics, (2025).

[11] Y. W. Xiong, K. Tang, M. Ma, J. Zhang, J. Xu, and T. Li, Modeling temporal dependencies
within the target for long-term time series forecasting, arXiv preprint arXiv:2406.04777v2
[cs.LG], 2024.

[12] Y. Wu, L. Zhang, and Y. Zhang, Deep learning for time series forecasting: A review, Journal
of Forecasting, 40 (2021), pp. 1–23.

86 Journal of Mathematics and Modeling in Finance

[13] X. Xu, J. Li, L. Zhang, and Y. Zhang, Anomaly detection in time series data using deep
learning, Journal of Intelligent Information Systems, 58 (2022), pp. 1–15.

[14] A. Casolaro, V. Capone, G. Iannuzzo, and F. Camastra, Deep learning for time
series forecasting: Advances and open problems, Information, 14 (2023), pp. 598.
DOI:10.3390/info14110598.

[15] G. Zerveas, L. Zhang, and Y. Zhang, Deep learning for time series classification: A review,
Journal of Forecasting, 40 (2021), pp. 1–23.

[16] P. Lara-Beńıtez, M. Carranza-Garćıa, and J. C. Riquelme, An experimental review on deep
learning architectures for time series forecasting, International Journal of Neural Systems,
31 (2021).

[17] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, Informer: Beyond
efficient transformer for long sequence time-series forecasting, Journal of Machine Learning
Research, (2021), pp. 1–23.

[18] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, A time series is worth 64 words:
Long-term forecasting with transformers, in Proceedings of the International Conference on
Learning Representations (ICLR), 2023, pp. 1–12.

[19] Y. Wang, J. Li, Y. Zhang, H. Xiong, and W. Zhang, FEDformer: Frequency enhanced decom-
posed transformer for long-term time series forecasting, in Proceedings of the International
Conference on Learning Representations (ICLR), 2022, pp. 1–12.

[20] Y. Wu, S. Li, S. Zhang, J. Li, H. Xiong, and W. Zhang, Autoformer: Decomposition trans-
formers for long-term time series forecasting, in Proceedings of the International Conference
on Learning Representations (ICLR), 2022, pp. 1–12.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-
propagating errors, Nature, 323 (1986), pp. 533–536.

[22] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation, in Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1724–1734.

[23] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, 9 (1997),
pp. 1735–1780.

[24] S. Bai, J. Z. Kolter, and V. Koltun, An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling, arXiv preprint arXiv:1803.01271, 2018.

[25] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, Patch time series transformer in
Hugging Face - Getting started, Hugging Face Blog, 2023.

[26] Towards Data Science, PatchTST: A breakthrough in time series forecasting, Towards Data
Science, 2023.

[27] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and practice, 3rd ed.,
OTexts: Melbourne, Australia, 2021. OTexts.com/fpp3.

[28] C. Bergmeir and J. M. Beńıtez, On the use of cross-validation for time series predictor
evaluation, Information Sciences, 191 (2012), pp. 192–213. DOI:10.1016/j.ins.2011.12.028.

[29] J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, Journal of
Machine Learning Research, 13 (2012), pp. 281–305.

[30] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter, Efficient
and robust automated machine learning, in NeurIPS, 2019.

[31] Optuna Development Team, Optuna hyperparameter optimization guide, Documentation,
https://optuna.org/, 2023.

[32] Ray Team, Hyperparameter tuning with Ray Tune, Documentation,
https://docs.ray.io/en/latest/tune/, 2023.

[33] D. Maclaurin, D. Duvenaud, and R. P. Adams, Gradient-based hyperparameter optimization
through reversible learning, in Proceedings of the 32nd International Conference on Machine
Learning (ICML), 2015. https://proceedings.mlr.press/v37/maclaurin15.html.

[34] T. Bollerslev, R. F. Engle, and J. M. Wooldridge, A capital asset pricing model with time-
varying covariances, Journal of Political Economy, 96 (1988). DOI:10.1086/261527.

[35] M. Asai, C.-L. Chang, and M. McAleer, Realized volatility and MGARCH models: A review,
Econometrics, 9 (2021).

[36] R. Taleblou and P. Mohajeri, Modeling the daily volatility of oil, gold, dollar, bitcoin and
Iranian stock markets: An empirical application of a nonlinear space state model, Iranian
Economic Review, (2023).

Paper 4: Deep learning architectures for time series forecasting 87

[37] G. Kastner and S. Frühwirth-Schnatter, Ancillarity-sufficiency interweaving strategy (ASIS)
for boosting MCMC estimation of stochastic volatility models, Computational Statistics Data
Analysis, 76 (2014), pp. 408–423.

[38] F. Chollet, Deep learning with Python, 2nd ed., Manning Publications, Shelter Island, NY,
2021.

[39] M. Rezaei, N. Neshat, A. Jafari Nodoushan, and A. Ahmadzadeh, The artificial neural
networks for investigation of correlation between economic variables and stock market indices,
Journal of Mathematics and Modeling in Finance, 3 (2023), pp. 19–35.

[40] M. Abdollahzadeh, A. Baagherzadeh Hushmandi, and P. Nabati, Improving the accuracy of
financial time series prediction using nonlinear exponential autoregressive models, Journal
of Mathematics and Modeling in Finance, 4 (2024), pp. 159–173.

[41] M. Goldani, Comparative analysis on forecasting methods and how to choose a suitable one:
Case study in financial time series, Journal of Mathematics and Modeling in Finance, 3
(2023), pp. 37–61.

How to Cite: Reza Taleblou1, Comparing the performance of different deep learning
architectures for time series forecasting, Journal of Mathematics and Modeling in
Finance (JMMF), Vol. 5, No. 1, Pages:63–87, (2025).

The Journal of Mathematics and Modeling in Finance (JMMF) is licensed under a

Creative Commons Attribution NonCommercial 4.0 International License.

	Paper 5: Enhanced portfolio performance evaluation using adjusted dynamic conditional Jensen’s alpha: A time-sensitive risk approach

