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Abstract:
Abstract:
In [14] the authors have studied robust semi-mean absolute deviation portfolio op-
timization model when assets expected returns involve uncertainty. They applied
a data driven approach via support vector clustering to construct the uncertainty
set using support vector clustering. In this paper, we show that their robust for-
mulation is not the worst case counterpart of the original model. Then we give
the true robust model of the underlying problems in the best an worst cases. Ex-
periments are conducted to show the optimal objective value of the robust model
in [14] belongs to the interval generated by our best and worst case models.
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1 Introduction

Modern portfolio theory or Markowitz mean-variance model, is a mathematical

framework for assembling a portfolio of assets such that the expected return is

maximized for a given level of risk [9]. However, from practical point of view it

ignores many realistic constraints faced by investors. Thus, it was modified to

include features like transaction costs [11], multi-period optimization [8], and the

cardinality constraint [3]. Also, due to the fact that variance is not a coherence risk

measure, other risk measures such as conditional value-at-risk and several others

are proposed in the literature [12,13].

In all of the above-mentioned portfolio optimization models, parameters such as
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returns are not known in advance and historical data often are used to predict them.

This might lead to inaccurate results thus wrong choice of portfolios. To deal with

such uncertainty in portfolio optimization models, a widely used approach is the so

called robust optimization which has been applied to several models [1, 4, 7, 10,15].

An important step in all robust optimization models, is the choice of uncertainty

set. Considering uncertainty too big might lead to too conservative solution and

considering it too small might left out solutions that might be the the right choice.

So choosing it based on the available data come across as a natural choice. Data

driven uncertainty set has been variously applied in different optimization models

among which is the so called portfolio optimization models [2, 7, 16]. Recently, in

[14] the authors have studied portfolio optimization under the semi-mean absolute

deviation (SMAD) risk measure [5] under uncertainty and applied the data driven

approach of [16] to construct the uncertainty set. They reformulated the robust

model as an Linear Programming (LP) problem and performed experiments to

show the effectiveness of the robust model compared to the similar models in the

literature.

As the authors in [14] treated uncertain return in two constraints differently,

thus in this paper we derive the true robust models in the best and worst cases

by a different approach. This enables practitioners to obtain portfolio’s behavior

in the best and worst cases. The derived models are nonlinear compared to the

LP model in [14]. Experiments on S&P500 datasets are conducted to confirm our

theoretical findings.

The rest of the paper is organized as follows. Section 2 briefly reviews the portfo-

lio optimization problem. Data driven uncertainty set is reviewed in Section 3. In

Section 4, we present the best and worst robust counterparts of the underlying port-

folio optimization problem under data driven uncertainty set. Finally, experiments

are conducted in Section 5.

2 Portfolio optimization model with SMAD risk
measure

The SMAD as a risk measure which is proposed by Feinstein and Thapa [5] considers

returns below the expected return. It is defined as follows

SMAD(w) = E {|E(Rw)−Rw|+} .

Under the discrete distribution of returns, it becomes

SMAD(w) =

T∑
t=1

pt

(
|

n∑
i=1

riwi −
n∑

i=1

ritwi|+

)
,
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where p = (p1, . . . , pT )
T , t = 1, . . . , T . Then the portfolio optimization problem

that takes a trade-off between SMAD and expected return is as follows:

minA
T∑

t=1

ptdt −
n∑

i=1

riwi ≤ A

n∑
i=1

riwi −
n∑

i=1

ritwi ≤ dt, t = 1, . . . , T

n∑
i=1

wi = 1 (1)

wi ≥ 0, i = 1, . . . , n

dt ≥ 0, t = 1, . . . , T,

which is an LP problem.

3 Data driven uncertainty set and robust model
of [14]

Let {rk}Nk=1 be a collection of uncertain returns for n assets i.e., rk ∈ Rn, k =

1, . . . , N . In the support vector clustering (SVC) based approach of [16], the goal

is to find the smallest ball that includes data points. To avoid large radius ball and

exclude outliers, the following soft-margin version is considered:

min
R,a,ξ

R2 +
1

Nν

N∑
k=1

ξk

∥ϕ(rk)− a∥22≤ R2 + ξk, k = 1, . . . , N, (2)

ξk ≥ 0, k = 1, . . . , N,

where ϕ : Rn → Rk is a kernel function that maps data points to the feature space.

For computational efficiency, its dual formulation is used as follows:

min
α

N∑
k=1

N∑
k1=1

αkαk1
K(rk, rk1)−

N∑
k=1

αkK(rk, rk) (3)

αk ≤
1

Nν
, k = 1, . . . , N

N∑
k=1

αk = 1

αk ≥ 0, k = 1, . . . , N.
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Shang et al. [16] proposed to use the following weighted generalized kernel:

K(rk, rk1) =

n∑
i=1

bi − ∥U(rk − rk1)∥1, (4)

where U = Σ− 1
2 and Σ is the covariance matrix of the data matrix D. Also, to

ensure that kernel is positive definite, b is chosen such that

bi > max
k

uTi r
k −min

k
uTi r

k,

where ui is the ith column of U . Now let α∗ be the optimal solution of the dual

model (3). We define the index sets of supprot vector (SV) and boundary SV (BSV)

as follows:

SV = {k | α∗
k > 0} , (5)

BSV =

{
k | 0 < α∗

k <
1

Nν

}
. (6)

Then the radius R can be found by computing the distance between the center a

and any boundary support vector rk
′
, k′ ∈ BSV as follows:

R2 = ∥ϕ(rk
′
)− a∥22

=
(
ϕ(rk

′
)− a

)T (
ϕ(rk

′
)− a

)
= ϕ(rk

′
)
T
ϕ(rk

′
)− 2ϕ(rk

′
)a + a2

= ϕ(rk
′
)
T
ϕ(rk

′
)− 2α∗

k

N∑
k=1

ϕ(rk
′
)ϕ(rk) +

N∑
k=1

N∑
k1=1

α∗
kα

∗
k1
ϕ(rk)ϕ(rk1)

= K(rk
′
, rk

′
)− 2

N∑
k=1

α∗
kK(rk

′
, rk) +

N∑
k=1

N∑
k1=1

α∗
kα

∗
k1
K(rk, rk1), k′ ∈ BSV. (7)

Following this, data points r in the uncertainty set V (D) satisfy the following

inequality:

K(r, r)− 2

N∑
k=1

α∗
kK(r, rk) +

N∑
k=1

N∑
k1=1

α∗
kα

∗
k1
K(rk, rk1) ≤ R2. (8)

Now using (7), it becomes:

K(r, r)− 2

N∑
k=1

α∗
kK(r, rk) +

N∑
k=1

N∑
k1=1

α∗
kα

∗
k1
K(rk, rk1) ≤

K(rk
′
, rk

′
)− 2

N∑
k=1

α∗
kK(rk

′
, rk) +

N∑
k=1

N∑
k1=1

α∗
kα

∗
k1
K(rk, rk1),
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−2
N∑

k=1

α∗
kK(r, rk) ≤ −2

N∑
k=1

α∗
kK(rk

′
, rk),

N∑
k=1

α∗
kK(r, rk) ≥

N∑
k=1

α∗
kK(rk

′
, rk),

V (D) =

{
r |

N∑
k=1

α∗
kK(r, rk) ≥

N∑
k=1

α∗
kK(rk

′
, rk), k′ ∈ BSV

}
.

Since for α∗
k = 0, k /∈ SV and using (4) we further have

∑
k∈SV

α∗
k

(
n∑

i=1

bi − ∥U(r − rk)∥1

)
≥
∑

k∈SV

α∗
k

(
n∑

i=1

bi − ∥U(rk
′
− rk)∥1

)
,

∑
k∈SV

n∑
i=1

α∗
kbi −

∑
k∈SV

α∗
k∥U(r − rk)∥1≥

∑
k∈SV

n∑
i=1

α∗
kbi −

∑
k∈SV

α∗
k∥U(rk

′
− rk)∥1,

∑
k∈SV

α∗
k∥U(r − rk)∥1≤

∑
k∈SV

α∗
k∥U(rk

′
− rk)∥1,

thus

V (D) =

{
r |

∑
k∈SV

α∗
k∥U(r − rk)∥1≤

∑
k∈SV

α∗
k∥U(rk

′
− rk)∥1, k′ ∈ BSV

}
.

Finally, taking

θ = min
k′∈BSV

{ ∑
k∈SV

α∗
k∥U(rk

′
− rk)∥1

}

and

zk = |U(r − rk)| ∈ Rn, k ∈ SV,

we have

V (D) =

{
r | ∃zk s.t.

∑
k∈SV

α∗
kz

T
k e ≤ θ and− zk ≤ U(r − rk) ≤ zk, k ∈ SV

}
, (9)

where e = (1, . . . , 1)
T ∈ Rn.

The proposed robust portfolio optimization model in [14] using SMAD as a risk
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measure under the uncertainty set V (D) is as follows:

min A
T∑

t=1

ptdt + max
r∈V (D)

(−rTw) ≤ A,

max
r∈V (D)

(rTw)−
n∑

i=1

ritwi − dt ≤ 0, t = 1, . . . , T, (10)

n∑
i=1

wi = 1,

wi ≥ 0, i = 1, . . . , n,

dt ≥ 0, t = 1, . . . , T.

Using LP duality for maxr∈V (D)(−rTw) and maxr∈V (D)(r
Tw), the authors in [14]

have obtained the following equivalent model of (10):

min A
T∑

t=1

ptdt +
∑

k∈SV

(µk − λk)TUrk + θη ≤ A,

∑
k∈SV

U(λk − µk)− w = 0,

µk + λk = η.αk.e, k ∈ SV,∑
k∈SV

(ξk − τk)TUrk + θδ −
n∑

i=1

ritwi − dt ≤ 0, t = 1, . . . , T,

∑
k∈SV

U(τk − ξk) + w = 0, (11)

ξk + τk = δαke, k ∈ SV,
n∑

i=1

wi = 1,

wi ≥ 0, i = 1, . . . , n,

η, δ ≥ 0, µk, λk, τk, ξk ∈ Rn
+, k ∈ SV,

dt ≥ 0, t = 1, . . . , T.

As we see, the authors in [14] have treated uncertain r in first and second set of

constraints of model (10) differently, thus the two maximums might attain at two

different r ∈ V (D). Therefore it does not give the robust model of (1) in the

worst case. Following this weakness, in the next section we provide the robust

counterparts of (1) in the best and worst cases.
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4 The best and worst robust models

In this section, we give the robust version of (1) in the best and worst cases. This

gives us an interval that contains the optimal objective value of model (11).

4.1 Best case

The best case (lower bound) of model (1) when r is uncertain and belong to the

set V̄ (D) is the solution of the following problem:

min
r∈V̄ (D)

min
w

(
T∑

t=1

pt|rTw −
n∑

i=1

ritwi|+−rTw

)
, (12)

which can be written as follows

min

T∑
t=1

ptdt −
n∑

i=1

riwi

n∑
i=1

riwi −
n∑

i=1

ritwi ≤ dt, t = 1, . . . , T (13)

n∑
i=1

wi = 1

−zk ≤ U(r − rk) ≤ zk, k ∈ SV
wi ≥ 0, i = 1, . . . , n

dt ≥ 0, t = 1, . . . , T.

One can see that the first term in the first set of constraint is bilinear, thus the

problem becomes nonlinear and nonconvex as opposed to the LP model in [14].

4.2 Worst case

The worst case (upper bound) of model (1) under the uncertainty V (D) is as follows:

max
r∈V (D)

min
w

(
T∑

t=1

pt|rTw −
n∑

i=1

ritwi|+−rTw

)
. (14)
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First we focus on the inner minimization problem. Let dt = |
∑n

i=1 riwi−
∑n

i=1 ritwi|+,
then the minimization problem becomes

min

T∑
t=1

ptdt −
n∑

i=1

riwi

n∑
i=1

riwi −
n∑

i=1

ritwi ≤ dt, t = 1, . . . , T

n∑
i=1

wi = 1

wi ≥ 0, i = 1, . . . , n

dt ≥ 0, t = 1, . . . , T,

and its dual is

max ϕ
T∑

t=1

riτt −
T∑

t=1

ritτt + ϕ ≤ −ri, i = 1, . . . , n

−τt ≤ pt, t = 1, . . . , T,

−τt ≥ 0, t = 1, . . . , T.

Then using strong duality in LP, (14) becomes

max ϕ
T∑

t=1

riτt −
T∑

t=1

ritτt + ϕ ≤ −ri, i = 1, . . . , n

−τt ≤ pt, t = 1, . . . , T∑
k∈SV

αkz
T
k e ≤ θ (15)

−zk ≤ U(r − rk) ≤ zk, k ∈ SV
−τt ≥ 0, t = 1, . . . , T.

Similar to the best case, the first term in the first set of constraints are bilinear

thus the problem becomes nonconvex.

Lemma 4.1. Let OPTLB and OPTUB be the optimal objective values of models

(13) and (15). Then the interval [OPTLB , OPTUB ] contains OPTR, the optimal

objective value of model (11).

Proof: It easily follows from the construction of models (13) and (15).
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5 Experimental results

In this section, we conducted experiments on the datasets of 50 assets from S& P

500 to validate the theoretical results numerically as well. All implementations are

done in MATLAB, CVX [6] is used to solve convex optimization models (1) and

(11) and ’fmincon’ command of MATLAB is used to solve nonlinear and nonconvex

models (13) and (15). The results are summarized in Tables 3-8, where we report

optimal objective values of all models, risks and mean returns. Portfolio’s return is

computed as yt =
∑n

i=1 ritw
∗
i , t = 1, . . . , T , portfolio’s mean return, and standard

deviation also are computed as follows:

ȳ =

∑T
t=1 yt
T

, σ =

√∑T
t=1(ȳ − yt)2
T − 1

.

As we see in Table 3, for all scenarios the objective function of model (11) lies in

between objective values of models (13) and (15) as also proved in Lemma 4.1. In

Tables 4-8 for different scenarios, we report the risks, returns and their ratios. As

we see, both best and worst case models have better return to risk ratios compared

to models (1) and (11). These results confirm our theoretical development.

Table 1: Objective function values for n = 50, T = 24.

N Model (1) Model (11) Model (13) Model (15)

N = 100 −0.0261 0.0134 0.0117 0.0162

N = 150 −0.0261 0.0160 0.0148 0.0193

N = 200 −0.0261 0.0152 0.0135 0.0185

N = 250 −0.0261 0.0178 0.0156 0.0200

N = 300 −0.0261 0.0183 0.0166 0.0215

Table 2: Returns, risks and their ratios for n = 50, T = 24, N = 100.

Model (1) Model (11) Model (13) Model (15)

Return 0.0395 0.0174 0.0370 0.0381
Risk 0.0399 0.0218 0.0358 0.0362
Return
Risk 0.9883 0.7982 1.0335 1.0532
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Table 3: Returns, risks and their ratios for n = 50, T = 24, N = 150.

Model (1) Model (11) Model (13) Model (15)

Return 0.0395 0.0170 0.0357 0.0372
Risk 0.0399 0.0219 0.0353 0.0359
Return
Risk 0.9883 0.7735 1.0124 1.0354

Table 4: Returns, risks and their ratios for n = 50, T = 24, N = 200.

Model (1) Model (11) Model (13) Model (15)

Return 0.0395 0.0177 0.0360 0.0398
Risk 0.0399 0.0222 0.0351 0.0381
Return
Risk 0.9883 0.7975 1.0251 1.0426

Table 5: Returns, risks and their ratios for n = 50, T = 24, N = 250.

Model (1) Model (11) Model (13) Model (15)

Return 0.0395 0.0164 0.0328 0.0386
Risk 0.0399 0.0228 0.0326 0.0379
Return
Risk 0.9883 0.7207 1.0048 1.0183

Table 6: Returns, risks and their ratios for n = 50, T = 24, N = 300.

Model (1) Model (11) Model (13) Model (15)

Return 0.0395 0.0167 0.0374 0.0389
Risk 0.0399 0.0207 0.0357 0.0364
Return
Risk 0.9883 0.8094 1.0473 1.0691

Bibliography
[1] D. Bertsimas, M. Sim, The price of robustness, Operations Research, 52(2004), pp. 3553.

[2] D. Bertsimas, V. Gupta, N. Kallus, Data-driven robust optimization, Mathematical Pro-
gramming, 167(2018), pp. 235292.

[3] T.J. Chang, N. Meade, J.E. Beasley, Y.M. Sharaiha, Heuristics for cardinality
constrained portfolio optimisation. Computers & Operations Research 27(13)(2000), pp.
12711302.

[4] L. El Ghaoui, M. Oks, F. Oustry, Meshless methods, Worst-case value-at-risk and robust
portfolio optimization: A conic programming approach, Operations Research, 51(2003), pp.
543556.

[5] C. D. Feinstein, M. N. Thapa, A reformulation of a mean-absolute deviation portfolio
optimization model, Management Science, 39 (1993), pp. 1552-1553.



Paper 9: On data-driven robust portfolio optimization problem 165

[6] M. Grant, S. Boyd, Y. Ye, CVX: Matlab software for disciplined convex programming,
version 2.0 beta, 2013.

[7] R. Ji, M. A. Lejeune, Data-driven optimization of reward-risk ratio measures, INFORMS
Journal on Computing, 33 (2021), pp. 11201137.

[8] D. Li, W.L. Ng Optimal dynamic portfolio selection: Multiperiod mean-variance formula-
tion, Mathematical Finance 10(3)(2000), pp. 387406.

[9] H. Markowitz, Portfolio selection, Journal of Finance, 7(1) (1952), pp. 7791.

[10] Y. Moon, T. Yao, A robust mean absolute deviation model for portfolio optimization, Com-
puters and Operations Research, 38(2011), pp. 1251-1258.

[11] PN.R. Patel, M.G. Subrahmanyam A simple algorithm for optimal portfolio selection with
fixed transaction costs, Management Science 28(3)91982), pp. 303314.

[12] R.T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk, The Journal of
Risk, 2 (2000), pp. 21–42.

[13] M. Salahi, T. Khodamoradi, and A. Hamdi, Mean-standard deviation-conditional value-
at-risk portfolio optimization, Journal of Mathematics and Modeling in Finance, 3(1) (2023),
pp. 83-98.

[14] R. Sehgal, P. Jagadeshm, Data-driven robust portfolio optimization with semi mean ab-
solute deviation via support vector clustering, Expert Systems with Applicatins, 224(2023),
120000.

[15] R. Sehgal, A. Mehra, Robust rewardrisk ratio portfolio optimization, International Trans-
actions in Operational Research, 28 (2021a), pp. 21692190.

[16] C. Shang, X. Huang, F. You, Data-driven robust optimization based on kernel learning,
Computers and Chemical Engineering, 106 (2017), pp. 464479.

How to Cite: Eftekhar Kosarinia1, Maziar Salahi2, Tahereh Khodamoradi3, On data-driven
robust portfolio optimization with semi mean absolute deviation via support vector clustering,
Journal of Mathematics and Modeling in Finance (JMMF), Vol. 5, No. 1, Pages:155–165,
(2025).

The Journal of Mathematics and Modeling in Finance (JMMF) is licensed under a

Creative Commons Attribution NonCommercial 4.0 International License.


