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Abstract:
The stress-strength model is a commonly utilized topic in reliability studies.
In many reliability analyses involving stress-strength models, it is typically
assumed that the stress and strength variables are unrelated. Nevertheless,
this assumption is often impractical in real-world scenarios. This research
assumes that the strength and stress variables follow the Pareto distri-
bution, and a Gumbel copula is employed to represent their relationship.
Additionally, the data is gathered through the Type-I progressively hybrid
censoring scheme. The method of maximum likelihood estimation is used
for point estimation, while asymptotic and Bootstrap percentile confidence
intervals are employed for interval estimation of the unknown parameters
and system reliability. Simulation is employed to assess the effectiveness
of the suggested estimators. Subsequently, an actual dataset is examined
to showcase the practicality of the stress-strength model. Simulation is
employed to assess the effectiveness of the suggested estimators. Subse-
quently, a real dataset is examined to demonstrate the practicality of the
stress-strength model.

Keywords: Bootstrap percentile confidence interval, Gumbel copula, Pareto
distribution, Multicomponent dependent stress-strength model, Type-I pro-
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1 Introduction

The stress-strength model is a fundamental concept utilized in reliability engineer-

ing and statistics to evaluate the likelihood of system or component failure. Within

this framework, stress denotes the applied load or demand on a system, whereas

strength indicates the system’s ability to endure that stress. The core principle

of the stress-strength model posits that failure transpires when the applied stress

surpasses the system’s strength. The model postulates that stress and strength are
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stochastic variables, and their association can be characterized through probability

distributions.

Engineers assess system reliability by comparing the distribution of stress and

strength variables. If the stress distribution surpasses the strength distribution,

the probability of system failure increases. Conversely, if the strength distribution

exceeds the stress distribution, the system is more likely to endure. Understanding

the interplay between stress and strength enables engineers to enhance system

reliability and safety through informed decisions regarding design, maintenance,

and risk management.

Numerous researchers have addressed the issue of evaluating the reliability of

the stress-strength model. Initially, Birnbaum [5] as the first to studied into this

area. Subsequently, several authors have explored stress-strength models using var-

ious distributions. They conducted classical and Bayesian assessments of R and its

implications for distributions like the Exponentiated Burr distribution [1], Exponen-

tial distribution [19], Generalized Pareto distribution [27], Lindley distribution [2]

and three-parameter generalized Rayleigh [13] were performed. The systems dis-

cussed in the articles mentioned are primarily single component systems, however,

in numerous instances, they consist of two or more components, known as multi-

component systems. Examples of such systems include mice, keyboards, computer

hardware, air motors, and others. Mansoor et al. [15] and Dey et al. [7] conducted

studies on estimating reliability in multi-component stress-strength models using

classical and Bayesian approaches for Weibull and Kumaraswamy distributions,

respectively. Rao [22], [24], [23] explored the reliability of the multi component

stress-strength model using the generalized exponential distribution, the Burr dis-

tribution, and the two-parameter Weibull exponential distribution. More recently,

Day and Moala [6] as well as Kayal and team [11] investigated the reliability of the

multi component stress-strength model under the bathtub failure rate function and

the Chen distribution, respectively.

In many research studies, it is commonly assumed that stress and strength vari-

ables are independent, even though in reality they are often dependent. For in-

stance, household income and expenses can be seen as the strength variable X and

the stress variable Y , respectively. In this scenario, R = P (Y < X) represents the

financial capability of the household, while R = P (X < Y ) indicates the financial

vulnerability of the household [8]. The correlation between a household’s income

and expenses is evident. Therefore, it is crucial to assess the validity of the stress-

strength model when there is a connection between stress and strength variables.

One approach in this area is to employ bivariate distributions to characterize the

relationship between stress and strength. For instance, Nadarajah [18], Kzlaslan

and Nadar [12] and Nadar and Kzlaslan [17] utilized the bivariate gamma distribu-

tion, bivariate Kumaraswamy distribution, and bivariate Marshall-Olkin Weibull

distribution, respectively, to evaluate the reliability of models incorporating stress-

strength dependencies.
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Certainly, the bivariate distribution model requires that the marginal distribu-

tions. To address this constraint, the copula function is employed, serving as the

correlation function between the cumulative and marginal distributions. Recent

research has delved into copula functions, for example Navarro and Durante [20]

and Liu et al. [14]. Since in reality, it is difficult and sometimes impossible to obtain

complete information about the failure time of all test units, it is recommended to

use censored data in this case. Bai et al. [4] scrutinized the dependent inference

R = P (Y < X) utilizing Gamble’s copula in the context of type-II progressively

hybrid censoring. Additionally, Asgharzadeh et al. [3] presented a study on the

reliability estimation of the multicomponent stress-strength model under a hybrid

censoring scheme.

Based on the preliminaries discussed, this paper aims to assess the reliability

of the multicomponent stress-strength model in the context of type-I progressively

hybrid censoring where the stress and strength variables are dependent. The model

is examined using the copula function.

The structure of the remainder of this article is as follows: In Section 2, copula

theory is given. Section 3 outlines the model and fundamental assumptions. Section

4 covers the estimation of unknown parameters and the evaluation of stress-strength

model reliability using the maximum likelihood method, as well as asymptotic

and bootstrap percentile confidence intervals. Section 5 presents the results of

simulation studies to elucidate the theoretical concepts, followed by a real data

analysis in Section 6. Lastly, Section 7 provides the findings of the investigation.

2 Copula theory

Copulas are valuable tools for modeling and assessing the correlation between mul-

tiple dependent variables. For a deeper understanding of the underlying theory,

please consult the works of Nelson [21] and Wei and Zhang [26]. The Archimedean

copula, a significant category of copulas, is widely recognized and utilized for its

straightforward construction, diverse range, and numerous favorable characteristics.

In the following, a definition of the Archimedean copula is provided. The Gumbel’s

copula is one of the types of Archimedean copulas. In this paper Gumbel’s copula

is used to describe the dependence between strength and stress variables.

Consider random variables X1, X2, . . . , Xp with continuous distribution func-

tions F1, F2, . . . , Fp, and their corresponding survival functions S1 = 1 − F1, S2 =

1−F2, . . . , Sp = 1−Fp. Consequently, the well-known Scalar theorem [25] is defined

as follows:

Theorem 2.1. Let H be the distribution function with marginal functions F1, F2, . . . ,

Fp. In such situations, there exists a p-dimensional copula function C such that

for all X ∈ R
p
holds:

H(x1, x2, . . . , xp) = C(F1(x1), F2(x2), . . . , Fp(xp)). (1)
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If all the functions F1, F2, . . . , Fp are continuous, the copula function C is unique.

Otherwise, C is uniquely determined on the RanF1 × RanF2 × · · · × RanFp. In

addition, if C is a p-dimensional copula function and F1, F2, . . . , Fp are distribu-

tion functions, then the function H defined in equation (1) has marginal functions

F1, F2, . . . , Fp. If F
(−1)
1 , F

(−1)
2 , . . . , F

(−1)
p are quasi-inverse functions F

(−1)
1 , F

(−1)
2 ,

. . . , F
(−1)
p , then for every υ ∈ Ip, we have:

C(υ1, υ2, . . . , υp) = H
(
F

(−1)
1 (υ1), F

(−1)
2 (υ2), . . . , F

(−1)
p (υp)

)
(2)

Archimedes copulas have been particularly noted for their favorable characteris-

tics among all copulas. The three primary types of Archimedean copulas include

Clayton, Frank, and Gumbel. Here, to maintain generality, we present the two-

dimensional Archimedean copula utilized in this paper. The Archimedean copula

family is formed by its generator φθ(.), which is associated with the dependence

parameter θ; i.e.

Cθ(υ1, υ2) = φθ

(
φ−1
θ (υ1), φ

−1
θ (υ2)

)
, (υ1, υ2) ∈ I2. (3)

where φθ(.) is a continuously decreasing convex function. There is a one-to-one

relationship between the dependence parameter and Kendall’s tau. Kendall’s tau

provides a more intuitive measure of correlation compared to the dependence param-

eter. Kendall’s tau is denoted as τkendall and τkendall ∈ [−1, 1]. When τkendall = 0

for random variables X1 and X2, it indicates that X1 and X2 are independent.

If τkendall equals 1 or −1, it signifies a complete positive or negative correlation

between X1 and X2. The closer Kendall’s absolute value is to 1, the greater the

strength of the relationship.

To assess the level of dependence in a more intuitive manner, the dependence

parameter θ is typically transformed into Kendall’s tau. This paper employs the

Gumbel copula to characterize the relationship between two random variables using

the generator φθ(t) = (− log t)θ, as outlined below:

Cθ(υ, ν) = exp
{
− [(− log υ)θ + (− log ν)θ]

1
θ

}
, θ ≥ 1, (4)

And the relationship between τkendall and Gamble copula dependence parameter is

τkendall = 1− θ−1.

3 Model assumptions

In a system comprising l components connected in series, the strength of the j th

component is denoted by Xj , for j = 1, 2, . . . , l; where Xj are independent random

variables with a cumulative distribution function FXj
(xj). All component strengths

are exposed to an external stress Y , characterized by a cumulative distribution

function FY (y) with dependencies on each Xi. It is known that in any series system,
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the system’s lifetime equals the minimum lifetime of its components, expressed as

X(1) = min1≤j≤l(Xj). The cumulative distribution function and probability density

function of X(1) are given by:

FX(1)
= 1−

l∏
j=1

[
1− FXj(x)

]
, (5)

fX(1)
=

l∑
j=1

hXj
(x)

l∏
j=1

[
1− FXj(x)

]
, (6)

And the function hXj
(x) represents the hazard rate of the variable Xj , defined

as hXj
(x) =

fXj
(x)

1−FXj
(x) .

If the stress Y surpasses the minimum strength X(1), the system will fail; oth-

erwise, it will continue to operate correctly. Therefore, the variable δ is defined as

follows:

δ =

{
1 X(1) ≤ Y,

0 X(1) > Y.

This paper assumes that the random variable Xj representing strength, where

j = 1, 2, . . . , l, follows a Pareto distribution with scale parameter αj . Similarly, the

random variable Y representing stress also follows a Pareto distribution with scale

parameter α0. The Pareto distribution is a probability distribution used to model

phenomena where a small number of observations have significantly higher values

than the majority of the data. It is commonly applied in various fields, including

economics, finance, insurance, and reliability engineering. Here are some key ap-

plications of the Pareto distribution: income Distribution, failure rates or lifetimes

of components or systems, risk Management, quality Control. The corresponding

cumulative distribution functions for these variables are as follows:

FXj
(xj) = 1− x

−αj

j , xj > 0, αj > 0,

FY (y) = 1− y−α0 , y > 0, α0 > 0,

By utilizing equations (5) and (6), we can derive cumulative functions and deter-

mine the probability of system lifetime, which corresponds to the minimum strength

of the system components.

FX(1)
(x;α1, . . . , αl) = 1− x−

∑l
j=1 αj , x > 0, αj > 0,

and

fX(1)
(x;α1, . . . , αl) =

l∑
j=1

αjx
−1−

∑l
j=1 αj , x > 0, αj > 0.

In this paper, we also consider the assumption that the relationship between

stress Y and the minimum strength (X(1)) is represented by a copula function. As
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per the scalar theorem 2.1, the two-dimensional joint distribution can be illustrated

by the two-dimensional copula along with two marginal functions.

By utilizing equations (4) and (5), the survival function of the system’s lifetime

based on the Gumbel copula can be described as follows:

S(t) = e−
[(∑l

j=1 αj log t
)θ

+
(
α0 log t

)θ] 1
θ

(7)

where θ is the dependence parameter. In the following, we consider that α =∑l
j=1 αj .

This study assumes that the strength elements operate autonomously, meaning

the failure of the ith component does not impact the failure of the jth component for

i ̸= j. Given the assumptions made, the reliability of this system can be determined

as follows:

R = P (Y < X(1)) =

∫ ∞

0

∫ x(1)

0

h(x(1), y)dydx(1),

=

∫ ∞

0

∫ x(1)

0

c(f(x(1), g(y))f(x(1))g(y)dydx(1),

So

R =

∫ ∞

0

∂C(υ, ν)

∂ν
|υ=f(x(1))ν=g(x(1)) g(x(1))dx(1). (8)

In the equation mentioned, h represents the joint probability function, and C is

the two-dimensional copula distribution function.

In order to reduce both time and cost, the data is gathered using a type-I pro-

gressively hybrid censoring method, as detailed further. Assuming there are n

identical systems undergoing a lifetime test with an increasing censoring scheme

(R1, R2, . . . , Rm) where 1 ≤ m ≤ n. The experiment concludes at time τ0, which is

predetermined along with the values (R1, R2, . . . , Rm). Upon the first observation

at time t1, R1 systems are randomly eliminated from the initial n − 1 systems.

Subsequently, at time t2 with the second observation, R2 systems are randomly

removed from the remaining n− 2−R1 surviving systems. The censoring process

persists in a similar manner until its completion. If the time of the mth observation,

denoted as tm, is earlier than the predetermined time τ0, all surviving systems at

time tm (R∗
m = n −m −

∑m−1
i=1 Ri) are eliminated, and the experiment concludes

at that time. If tm happens after τ0 and only r observations take place before tau0
(0 ≤ r ≤ m), then at τ0, all the remaining survival systems (R∗

r = n− r−
∑r

i=1Ri)

are eliminated from the test, and the test ends at τ0. These scenarios are illustrated

below:

Case I: If tm ≤ τ0, then t1 < t2 < · · · < tm < τ0,

Case II: If tm > τ0, then t1 < t2 < · · · < tr < τ0 < tr+1 < tm.

Therefore, the observed data is obtained as (t1, δ1)(t2, δ2)...(tm∗ , δm∗). In Case

I: tm∗ = tm and m∗ = m; and in Case II: tm∗ = τ0 and m∗ = r.
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4 Estimation of system reliability

4.1 Maximum likelihood estimation

In order to assess the reliability of the system outlined in (8), it is crucial to de-

termine the unidentified parameters of the model. Initially, we estimate the depen-

dency parameter. Consider X1, X2, . . . , Xm as a two-variable random vector, for

i = 1, 2, . . . ,m, where Xi = (xi1, xi2). In this scenario, Kendall’s tau is computed

as follows:

τkendall =
4

m(m− 1)

∑
i ̸=j

I{Xi1≤Xj1}I{Xi2≤Xj2} − 1. (9)

As per the section provided, Kendall’s tau in the Gamble copula is expressed as

τkendall = 1− θ−1. With a direct relationship between τkendall and θ, the estimator

of τkendall can be derived using equation (9), leading to the calculation of the

estimate for θ as outlined below:

θ̂ =
1

1− τ̂kendall
.

Next, we employ the maximum likelihood approach to estimate the parameters that

are unknown. Let’s assume nf =
∑m∗

i=1 δi.

The likelihood function for the stress-strength model given the observed data

(t1, δ1), (t2, δ2), . . . , (tm∗ , δm∗) under type-I progressively hybrid censoring is as fol-

lows:

L =

m∗∏
i=1

[∂C(υ, ν)
∂υ

|υ=SX(1)(ti)
,ν=SY (ti) fX(1)

(ti)
]δi

× (10)

[∂C(υ, ν)
∂ν

|υ=SX(1)
(ti),ν=SY (ti) fY (ti)

]1−δi[
S(ti)

]Ri

S(tm∗)n−m∗−
∑m∗

i=1 Ri .

The likelihood function is obtained by replacing equations (5) to (7) into equation

(10). To simplify calculations, we utilize the logarithm of the likelihood function,

which is expressed as follows:

ℓ = logL(α0, α) = (m∗ − nf ) logα0 + α0(m
∗ − nf )

m∗∑
i=1

log ti

+

m∗∑
i=1

(1− δi) log(log ti) + (1− θ)

m∗∑
i=1

δi log(log ti)

+(
1

θ
− 1)

m∗∑
i=1

log
[
A(ti)

]
+

m∗∑
i=1

δi log(t
α
i ) + (1− θ)

m∗∑
i=1

δi logα

−
m∗∑
i=1

(Ri + 1)
[
A(ti)

] 1
θ − (n−m∗ −

m∗∑
i=1

Ri)
[
A(tm∗)

] 1
θ .
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where

A(x) = (α log x)θ + (α0 log x)
θ. (11)

Now, by deriving the logarithm of the likelihood function and setting them equal

to zero, we can calculate the estimate of the unknown parameters. We have:

∂ℓ

∂α0
=

m∗ − nf

α0
+ (m∗ − nf )

m∗∑
i=1

log ti −
m∗∑
i=1

(Ri + 1)
(
A(ti)

) 1
θ
−1

α0(log ti)
θ

+(
1

θ
− 1)

m∗∑
i=1

θαθ−1
0 (log ti)

θ

A(ti)
− (n−m∗ −

m∗∑
i=1

Ri)
(
A(tm∗)

) 1
θ
−1

α0(log tm∗)θ,

∂ℓ

∂α
=

m∗∑
i=1

δi log ti +
1− θ

α

m∗∑
i=1

δi −
m∗∑
i=1

(Ri + 1)
(
A(ti)

) 1
θ
−1

α(log ti)
θ

+(
1

θ
− 1)

m∗∑
i=1

θαθ−1(log ti)
θ

A(ti)
− (n−m∗ −

m∗∑
i=1

Ri)
(
A(tm∗)

) 1
θ
−1

α(log tm∗)θ.

Clearly, solving the aforementioned equations analytically poses a challenge.

Consequently, we have to use numerical methods to calculate α̂0 and α̂1; in this

paper Newton-Raphson method is used.

4.2 Asymptotic confidence interval

Due to the lack of closed-form solutions for the maximum likelihood estimator

(MLE) of the parameters, exact confidence intervals cannot be obtained. Hence,

asymptotic confidence intervals are derived based on the asymptotically normal

property of MLEs. As a result, the two-sided asymptotic confidence intervals for

the unknown parameters α0 and α at a confidence level of 100(1 − ζ)% are as

follows:

α0 : α̂0 ± zζ/2σ̂α0 , α : α̂± zζ/2σ̂α

where zζ/2 represents the ζ/2th percentile point in the standard normal distribution.

The estimation of the parameters σα0
and σα, denoted as σ̂α0

and σ̂α respectively.

They can be easily computed using the inverse of the Fisher information matrix

for the unknown parameters. Therefore, the next step is to obtain the Fisher

information matrix.

Fisher information matrix is a matrix that contains key information about un-

known parameters. It is determined as the negative of the second-order partial

derivatives of the logarithm of the likelihood function with respect to the unknown
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parameters based on the collected data, as shown below.

I11 = −
∂2ℓ

∂α2
0

= −
m∗ − nf

α2
0

+ (
1

θ
− 1)

m∗∑
i=1

θ(θ − 1)αθ−2
0 A(ti)

(
log ti

)θ − θ2α2θ−2
0

(
log ti

)2θ
A(ti)2

−
m∗∑
i=1

(Ri + 1)
(
A(ti)

) 1
θ
−1

log tθi −
m∗∑
i=1

(Ri + 1)(1− θ)
(
A(ti)

) 1
θ
−2

(log ti)
2θα2θ−1

0

− (n−m∗ −
m∗∑
i=1

Ri)
{
(θ − 1)αθ−2

0 (log tm∗ )θ
(
A(tm∗ )

) 1
θ
−1

+ (1− θ)
(
A(tm∗ )

) 1
θ
−2

α2θ−2
0

(
log tm∗

)2θ}
I12 = I21 = −

∂2ℓ

∂α∂α0
= −(1− θ)αθ−1

0 αθ−1
m∗∑
i=1

(Ri + 1)
(
A(ti)

) 1
θ
−2

(log ti)
2θ+2

− (
1

θ
− 1)

m∗∑
i=1

θ2αθ−1
0 αθ−1

(
log ti

)2θ(
A(ti)

)2 − (n−m∗ −
m∗∑
i=1

Ri)(1− θ)
(
log tm∗

)2θ
αθ−1
0 αθ−1,

I22 = −
∂2ℓ

∂α2
= −(1− θ)

m∗∑
i=1

δi

α2
+ (

1

θ
− 1)

m∗∑
i=1

θ(θ − 1)αθ−2(log ti)
θA(ti)− θ2α2θ−2(log ti)

tθ

A(ti)2

−
m∗∑
i=1

(Ri + 1)
{(

A(ti)
) 1

θ
−1

(θ − 1)αθ−2
(
log ti

)θ
+ (1− θ)

(
A(ti)

) 1
θ
−2

α2θ
(
log ti

)2θ}

− (n−m∗ −
m∗∑
i=1

Ri)
{
(θ − 1)αθ−2(log tm∗ )θ

(
A(tm∗ )

) 1
θ
−1

+ (1− θ)
(
A(tm∗ )

) 1
θ
−2

α2θ−2
(
log tm∗

)2θ}
.

Substituting α̂0 and α̂ for α0 and α in I yields the observed Fisher information

matrix. Inverting it provides the approximate asymptotic variance-covariance ma-

trix for parameters α0 and α. Following Bai et al. [4], the subsequent theorems are

presented.

Theorem 4.1. As m → ∞ we have
(√
m(α̂0 − α̂0),

√
m(α0 − α)

)
∼ N2(0, I

−1/m)

where I−1 is the asymptotic variance-covariance matrix.

Theorem 4.2. As m→ ∞, we have
√
m(R̂−R) ∼ N(0, B) where

B = bT I−1b, ξ = (α0, α)
T , b =

(
∂g
∂α0

, ∂g
∂α

)T
and

R = g(ξ) =

∫ ∞

0

∫ x(1)

0

c
(
f(x(1)), f(y)

)
f(x(1))f(y)dydx(1),

Thus, the asymptotic confidence interval R is derived by replacing α0 and α0 whit

α̂0 and α̂ in B. Consequently, the asymptotic confidence interval at the 100(1−ζ)%
confidence level for R is:

R : R̂± zζ/2

√
B̂/m.
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4.3 Bootstrap confidence interval

The requirement for utilizing an asymptotic confidence interval is a substantial

sample size. Nevertheless, there are instances where the sample sizes may be insuf-

ficient. In such cases, the assumption of asymptotic normality of MLEs is not valid,

making bootstrap confidence intervals more appropriate. The percentile bootstrap

method, introduced by Efron [9], is derived as follows.

(i) Calculate the α̂0 and α̂ with regards to n, m, τ0, (R1, R2, . . . , Rm) and based

on the sample (t1, t2, , tm∗) obtained under the type-I progressively hybrid

censoring.

(ii) Generate the bootstrap sample (t∗1, t
∗
2, . . . , t

∗
m∗) using n,m, τ0, (R1, R2, . . . , Rm),

α̂0 and α̂. Then, based on the bootstrap sample (t∗1, t
∗
2, . . . , t

∗
m∗), calculate

the bootstrap estimates of α0 and α denoted by α̂∗
0 and α̂∗.

(iii) Repeat step 2, N times and obtain N estimators of α̂
∗(ν)
0 and α̂∗(ν) for ν =

1, 2, . . . , N .

(iv) Substitute α̂∗
0 and α̂∗ for α0 and α in equation (8) to derive bootstrap esti-

mators R, denoted by R̂∗(ν) for ν = 1, 2, . . . , N .

(v) Sort the bootstrap estimators {α̂∗(ν)
0 , α̂∗(ν), R̂∗(ν)} in ascending order to ob-

tain the following bootstrap sample

{α̂∗[1]
0 , . . . , α̂

∗[N ]
0 ; α̂∗[1], . . . , α̂∗[N ]; R̂∗[1], . . . , R̂∗[N ]}.

(vi) Obtain 100(1 − ζ)% two-sided confidence intervals for the parameters α0, α

and R in the following manner:

α0 :
(
α̂∗
0,L, α̂

∗
0,U

)
=
(
α̂
∗[N(ζ/2)]
0 , α̂

∗[N(1−ζ/2)]
0

)
,

α :
(
α̂∗
L, α̂

∗
U

)
=
(
α̂∗[N(ζ/2)], α̂∗[N(1−ζ/2)]

)
,

R :
(
R̂∗

L, R̂
∗
U

)
=
(
R̂∗[N(ζ/2)], R̂∗[N(1−ζ/2)]

)
.

5 Simulation studies

In this section, numerical methods are employed to assess the performance of reli-

ability estimation methods and unknown parameters of the stress-strength model.

One aim of this analysis is to assess how R varies with adjustments in the initial

values. Consider the n two-component series system, where α0 = 0.9, α1 = 1.4,

and α2 = 2, and therefore resulting in α = 3.4. In addition, assume θ = 3, 4, 5 as

the dependence parameter, which leading to τKendall =
2
3 ,

3
4 ,

4
5 , respectively. Ta-

ble 1 is utilized for the prefixed progressively sampling scheme. Henceforth, the

symbol i − j denotes the i-th scheme with j-progressive samples for i, j = 1, 2, 3.

For example, 1 − 1 represents scheme 1 with incremental censoring samples 1, i.e.
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Table 1: Censoring schemes.

Scheme n m τ0 Progressively censoring scheme

1 2 3

1 50 20 0.3 (1, 1, . . . , 1, 1) (2, 0, . . . , 2, 0) (3, 0, 0, . . . , 3, 0, 0)

2 80 30 0.3 (1, 1, . . . , 1, 1) (2, 0, . . . , 2, 0) (3, 0, 0, . . . , 3, 0, 0)

3 100 45 0.3 (1, 1, . . . , 1, 1) (2, 0, . . . , 2, 0) (3, 0, 0, . . . , 3, 0, 0)

(n,m, τ0) = (50, 20, 0.3) and (R1, R2, . . . , Rm) = (1, 1, . . . , 1). By conducting a

thousand simulations and generating data based on various censoring schemes out-

lined in Table 1, the MLE of the model’s unknown parameters, the Mean Square

Error (MSE), the length of the asymptotic confidence interval (LA) at 95%, and the

length of the bootstrap percentile confidence interval (LB) at 95% are computed.

Furthermore, the coverage percentage (CP) is determined for each confidence inter-

val, and the outcomes for various censoring schemes are showcased in Tables 2 to

4.

The analysis of Tables 2 to 4 indicates that, as anticipated, the MLEs of the un-

known parameters approach their true values as the sample size increases, resulting

in smaller MSEs. A comparison of the approximate and bootstrap confidence inter-

vals reveals that the length of the asymptotic confidence interval for the effective

sample size (m) is greater than the length of the bootstrap percentile confidence in-

terval. As the effective sample size increases, the lengths of both confidence intervals

become closer. Moreover, with small sample sizes, the coverage percentage of the

bootstrap confidence interval slightly exceeds that of the approximate confidence

interval. Naturally, as the sample size grows, all coverage percentages approach

their nominal values, i.e. 95%. On the other hand, according to the criteria cal-

culated, there are no significant differences between the three different censorship

plans that have been examined in the paper. Furthermore, altering the dependence

parameter does not significantly impact the estimation of unknown parameters for

identical sample sizes and censoring designs. Also, the reliability estimator declines

as the dependence parameter value rises under the same sample size and censoring

schemes.

6 Real data

In this part, we examine an real dataset. The dataset utilized here was initially

documented by McGilchrist and Aisbett [16]. It presents the timing of infection

recurrence in kidney patients using portable dialysis equipment. Data from 30

patients were gathered, where X and Y denoting the timing of the first and second

recurrences, respectively. The data is displayed in Table 5. Data transformation is
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Table 2: MLEs, MSEs, LAs, LBs and CPs for unknown parameters and R when
θ = 3

Scheme Parameter MLE MSE LA CP-A LB CP-B

1-1 α0 0.6839 0.1530 0.8040 0.9277 0.7656 0.9256

α 2.8725 0.1332 0.9222 0.9357 0.9591 0.9295

R 0.4921 0.0018 0.1915 0.9557 0.1853 0.9505

1-2 α0 0.7051 0.1492 0.7716 0.9247 0.7419 0.9365

α 2.9141 0.1356 0.8667 0.9377 0.8725 0.9315

R 0.4835 0.0015 0.1929 0.9587 0.2036 0.9535

1-3 α0 0.6955 0.1598 0.7463 0.9367 0.7337 0.9452

α 2.9735 0.1384 0.8802 0.9487 0.9041 0.9345

R 0.4812 0.0013 0.1905 0.9547 0.2058 0.9485

2-1 α0 0.6892 0.1295 0.3018 0.9437 0.2291 0.9335

α 2.9801 0.1245 0.4743 0.9497 0.4329 0.9365

R 0.4831 0.0017 0.1539 0.9627 0.1670 0.9565

2-2 α0 0.7367 0.1357 0.2910 0.9427 0.2424 0.9425

α 3.0085 0.1225 0.4801 0.9467 0.4461 0.9385

R 0.4527 0.0013 0.1505 0.9547 0.1669 0.9565

2-3 α0 0.6938 0.1203 0.3164 0.9557 0.2737 0.9465

α 3.0461 0.1193 0.4525 0.9537 0.4468 0.9355

R 0.4302 0.0012 0.1461 0.9577 0.1625 0.9465

3-1 α0 0.7318 0.1191 0.1439 0.9637 0.1306 0.9535

α 3.1651 0.1005 0.2515 0.9647 0.2151 0.9425

R 0.4641 0.0014 0.1252 0.9777 0.1395 0.9595

3-2 α0 0.7439 0.1128 0.1251 0.9647 0.1027 0.9575

α 3.2285 0.0923 0.2667 0.9677 0.2356 0.9615

R 0.4293 0.0011 0.1464 0.9787 0.1636 0.9635

3-3 α0 0.7561 0.1095 0.1234 0.9634 0.1045 0.9625

α 3.3019 0.0856 0.2535 0.9587 0.2456 0.9575

R 0.4351 0.0010 0.1472 0.9747 0.1706 0.9695
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Table 3: MLEs, MSEs, LAs, LBs and CPs for unknown parameters and R when
θ = 4

Scheme Parameter MLE MSE LA CP-A LB CP-B

1-1 α0 0.7018 0.1245 0.7731 0.9407 0.7089 0.9255

α 3.0115 0.1185 0.9535 0.9377 0.8629 0.9325

R 0.4521 0.0013 0.2089 0.9537 0.2085 0.9455

1-2 α0 0.7231 0.1233 0.7915 0.9337 0.8062 0.9335

α 3.0417 0.1152 0.8555 0.9447 1.8037 0.9375

R 0.4533 0.0012 0.2010 0.9617 0.2169 0.9505

1-3 α0 0.7345 0.1187 0.7225 0.9447 0.7358 0.9405

α 3.0552 0.1120 1.8764 0.9376 0.7968 0.9355

R 0.4566 0.0013 0.1949 0.9507 0.2089 0.9455

2-1 α0 0.7518 0.1134 0.2973 0.9417 0.2549 0.9425

α 3.1451 0.1102 0.4822 0.9557 0.4460 0.9405

R 0.4251 0.0010 0.1611 0.9527 0.1713 0.9445

2-2 α0 0.7631 0.1104 0.3046 0.9497 0.2584 0.9475

α 3.1838 0.1082 0.5011 0.9427 0.4651 0.9385

R 0.4271 0.0011 0.1572 0.9527 0.1606 0.9435

2-3 α0 0.7574 0.1122 0.3036 0.9517 0.2802 0.9435

α 3.2141 0.1054 0.4625 0.9427 0.4352 0.9315

R 0.4218 0.0009 0.1361 0.9497 0.1611 0.9375

3-1 α0 0.7711 0.1072 0.1373 0.9557 0.1046 0.9525

α 3.0741 0.1100 0.2266 0.9627 0.2082 0.9505

R 0.4189 0.0008 0.1205 0.9757 0.1308 0.9595

3-2 α0 0.7784 0.1054 0.1137 0.9607 0.0985 0.9565

α 3.1425 0.1080 0.2302 0.9627 0.2182 0.9555

R 0.4112 0.0007 0.1112 0.9827 0.1297 0.9685

3-3 α0 0.7591 0.1032 0.1081 0.9597 0.0937 0.9555

α 3.1635 0.1015 0.2222 0.9637 0.2069 0.9515

R 0.4154 0.0008 0.1070 0.9837 0.1239 0.9725
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Table 4: MLEs, MSEs, LAs, LBs and CPs for unknown parameters and R when
θ = 4

Scheme Parameter MLE MSE LA CP-A LB CP-B

1-1 α0 0.7612 0.1020 0.6930 0.9357 0.6381 0.9355

α 4.1130 0.1008 0.9542 0.9470 0.8848 0.9385

R 0.3978 0.0007 0.1951 0.9577 0.1976 0.9465

1-2 α0 0.7893 0.1008 0.6869 0.9387 0.6287 0.9305

α 3.1780 0.0985 0.8935 0.9467 0.7661 0.9395

R 0.3912 0.0007 0.1906 0.9627 0.1989 0.9515

1-3 α0 0.8012 0.0961 0.7221 0.9397 0.6476 0.9365

α 3.1990 0.0820 0.9123 0.9427 0.8590 0.9375

R 0.3925 0.0006 0.1990 0.9587 0.2058 0.9555

2-1 α0 0.8218 0.0842 0.2802 0.9397 0.2428 0.9375

α 3.3015 0.0750 0.4645 0.9497 0.4367 0.9425

R 0.3921 0.0004 0.1566 0.9498 0.1682 0.9475

2-2 α0 0.8312 0.0804 0.2621 0.9467 0.2389 0.9355

α 3.3315 0.0710 0.4919 0.9457 0.4861 0.9415

R 0.3905 0.0005 0.1463 0.9637 0.1682 0.9505

2-3 α0 0.8418 0.0725 0.2522 0.9537 0.2400 0.9487

α 3.3654 0.0640 0.4501 0.9527 0.4281 0.9405

R 0.3910 0.0005 0.1403 0.9667 0.1511 0.9625

3-1 α0 0.8591 0.0420 0.0510 0.9397 0.0378 0.9505

α 3.4391 0.0512 0.1879 0.9497 0.1681 0.9535

R 0.3871 0.0003 0.1095 0.9398 0.1314 0.9695

3-2 α0 0.8851 0.0311 0.0653 0.9467 0.0456 0.9585

α 4.4251 0.0508 0.2001 0.9457 0.1821 0.9515

R 0.3821 0.0003 0.1043 0.9637 0.1246 0.9695

3-3 α0 0.8920 0.0285 0.0643 0.9537 0.0477 0.9595

α 3.3918 0.0402 0.1888 0.9527 0.1706 0.9645

R 0.3790 0.0002 0.1034 0.9667 0.1207 0.9755
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applied in this model by taking the square root of the data and dividing all values by

10. This adjustment aligns the data well with the proposed model. The dependence

parameter is estimated using Kendall’s tau value as θ̂ = 1.13. As a result, the

data for X and Y can be deemed dependent. By employing numerical techniques,

the model’s unknown parameters were estimated, and the system reliability was

calculated, with the outcomes displayed in Table 6. Furthermore, Table 7 presents

the results of the Kolmogorov-Smirnov test assessing the data’s goodness of fit.

Based on the information in Table 7, it is observed that the Pareto distribution is

appropriate for both sets of data. By estimating the parameters α̂0 α̂1, α̂2 and θ̂

and applying the invariant property of the MLEs, R̂ = 0.5247 for the dependent

condition and R̂ = 0.5773 for the independent condition, representing a 10.02%

increase in the dependent mood.

Table 5: Real dataset from McGilchrist and Aisbett [16].

Variable Data

X 8 23 22 447 30 24 7 511 53 15 7 141 96 149 536

17 185 292 22 15 152 402 13 39 12 113 132 34 2 130

Y 16 13 28 318 12 245 9 30 196 154 333 8 38 70 25

4 117 114 159 108 362 24 66 46 40 201 156 30 25 26

Table 6: MLEs, asymptotic and bootstrap confidence intervals of unknown param-
eters and reliability for real data.

Parameter α0 α R

MLE 0.5107 0.7048 0.5247

ACI (0.5567 0.4819) (0.7476 0.6935) (0.5562 0.4986)

BCI (0.5413 0.4900) (0.7220 0.6901) (0.5436 0.5021)

Table 7: Goodness of fit test results.

Parameter K-S P-value

X 01425 0.8754

Y 0.1281 0.9381

7 Conclusion

In this research, we examined the reliability of the multicomponent stress-strength

model. While many studies typically treat stress and strength variables as indepen-
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dent, this paper takes into account real-world scenarios where there is a presumed

relationship between stress and strength variables. The Gamble copula function

was employed to assess this dependency. Furthermore, it was hypothesized that

the stress and strength variables adhere to the Pareto distribution with distinct

parameters, and the data was collected using the type-I progressively hybrid cen-

soring. We calculated ML estimators, along with asymptotic confidence intervals

and bootstrap confidence intervals for the unknown parameters and the reliabil-

ity of the stress-strength model. Nine distinct datasets were generated from the

analyzed model by varying censoring schemes and adjusting the dependence pa-

rameter. The simulation findings indicated that as the sample size grows, the MSE

of estimating unknown parameters decreases, along with an improvement in the

model’s reliability and an increase in the coverage percentage of the calculated con-

fidence intervals. When dealing with a small effective sample size, the bootstrap

confidence interval outperforms the asymptotic confidence interval. As the effective

sample size increases, both confidence intervals approach each other. Nevertheless,

the significance of the dependence parameter should not be overlooked as it can

lead to a significant deviation in the model’s reliability estimate. The greater the

dependence parameter, the weaker the model’s reliability. Then, examination of

the real dataset demonstrated that the estimation method employed is practical

for assessing the reliability of the multicomponent stress-strength model using the

copula function.
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