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Abstract:
The use of variance as a risk measure is limited by its non-coherent nature.
On the other hand, standard deviation has been demonstrated as a coherent
and effective measure of market volatility. This paper suggests the use
of standard deviation in portfolio optimization problems with cardinality
constraints and short selling, specifically in the mean-conditional value-
at risk framework. It is shown that, subject to certain conditions, this
approach leads to lower standard deviation. Empirical results obtained
from experiments on the S&P index data set from 2016-2021 using various
numbers of stocks and confidence levels indicate that the proposed model
outperforms existing models in terms of Sharpe ratios.
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1 Introduction

Value-at-Risk (VaR) as a risk measure has been criticized for not being subadditive

and convex [1]. To resolve this drawbacks, Rockafellar and Uryasev [17] proposed

another risk measure as the mean of the left tail distribution called Conditional

Value-at-Risk (CVaR). They changed Mean-CVaR portfolio optimization problem

into a linear programming problem using scenarios. Konno et al. [14] showed that

CVaR is useful to control downside risk in portfolio optimization. Pineda and

Conejo [16] presented a method to solve the Mean-CVaR model efficiently for a

large number of stocks and scenarios. Also, Kobayashi et al. [13] studied Mean-

Variance-CVaR (MV-CVaR) portfolio optimization using cardinality constraint for

limiting the number of assets. Solving such a mixed-integer optimization model
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is computationally challenging. So to overcome this issue, they proposed a bilevel

cutting-plane algorithm. Roman et al. [18] further included variance in the Mean-

CVaR model to obtain a range of balanced solutions that are usually discarded

by both MV and Mean-CVaR models. Elahi and Abd Aziz [4] proposed a linear

weighted sum method to solve the MV-CVaR multi-objective optimization problem.

They showed their method achieves better results and helps investors to manage

their portfolio better. Shi et al. [19] studied the MV-CVaR model for an insurer

with an investment business and showed that the model is able to provide more

potential investment strategies for an insurer. Recently Khodamoradi and Salahi [8]

applied the conditional scenarios technique and the penalty alternating direction

method to solve the extended Mean-CVaR optimization problem for large number

of scenarios. They investigated the convergence of the PADM and showed that

the proposed approach significantly reduces computational times while keeping an

acceptable degree of accuracy. One of the important factor in portfolio is short

selling in which it is the sale of a stock that is not owned by the seller. The seller

borrows the stock to repay in the future and sells the stock in the market. After

some time, the seller buys the stock from the market and pays back to the lender.

Investors use short selling when they believe that the stock price will decline [2].

So Khodamoradi et. al [11] also studied Mean-CVaR portfolio optimization with

cardinality constraints and short selling under uncertainty. To reduce the level of

conservatism, they proposed multi-intervals uncertainty sets instead of the single

uncertainty interval and showed that the proposed robust Mean-CVaR model is

equivalent to a mixed integer linear programming problem. Also, Hamdi et al. [7]

studied MV-CVaR optimization problem under some realistic constraints. To tackle

its mixed-integer quadratic optimization model for a large number of scenarios, they

used penalty decomposition method.

Although variance as a risk measure has been used in several portfolio opti-

mization models, but it has several drawbacks such as not being a coherent risk

measure [1]. However, standard deviation is coherent and more useful for measuring

market volatility. Thus, in this paper we propose to combine it with the extended

Mean-CVaR model. We show that under certain condition, the proposed model

gives better variance compared to the MV-CVaR model. The rest of this paper is

as follows. In Section 2, we present the Mean-CVaR and MV-CVaR models. In

Section 3, we present the details of the Mean-Standard Deviation-CVaR (Mean-SD-

CVaR) model. Finally, in Section 4 numerical results are conducted to show the

advantages of using standard deviation instead of variance.

2 Extended Mean-CVaR model

Let the random vector y has probability distribution function p(y) and f(x, y) =

−xT y be a loss function depending on a decision vector x. By considering γ ∈ R,
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the cumulative distribution function of the loss associated with x is

Ψ(x, γ) =

∫
f(x,y)≤γ

p(y)dy.

The β−VaR of the loss associated with portfolio x for a confidence level β ∈ (0, 1)

is

V aRβ(x) = min{γ ∈ R : Ψ(x, γ) ≥ β}.

Also, the β−CVaR of the loss associated with portfolio x is defined as follows:

CV aRβ(x) =
1

1− β

∫
f(x,y)≥V aRβ(x)

f(x, y) p(y)dy.

For the sake of simplicity, the auxiliary function is considered as follows [17]:

Fβ(x, γ) = γ +
1

1− β

∫
f(x,y)≥γ

(f(x, y)− γ) p(y)dy,

or

Fβ(x, γ) = γ +
1

1− β

∫
(f(x, y)− γ)+ p(y)dy, (1)

where b+ = max {b, 0}. Now, the CVaR optimization problem is

min
x∈X,γ

Fβ(x, γ), (2)

where X is the feasible set. Since the calculation of the density function p(y) in (1)

is often impossible or undesirable, scenarios yj , j = 1, ...,m are used instead. Then

the approximation of Fβ is obtained as follows:

F̄β(x, γ) = γ +
1

(1− β)m

m∑
j=1

(f(x, yj)− γ)+

which leads to the following model instead of (2):

min
x∈X,γ

γ +
1

(1− β)m

m∑
j=1

(f(x, yj)− γ)+. (3)

Here we consider X = {
∑N

i=1 xi = 1,
∑N

i=1 zi = K, lizi ≤ xi ≤ uizi, rixi ≥ 0, zi ∈
{0, 1}, i = 1, ..., N} where N denotes the number of stocks, xi is the proportion

of investment in stock i, m is the number of scenarios, K is the desired number of

stocks in the portfolio, so, zi = 0 shows that stock i is not in the portfolio. Also, ri is

the expected return of stock i and the lower and upper bounds of the proportion of

investment in stock i, are denoted by li and ui, respectively. In order to consider the
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negative proportions of investment for stocks that are in the short selling positions,

we use constraints rixi ≥ 0, (i = 1, 2, ..., N) in the model, [9, 10]. The equivalent

form of (3) and its combination with portfolio return and risk aversion parameter

is as follows:

min
x,t,γ

λ(γ +
1

(1− β)m

m∑
j=1

sj) + (1− λ)
N∑
i=1

xiri

s.t. sj ≥ f (x, yj)− γ, j = 1, . . . ,m, (4)

sj ≥ 0, j = 1, . . . ,m,

x ∈ X.

By incorporating variance in model (4), we get the following extended MV-CVaR

portfolio optimization model [12]:

min
x,s,z,γ

λ1

N∑
i=1

N∑
j=1

xixjσi,j − λ2
N∑
i=1

xiri + (1− (λ1 + λ2))

(
γ +

1

(1− β)m

m∑
j=1

sj

)

s.t. sj ≥ −
N∑
i=1

(xiy
j
i )− γ, j = 1, . . . ,m,

N∑
i=1

xi = 1, (5)

N∑
i=1

zi = K,

lizi ≤ xi ≤ uizi, i = 1, ..., N,

xiri ≥ 0, i = 1, ..., N,

zi ∈ {0, 1}, i = 1, ..., N,

sj ≥ 0, j = 1, . . . ,m,

where λ1 and λ2 adapt balance between variance, expected return and CV aRβ(x).

3 Mean-SD-CVaR model

As variance is not a coherent risk measure, while standard deviation is, here we

include standard deviation in the extended Mean-CVaR model. The Mean-SD-
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CVaR model becomes the following mixed-integer second order cone program:

min
x,s,z,γ

λ1||Σ
1
2x|| − λ2

N∑
i=1

xiri + (1− (λ1 + λ2))

(
γ +

1

(1− β)m

m∑
j=1

sj

)

s.t. sj ≥ −
N∑
i=1

(xiy
j
i )− γ, j = 1, . . . ,m,

N∑
i=1

xi = 1, (6)

N∑
i=1

zi = K,

lizi ≤ xi ≤ uizi, i = 1, ..., N,

xiri ≥ 0, i = 1, ..., N,

zi ∈ {0, 1}, i = 1, ..., N,

sj ≥ 0, j = 1, . . . ,m,

where Σ is the covariance matrix. In the following theorem, we give condition under

which model (6) has lower standard deviation compared to model (5).

Theorem 3.1. Let (x∗, s∗, γ∗) and (x̄, s̄, γ̄) be the optimal solutions of (5) and (6).

If ||Σ 1
2x∗||+ ||Σ 1

2 x̄|| − 1 ≤ 0 then ||Σ 1
2 x̄|| ≤ ||Σ 1

2x∗||.

Proof. Since the feasible regions of both models are the same, we have

λ1x
∗T

Σx∗ − λ2x∗
T

r + (1− (λ1 + λ2))(γ
∗ +

s∗

(1− β)m
) ≤ λ1x̄TΣx̄−

λ2x̄
T r + (1− (λ1 + λ2))(γ̄ +

s̄

(1− β)m
)

and

λ1||Σ
1
2 x̄|| − λ2x̄T r + (1− (λ1 + λ2))(γ̄ +

s̄

(1− β)m
) ≤ λ1||Σ

1
2x∗||−

λ2x
∗T

r + (1− (λ1 + λ2))(γ
∗ +

s∗

(1− β)m
).

By summing up these two inequalities, we get

x∗
T

Σx∗ + ||Σ 1
2 x̄|| − x̄TΣx̄− ||Σ 1

2x∗|| ≤ 0.

This is further equivalent to

(||Σ 1
2x∗|| − ||Σ 1

2 x̄||)(||Σ 1
2x∗||+ ||Σ 1

2 x̄|| − 1) ≤ 0.

Now if ||Σ 1
2x∗||+ ||Σ 1

2 x̄|| − 1 ≤ 0, then ||Σ 1
2 x̄|| ≤ ||Σ 1

2x∗||.

Remark 3.2. Under the condition of Theorem 3.1, it is expected model (5) gives

better returns compared to model (6) as it has higher standard deviation.
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4 Computational experiments

In this section, we compare the performance of models (4), (5) and (6) from different

perspective by the data of S&P index for 2016-2020 with 110 stocks when λ =
1

2
,

λ1 = λ2 =
1

3
, ui = −li = 0.2 for different K and β values. All computations are

performed in MATLAB R2017a on a 2.50 GHz laptop with 4 GB of RAM, and

CVX 2.2 is used to solve all optimization models [6]. To solve the mixed-integer

models, we used Mosek in CVX. Tables 1 and 2 show the returns, risks(standard

deviation), Sharpe ratios and CVaR values of models (4), (5) and (6) for different

m and β values with monthly and annual returns. The results show that using

standard deviation in the model significantly reduces the risk and increases the

Sharpe ratio of model (6) though reduces the returns. These results are depicted

in Figures 1-4 for returns, risks, CVaRs, and Sharpe ratios differently. As we see

in Figure 1, in terms of returns, model (4) is the best, model (5) is the second best

and model (6) is the worst, while in terms of risks in Figure 2 the results are reverse

and model (6) is the best and model (4) is the worst. In terms of CVaR, as can be

seen in Figure 3, no model is the best always and in terms of Sharpe ratios as can

be seen in Figure 4, model (6) significantly outperforms the other two models.

The results show that the returns of model (5) have increased in the range of

33 to 51 percents compared to model (6), while the standard deviation of model

(6) have reduced in the range of 36 to 75 percents compared to model (5). Also,

the Sharpe ratios of model (6) have increased in the range of 53 to 70 percents

compared to model (5). As Sharpe ratio indicates the efficiency of a portfolio, thus

model (6) outperforms the other two models. Similarly, with annual return, the

returns of the model (5) have increased in the range of 7 to 15 percents compared to

model (6), while the standard deviation of model (6) have reduced in the range of

84 to 99 percents compared to model (5) and their Sharpe ratios have increased in

the range of 67 to 89 percents compared to model (5). To see all results together,we

have depicted all of them in Figures 5.

4.1 Out-of-sample experiments

Sine Sharpe ratio is a widely used performance indicator of the portfolio relative

to its risk [15], we compare the performance of models (4), (5) and (6) in terms of

out-of-sample Sharpe ratio, return and standard deviation with S&P index data for

2016-2021. It represents the additional amount of return that an investor receives

per unit of increase in risk. In comparing two portfolios, the one with higher Sharpe

ratio is better [5].

We use the rolling-horizon procedure for out-of-sample performance [3]. The

out-of-sample Sharpe ratio is an indicator that balances the return and risk, given
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Table 1: Return, risk, CVaR and Sharpe ratio values of models (4), (5) and (6)
for different m values and different confidence levels β for S&P index data when
K = 30 with monthly returns for 2016-2020.

Model (4) Model (5) Model (6)

β m Return Standard CVaR Sharpe Return Standard CVaR Sharpe Return Standard CVaR Sharpe

deviation ratio deviation ratio deviation ratio

β = 0.9

m=100 0.0853 0.1190 0.0058 0.7169 0.0796 0.0908 0.0030 0.8763 0.0518 0.0411 0.0021 1.2590

m=500 0.0856 0.1230 0.0097 0.6958 0.0826 0.0911 0.0094 0.9070 0.0475 0.0342 0.0085 1.3908

m=1000 0.0856 0.1183 0.0098 0.7236 0.0832 0.0918 0.0097 0.9060 0.0498 0.0362 0.0079 1.3755

m=2000 0.0861 0.1205 0.0112 0.7148 0.0835 0.0932 0.0111 0.8969 0.0480 0.0341 0.0088 1.4099

m=3000 0.0862 0.1231 0.0108 0.7000 0.0832 0.0928 0.0105 0.8969 0.0471 0.0335 0.0085 1.4036

m=4000 0.0860 0.1222 0.0105 0.7036 0.0839 0.0951 0.0106 0.8820 0.0489 0.0345 0.0093 1.4185

m=5000 0.0862 0.1245 0.0111 0.6926 0.0839 0.0945 0.0109 0.8875 0.0478 0.0335 0.0090 1.4278

β = 0.95

m=100 0.0850 0.1111 0.0050 0.7647 0.0822 0.0997 0.0038 0.8242 0.0484 0.0375 0.0041 1.2908

m=500 0.0852 0.1191 0.0138 0.7152 0.0831 0.0955 0.0135 0.8699 0.0467 0.0336 0.0084 1.3899

m=1000 0.0855 0.1231 0.0135 0.6946 0.0831 0.0928 0.0134 0.8956 0.0444 0.0319 0.0090 1.3925

m=2000 0.0856 0.1210 0.0144 0.7071 0.0833 0.0929 0.0145 0.8968 0.0420 0.0296 0.0097 1.4172

m=3000 0.0857 0.1238 0.0139 0.6924 0.0835 0.0951 0.0140 0.8776 0.0426 0.0307 0.0098 1.3900

m=4000 0.0862 0.1222 0.0148 0.7053 0.0835 0.0935 0.0143 0.8933 0.0445 0.0320 0.0098 1.3891

m=5000 0.0864 0.1201 0.0157 0.7197 0.0829 0.0907 0.0145 0.9131 0.0439 0.0314 0.0102 1.3988

by (SR) is calculated as

SR =
µ

σ
,

where µ is expected portfolio return and σ is the standard deviation of portfolio

where

µ =
1

T − L

T−1∑
t=L

(x′t rt+1),

and

σ =

√√√√ 1

T − L− 1

T−1∑
t=L

(x′t rt+1 − µ)2,

here xt is the optimal weight at time t, t = L,L+1, ..., T −1, L is the length of the

estimation time window T is the total number of returns in the data set, and rt+1

is the stock return. We use monthly stock return data, corresponding to 5 years for

an estimation window of L = 60 data from 2016 to 2020 and using 2021 data for

the out-of-sample. Results of solving models (4), (5) and (6) are reported in Table

3 when N = 110, K = 30, ui = −li = 0.2 and for different number of scenarios. As

we see, the Sharpe ratios of model (6) are greater than the other models.
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Table 2: Return, risk, CVaR and Sharpe ratio values of models (4), (5) and (6)
for different m values and different confidence levels β for S&P index data when
K = 30 with annual returns for 2016-2020.

Model (4) Model (5) Model (6)

β m Return Standard CVaR Sharpe Return Standard CVaR Sharpe Return Standard CVaR Sharpe

deviation ratio deviation ratio deviation ratio

β = 0.9

m=100 1.3415 0.2640 0.0831 0.0462 1.2865 0.1487 0.0530 0.0786 1.2182 0.0272 0.0636 0.4071

m=500 1.3613 0.2337 0.1230 0.0530 1.3526 0.1836 0.1249 0.0670 1.2704 0.0353 0.1460 0.3270.

m=1000 1.3661 0.2269 0.1340 0.0547 1.3525 0.1740 0.1322 0.0707 1.2573 0.0230 0.1298 0.4980

m=2000 1.3682 0.2367 0.1333 0.0526 1.3577 0.1881 0.1326 0.0656 1.2602 0.0257 0.1505 0.4462

m=3000 1.3679 0.2379 0.1255 0.0523 1.3552 0.1764 0.1249 0.0699 1.2580 0.0265 0.1262 0.4323

m=4000 1.3684 0.2374 0.1375 0.0524 1.3538 0.1777 0.1353 0.0693 1.2625 0.0277 0.1473 0.4150

m=5000 1.3671 0.2401 0.1271 0.0518 1.3562 0.1817 0.1273 0.0679 1.2617 0.0268 0.1408 0.4282

β = 0.95

m=100 1.3308 0.2131 0.1155 0.0568 1.3228 0.1885 0.1134 0.0638 1.2238 0.0401 0.1176 0.2773

m=500 1.3509 0.2301 0.1312 0.0534 1.3399 0.1543 0.1363 0.0789 1.2446 0.0190 0.1311 0.5956

m=1000 1.3578 0.2476 0.1738 0.0499 1.3430 0.1795 0.1719 0.0680 1.2452 0.0249 0.1842 0.4541

m=2000 1.3670 0.2350 0.1873 0.0529 1.3526 0.1640 0.1864 0.0750 1.2596 0.0243 0.1887 0.4715

m=3000 1.3664 0.2330 0.1838 0.0533 1.3484 0.1743 0.1775 0.0703 1.2538 0.0220 0.1868 0.5187

m=4000 1.3660 0.2261 0.1838 0.0549 1.3509 0.1660 0.1780 0.0740 1.2613 0.0256 0.1844 0.4471

m=5000 1.3652 0.2172 0.1881 0.0571 1.3523 0.1668 0.1842 0.0737 1.2567 0.0244 0.1843 0.4689

As before, these results are depicted in Figures 6-8 for different number of stocks

and two different confidence levels when m = 1000. The results follow same trend

as in the in-sample case in terms of returns, CVaRs, Sharpe ratios and standard

deviations.
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(a) Monthly return, β = 0.90
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(b) Monthly return, β = 0.95
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(c) Annual return, β = 0.90
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(d) Annual return, β = 0.95

Figure 1: Comparison of returns of models (4), (5) and (6) for different number of stocks and two different

confidence levels for 2016-2020.
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(b) Monthly return, β = 0.95
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(c) Annual return, β = 0.90
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Figure 2: Comparison of risks of models (4), (5) and (6) for different number of stocks and two different

confidence levels for 2016-2020.
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(a) Monthly return, β = 0.90
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(b) Monthly return, β = 0.95
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(c) Annual return, β = 0.90
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Figure 3: Comparison of CVaR values of models (4), (5) and (6) for different number of stocks and two

different confidence levels for 2016-2020.
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(b) Monthly return, β = 0.95
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(c) Annual return, β = 0.90
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(d) Annual return, β = 0.95

Figure 4: Comparison of Sharpe ratios of models (4), (5) and (6) for different number of stocks and two

different confidence levels for 2016-2020.
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(b) Monthly return, β = 0.95
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(c) Annual return,β = 0.90
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(d) Annual return, β = 0.95

Figure 5: Comparison of Sharpe ratios vs returns of models (4), (5) and (6) for two different confidence

levels.
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Figure 6: Comparison of out-of-sample returns of models (4), (5) and (6) for different number of stocks

and two different confidence levels.
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Table 3: Comparison of out-of-sample returns, standard deviations and Sharpe
ratios for models (4), (5) and (6) for S&P index data with different confidence
levels (β) and different number of scenarios (m) when K = 30.

Model (4) Model (5) Model (6)

β m Return Standard Sharpe Return Standard Sharpe Return Standard Sharpe

deviation ratio deviation ratio deviation ratio

β = 0.9

m=100 0.0446 0.1191 0.3745 0.0429 0.1011 0.4244 0.0415 0.0996 0.4296

m=500 0.0445 0.1096 0.4061 0.0445 0.1091 0.4079 0.0444 0.1082 0.4104

m=1000 0.0445 0.1148 0.3877 0.0443 0.1037 0.4272 0.0387 0.0902 0.4279

m=2000 0.0446 0.1085 0.4110 0.0441 0.1002 0.4401 0.0438 0.0992 0.4415

m=3000 0.0444 0.1108 0.4006 0.0425 0.1031 0.4122 0.0294 0.0678 0.4336

m=4000 0.0445 0.1112 0.4002 0.0421 0.1006 0.4184 0.0341 0.0787 0.4333

m=5000 0.0443 0.1149 0.3856 0.0398 0.1002 0.3972 0.0295 0.0712 0.4143

β = 0.95

m=100 0.0451 0.1111 0.3970 0.0429 0.1075 0.3991 0.0299 0.0741 0.4036

m=500 0.0453 0.1126 0.4023 0.0445 0.1082 0.4113 0.0398 0.0912 0.4364

m=1000 0.0456 0.1136 0.4013 0.0414 0.1003 0.4129 0.0295 0.0712 0.4143

m=2000 0.0456 0.1136 0.4014 0.0402 0.1002 0.4102 0.0299 0.0701 0.4265

m=3000 0.0456 0.1139 0.4004 0.0439 0.1049 0.4185 0.0399 0.0856 0.4661

m=4000 0.0451 0.1117 0.4038 0.0399 0.0971 0.4109 0.0285 0.0632 4509

m=5000 0.0445 0.1126 0.4032 0.0391 0.0959 0.4077 0.0285 0.0659 0.4325
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Figure 7: Comparison of out-of-sample standard deviations of models (4), (5) and (6) for different number

of stocks and two different confidence levels.
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Figure 8: Comparison of out-of-sample Sharpe ratios of models (4), (5) and (6) for different number of

stocks and two different confidence levels.

5 Conclusions

In conclusion, this paper presents a novel approach to portfolio optimization by

incorporating standard deviation in the Mean-CVaR model with cardinality con-

straints and short selling, instead of using variance. The proposed model is shown

to outperform the MV-CVaR model in terms of standard deviation, under certain

conditions. Furthermore, computational experiments on the SP index data set

from 2016-2020 with varying numbers of stocks and confidence levels demonstrate

that the new model has higher Sharpe ratios than both the Mean-CVaR and MV-

CVaR models. Future research could extend the proposed model to include other

constraints, such as transaction costs and options.
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