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Abstract:
One of central bank regulations that has direct impact on the banking in-
dustry is loan benchmark interest rate. Banks use it as a reference rate to
determine their loan interest rate. In this paper, we study the role of loan
benchmark interest rate on banking loan dynamics. The model is in the
form of a difference equation that follows a gradient adjustment process.
We study the loan equilibrium’s stability via bifurcation theory. It is found
that the benchmark rate must be set between the flip and transcritical val-
ues. Some numerical simulations are performed to confirm the analytical
result. The stochastic case of the benchmark rate is also studied. In addi-
tion, we perform numerical sensitivity analysis of the benchmark rate with
the model’s other parameters.
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1 Introduction

Reference rates, usually referred to as benchmark rates, are publicly available inter-

est rates that are updated on a regular basis. They serve as an effective foundation

for other financial agreements, including mortgages, bank overdrafts, and other

more intricate financial transactions. A benchmark rate is determined by a third

party, typically to reflect the cost of borrowing money in various markets. They

could, for instance, show how much it costs banks to borrow money from one an-

other. Alternately, they can show how much it costs banks to borrow money from

other institutions like money market funds, insurance firms, and pension funds. In

every sector of the economy, people and organizations frequently use benchmark

rates. For instance, banks employ them when making loans to private individuals

or business clients. A bank may agree to lend money to a business at an agreed
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interest rate that is set at a specific benchmark rate plus 2 percent. In this case, the

business would be required to pay interest that is 2 percent more than the bench-

mark rate at the time the loan was made. Therefore, the cost of the loan increases

if the benchmark rate increases and decreases if the benchmark rate decreases. In

this situation, the benchmark can serve as a trustworthy, impartial, and generally

easy reference for all parties.

Studies have been conducted to look at the relationships between various finan-

cial factors and the benchmark interest rate. Duan et al. [17] investigated the

benchmark interest rate’s pattern by contrasting the intensity and an economic

indicator, where the central bank-set benchmark interest rate is modelled using a

Poisson process with stochastic intensity. Augustin et al. [13] studied about bench-

mark behavior after global financial crisis and demonstrated via no-arbitrage that

even in the absence of frictions like balance sheet restrictions, convenience yield,

and hedging demand, sovereign default risk explains negative swap spreads, and in

their paper an equilibrium model that simultaneously accounts for macroeconomic

fundamentals, the term structures of interest rates, and US credit default swap

rates is used to support this argument. Kim and Shi [22] empirically examined the

factors that influence China’s two primary benchmark interest rates using quar-

terly frequency data from 1987 to 2013 and a variety of constrained ordered probit

models and suggested that output gaps and the exchange rate have little impact on

the PBC’s policy choices, which are better understood as responses to changes in

inflation and money growth. Aquilina et al. [11] discovered the enhanced liquidity

effects in the USD swaps market after switching to the controlled ICE Swap Rate

and so that regulations that enhance the benchmarking process and oversight can

have a favorable effect on markets.

In this paper, we construct a dynamic model of a banking loan that takes the

loan benchmark interest rate into account while calculating loan interest. Based

on the sign of the loan’s marginal profit, the gradient adjustment process upon

which the model is built determines how much money will be lent in the future.

This model is introduced by [18] which studying the role of capital regulations

in banking loan dynamics. Several researchers have been used the model to study

many aspects and regulations in the banking industry, such as the bank’s operating

costs, micro- and macro-prudential instruments, dividend payments, and deposit

insurance premium [2–4,9,10,12,15,16,19]. This study uses the bifurcation theory

to investigate how the benchmark interest rate affects loan dynamics. The results

of the analysis demonstrate that the stability of the equilibrium loan is sensitive to

the benchmark interest rate.

2 Model

Suppose a bank’s balance sheet consists of: loan (L), equity (E), and deposit (D).

The central bank’s capital rule will establish lower ceilings for the bank’s equity.
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The banking data reveals that the equity to loan ratio can be assumed to remain

constant in practice [9]. So, we can write: E
L = κ, for some 0 < κ < 1. Suppose

that the deposit serves as the balancing variable. Then, we have

D = L− E = (1− κ)L.

Assume that the model is considered in discrete time t = 0, 1, 2, 3, . . . . The

model employs a gradient adjustment process to depict the loan dynamics as used

in [14,18]. The loan model is given below

Lt+1 = Lt + αtLt
∂πt
∂Lt

, (1)

where αL is called the speed of adjustment parameter, αL > 0.

The bank’s profit (π) is calculated by subtracting the cost of deposits (rDD),

equity (rEE), and operational (C) from the loan interest (rLL). According to

the Monti-Klein model’s underlying assumptions, the interest rates for loans and

deposits are determined by [23,24]

rL = a0 + a1 − bLL (2)

and rD = aD+ bDD, where a0, a1, bL, aD, bD > 0. In Eq. (2), a0 is loan benchmark

interest rate and a1 is difference of benchmark and individual bank interest rate.

The central bank rate parameter a0 will be analyzed in this paper as the main

topic. The equity expense rE is taken to be a constant. The costs of loans and

deposits are incorporated into the bank’s operational expenses: C = cDD + cLL,

where 0 < cD, cL < 1.

The profit at time t is calculated as

πt = rLLt − rDDt − rEEt − Ct

= (a0 + a1 − [rEκ+ cL + (aD + cD)(1− κ)])Lt − [bL + bD(1− κ)2]L2
t .

Then the loan’s marginal profit is calculated

∂πt
∂Lt

= a0 + a1 − [rEκ+ cL + (aD + cD)(1− κ)]− 2[bL + bD(1− κ)2]Lt. (3)

Subtituting (3) into (1) produces the dynamic model of banking loan as follows

Lt+1 = Lt+αLLt(a0+a1−[rEκ+cL+(aD+cD)(1−κ)]−2[bL+bD(1−κ)2]Lt). (4)

2.1 Stability Analysis

The equilibrium of the loan in model (4) can be obtained by setting Lt+1 = Lt.

There are two equilibriums

L∗
1 = 0 and L∗

2 =
a0 + a1 − [rEκ+ cL + (aD + cD)(1− κ)]

2[bL + bD(1− κ)2]
.
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In order to have economically meaning, the equilibrium L∗
2 must be positive, or in

other words

a0 + a1 > rEκ+ cL + (aD + cD)(1− κ). (5)

The model (4) might be rewritten as Lt+1 = f(Lt). The model is shown as a

one-dimensional map. The equilibrium of the map is stable if |f ′(L∗)| < 1 [1]. The

formula for f ’s first derivative is

f ′(Lt) = 1+αL(a0+ a1− [rEκ+ cL+(aD + cD)(1−κ)])− 4αL[bL+ bD(1−κ)2]Lt.

The stability of the equilibriums L∗
1 and L∗

2 is given by the following theorem.

Theorem 2.1. The loan equilibrium L∗
(1) is unstable. On the other hand, the loan

equilibrium L∗
2 is stable if a0 <

2

αL
+ rEκ+ cL + (aD + cD)(1− κ)− a1.

Proof. Considering that

f ′(L∗
(1)) = 1 + αL(a0 + a1 − [rEκ+ cL + (aD + cD)(1− κ)]) > 1

consequently, L∗
1 is unstable.

For the second equilibrium, we have

f ′(L∗
(2)) = 1 + αL(a0 + a1 − [rEκ+ cL + (aD + cD)(1− κ)])− (6)

2αL(a0 + a1 − [rEκ+ cL + (aD + cD)(1− κ)])
= 1− αL(a0 + a1 − [rEκ+ cL + (aD + cD)(1− κ)]).

It is clear that f ′(L∗
(2)) < 1, because αL(a0 + a1 − [rEκ+ cL + (aD + cD)(1− κ)])

is positive (the consequence of (5)) and one minus that is less than one. On the

other hand, f ′(L∗
(2)) will be greater than −1 if

a0 <
2

αL
+ [rEκ+ cL + (aD + cD)(1− κ)]− a1. (7)

Thus, |f ′(L∗
(2))| < 1 holds if the condition (7) holds. Therefore, L∗

(2) is stable if the

condition (7) is fulfilled.

2.2 Transcritical and Flip Bifurcations

We adhere to the Jury stability conditions for a one-dimensional map [20]. The

equilibrium L∗
(2) will experience transcritical bifurcation at f ′(L∗

(2)) = 1. The equi-

librium L∗
(2) becomes unstable because of flip bifurcation when f ′(L∗

(2)) = −1. The
primary goal of the paper is to investigate the benchmark interest rate parameter a0.

Therefore, the value a0 will act as the bifurcation parameter. Simple calculations

can be used to arrive at the next theorem.
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Theorem 2.2. When a0 = aT0 , the loan equilibrium L∗
(2) may become unstable by

transcritical bifurcation, where

aT0 = rEκ+ cL + (aD + cD)(1− κ)− a1

and when a0 = aF0 , L
∗
(2) may become unstable due to flip bifurcation, where

aF0 =
2

αL
+ rEκ+ cL + (aD + cD)(1− κ)− a1.

Proof. We can immediately get the transcritical bifurcation value by solving the

following equation for parameter a0,

f ′(L∗
(2)) = 1− αL(a0 + a1 − [rEκ+ cL + (aD + cD)(1− κ)]) = 1.

We obtain aT0 = rEκ + cL + (aD + cD)(1 − κ) − a1. The flip bifurcation value is

similarly determined by solving the following equation for parameter a0,

f ′(L∗
(2)) = 1− αL(a0 + a1 − [rEκ+ cL + (aD + cD)(1− κ)]) = −1.

The solution is aF0 =
2

αL
+ rEκ+ cL + (aD + cD)(1− κ)− a1.

It is evident that aT0 < aF0 . The benchmark interest rate parameter must be

between the transcritical and flip bifurcation levels for the loan equilibrium to

stay stable. Regarding the transcritical and flip bifurcation values implied by the

necessity of the adjustment speed parameter, Theorem 2 makes the following claim.

Theorem 2.3. The transcritical bifurcation value aT0 and the flip bifurcation value

aF0 will have economically meaning (their value must be between 0 and 1) if

− 1 + rEκ+ cL + (aD + cD)(1− κ) < a1 < rEκ+ cL + (aD + cD)(1− κ)

and

2

1 + a1 − [rEκ+ cL + (aD + cD)(1− κ)]
< αL

<
2

a1 − [rEκ+ cL + (aD + cD)(1− κ)]

respectively.

Proof. The first condition is immediately obtained by rearranging the following

inequality

0 < rEκ+ cL + (aD + cD)(1− κ)− a1 < 1.

Meanwhile, the second condition is immediately obtained by rearranging the fol-

lowing inequality

0 <
2

αL
+ rEκ+ cL + (aD + cD)(1− κ)− a1 < 1.
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3 Numerical Results

To illustrate and validate the findings from the preceding section, we run a number

of numerical simulations. The values for the parameters indicated in Table 1 are

used in the simulations. The settings of the parameters satisfy the equilibrium’s

positive condition a0+a1 > rEκ+cL+(aD+cD)(1−κ) and conditions in Theorem

2.3 despite being solely determined for simulation reasons. The bifurcation values

of benchmark interest rates are aT0 = 0.0092 and aF0 = 0.2092.

Table 1: Parameters value for the simulations

Parameter Value Source

a0 0.1 Assumed

a1 0.1 Assumed

bL 0.05 [4]

aD 0.01 [4]

bD 0.05 [4]

rE 0.05 [4]

κ 0.08 [4]

cD 0.05 [4]

cL 0.05 [4]

αL 1, 5 and 10 Assumed

L0 0.1 and 0.5 Assumed

All the following simulations are related to Eq. (4) and performed using Mat-

lab software. First, we examine how the loan trajectory Lt changes over time in

response to variations in the loan benchmark interest rate parameter a0. Here, we

plot the graph of Lt versus time t. Fig. 1a depicts convergent loan trajectory data.

We may achieve this by using a tiny value of αL = 1. A lower number for a0
results in a lower loan equilibrium. As the parameter a0 increases in Fig. 1b, the

trajectory of the loan varies when the value of αL is relatively larger.

The dynamics of a map can be studied using bifurcation diagrams, which also

offer numerous interpretations, such as whether or not the map is stable and when

it might exhibit chaotic behavior. In Fig. 2a, we show a bifurcation diagram for

the loan benchmark interest rate parameter a0. Here, we plot Lt points versus

each case of a0 value, for time t = 201, . . . , 400. The graph demonstrates that

the loan equilibrium is zero when the benchmark interest rate parameter surpasses

the transcritical bifurcation value, or a0 < aT0 . Whenever the benchmark interest

rate parameter falls within the range of the transcritical and flip bifurcation values,

or aT0 < a0 < aF0 . When a0 is very big, we get pandemonium because the loan

equilibrium results in period-doubling (2-period, 4-period, 8-period, etc.) starting

at a0 > aF0 . The curve of the Lyapunov exponent associated to Fig. 2a is shown
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(a) (b)

Figure 1: Graphs of loan Lt versus time t for various values of the loan benchmark
interest rate parameter a0 for the case of (a) αL = 1 and (b) αL = 5.

in Fig. 2b. the Lyapunov exponent is calculated by l = 1
200

∑400
t=201 ln |f ′(Lt)|. We

plot l versus each case of a0 value. We exhibit the graph of the Lyapunov exponent

with black dots if it does not exceed zero and purple dots otherwise. When the

Lyapunov exponent is positive, the dynamics of loans becomes chaotic.

(a) (b)

Figure 2: (a) Bifurcation diagram of the loan benchmark interest rate parameter
a0 and (b) the respective Lyapunov exponent.

Another technique for examining the dynamics of the map’s qualitative behavior

is the cobweb diagram. The parameter used in this simulation is a0 = 0.51, and

a0 = 0.59. Figs. 3a and 3b show the cobweb diagram for these scenarios. We

plot Lt versus Lt+1 starting from the initial value fro time t = 0, . . . , 100. The

black dashed line (Lt+1 = f(Lt)) and the green dotted line (Lt+1 = Lt) connect

at the point where the red routes converge, showing that the paths are coming to

an equilibrium. We show the dynamics of loans with 4-periodic cycles in direct
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trajectory and cobweb diagrams in Fig. 3a. The dynamics of loans in chaotic

conditions are shown in the final figure, Fig. 6. We can see that the trajectory

of the loan swings randomly indicating chaotic behaviour. The cobweb diagram

yields comparable results as well.

(a) (b)

Figure 3: Cobweb diagram (Lt, Lt+1) when the loan benchmark interest rate pa-
rameter (a) a0 = 0.51 and (b) a0 = 0.59. The simulation uses αL = 5.

In the following simulation, chaotic loan behavior is examined using slightly

different initial values. For the scenario a0 = 0.3, Fig. 4 depicts an example of

the chaotic behavior of the loan map. The graphic displays two graphs of the

loan map with slightly different initial values. The black and red graphs’ initial

values are L0 = 0.5 and L0 = 0.50001, respectively. The black and red graphs in

the illustration clearly resemble one another at first before diverging and forming

different routes.

In the banking industry, there is no doubt that there are so many factors that

affect the banking dynamics, and these factors create randomness in all banking

aspects. Thus, now we assume that the loan benchmark interest rate a0 is not

constant, but stochastic. Suppose we change the parameter into a0 + ϵ, where ϵ is

a white noise N(0, σ2). We simulate the banking loan Lt over time t in Fig 5 with

σ2 = 0.01 when the constant benchmark vary and the speed of adjustment αL vary.

From both simulations, it can be observed that the higher the constant benchmark

or the speed of adjustment parameters produce bigger fluctuations in banking loan.

In Theorem 2.1, it is stated that the loan equilibrium is stable if a0 <
2
αL

+

[rEκ + cL + (aD + cD)(1 − κ)] − a1. Define a function of parameters, S :=
a0

2
αL

+[rEκ+cL+(aD+cD)(1−κ)]−a1
. Hence, the stability condition in Theorem 2.1 can

be changed into S < 1. Now, we want to observe how the changes in parameters’

value affect the stability of banking loan equilibrium, by observing the contour plot

of the function S as a function of the loan benchmark interest rate parameter a0
and other parameters. The simulation is given in Fig. 6. All the figures show that
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Figure 4: Sensitivity dependence of the chaotic loan dynamics on the initial condi-
tion for the loan benchmark interest rate parameter a0 = 0.3. The simulation uses
αL = 10

higher a0 can cause unstable banking loan. For the case of parameters αL, a1, and

κ, it can be observed that the loan can be unstable if their values becoming higher.

On the other hand, the banking loan may be unstable if the parameters aD, rE ,

cD, and cL having smaller value.

4 Conclusions

The loan benchmark interest rate is regulated by the central bank and it influences

banks depend on it to determine their loan interest rate. The benchmark interest

rate makes the size of the loan must be managed effectively and efficiently. In

this study, a similar issue is impartially assessed to determine how it impacts the

dynamics of loans. Lower benchmark interest rate result in lower loan equilibrium.

The results of this study show that the benchmark interest rate shouldn’t be too

high or too low. When it is too high, loans destabilize and cause havoc. In the

meantime, a loan with an abnormally low benchmark interest rate might inevitably

default. The simulation of introduction of stochastic term in the benchmark interest

rate suggests that the higher the benchmark or the speed of adjustment can cause
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(a) (b)

Figure 5: Plot of banking loan when there is a randomness in the loan benchmark
interest rate parameter a0, when (a) the constant benchmark vary and (b) the
speed of adjustment vary.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6: Contour plof of S as a function of two parameters: the loan benchmark
interest rate a0 and other parameters.
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the banking loan having high volatility. The sensitivity analysis shows that the

control of banking loan stability can be done by combining the benchmark interest

rate with other parameters, that they must be set at certain conditions to guarantee

a stable loan.

In this work, a single bank with a straightforward balance sheet structure is

modeled relatively simply. The model can be generated into a more general model

with more balance sheet components in order to handle specific banking policies,

such as macroprudential policy, which focuses on limiting the growth of banking

loans [8,21], or it may be employed to banking data as well [5–7].
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