Mohammad Qezelbash; Saeid Tajdini; Farzad Jafari; Majid Lotfi Ghahroud; Mohammad Farajnezhad
Abstract
In recent years, cryptocurrency has attracted more attention and is a new option in the economy and the financial sector. The purpose of this study is to the volatility and “herd behavior” of the cryptocurrency, gold, and stock markets in the US. This research is aimed at investor “herd ...
Read More
In recent years, cryptocurrency has attracted more attention and is a new option in the economy and the financial sector. The purpose of this study is to the volatility and “herd behavior” of the cryptocurrency, gold, and stock markets in the US. This research is aimed at investor “herd behavior” and how it correlates with the volatility of three assets: the Standard & Poor's 500 indexes, Bitcoin, and gold. Also, A new formula by applying the conditional standard deviation (risk), maximum return, minimum return, and average return to quantify the herding bias is designed in this research. In this study, the generalized autoregressive conditional heteroscedasticity model (GARCH) and the autoregressive moving average model (ARMA) were both employed. Research results show that Bitcoin is 3.3 times as volatile as the S&P 500 and 4.6 times as volatile as gold. The results of this novel equation also show that the herding bias of Bitcoin is more than 26 times higher than the global average and 10 times higher than the S&P 500. Also, it’s important to consider the energy consumption and sustainability of investments when evaluating their long-term viability and risk. In some cases, investments in companies with strong sustainability practices and low carbon footprints may be seen as lower risk. Since Bitcoin relies on a network of computers to validate transactions based on proof of work and it is an energy consumption consensus mechanism, investment in Bitcoin may be seen as a higher risk.
S. Pourmohammad Azizi; RajabAli Ghasempour; Amirhossein Nafei
Abstract
This study explores the application of dynamic systems for modeling and valuing catastrophe bonds to establish a more intelligent and adaptive approach to determining their volatility parameter. These financial instruments hold significant importance for insurance companies in safeguarding against the ...
Read More
This study explores the application of dynamic systems for modeling and valuing catastrophe bonds to establish a more intelligent and adaptive approach to determining their volatility parameter. These financial instruments hold significant importance for insurance companies in safeguarding against the risk of insolvency stemming from the escalating frequency and severity of natural disasters worldwide. Employing mathematical principles, this research formulated a pricing partial differential equation and introduced a dynamic system for its resolution. The damage model was assumed to follow a stochastic process, and a radial basis neural network was utilized to estimate the volatility parameter of this stochastic process by leveraging historical data. The study scrutinized the pricing framework of catastrophe bonds related to floods and storms in China, ultimately demonstrating that the proposed methodology proved effective and computationally efficient when contrasted with alternative approaches.
Tayebeh Nasiri; Ali Zakeri; Azim Aminataei
Abstract
We consider European style options with risk-neutral parameters and time-fractional Levy diffusion equation of the exponential option pricing model in this paper. In a real market, volatility is a measure of the quantity of inflation in asset prices and changes. This makes it essential to accurately ...
Read More
We consider European style options with risk-neutral parameters and time-fractional Levy diffusion equation of the exponential option pricing model in this paper. In a real market, volatility is a measure of the quantity of inflation in asset prices and changes. This makes it essential to accurately measure portfolio volatility, asset valuation, risk management, and monetary policy. We consider volatility as a function of time. Estimating volatility in the time-fractional Levy diffusion equation is an inverse problem. We use a numerical technique based on Chebyshev wavelets to estimate volatility and the price of European call and put options. To determine unknown values, the minimization of a least-squares function is used. Because the obtained corresponding system of linear equations is ill-posed, we use the Levenberg-Marquardt regularization technique. Finally, the proposed numerical algorithm has been used in a numerical example. The results demonstrate the accuracy and effectiveness of the methodology used.
Saeid Tajdini; Farzad Jafari; Majid Lotfi Ghahroud
Abstract
According to the literature on risk, bad news induces higher volatility than good news. Although parametric procedures used for conditional variance modeling are associated with model risk, this may affect the volatility and conditional value at risk estimation process either due to estimation or misspecification ...
Read More
According to the literature on risk, bad news induces higher volatility than good news. Although parametric procedures used for conditional variance modeling are associated with model risk, this may affect the volatility and conditional value at risk estimation process either due to estimation or misspecification risks. For inferring non-linear financial time series, various parametric and non-parametric models are generally used. Since the leverage effect refers to the generally negative correlation between an asset return and its volatility, models such as GJRGARCH and EGARCH have been designed to model leverage effects. However, in some cases, like the Tehran Stock Exchange, the results are different in comparison with some famous stock exchanges such as the S&P500 index of the New York Stock Exchange and the DAX30 index of the Frankfurt Stock Exchange. The purpose of this study is to show this difference and introduce and model the "reversed leverage effect bias" in the indices and stocks in the Tehran Stock Exchange.
Nafiseh Shahmoradi; Hasan Ghalibaf Asl
Abstract
A large number of investors have been attracted to the Iran Mercantile Exchange as a result of launching Bahar Azadi Coin future contracts, also known as gold coin future contracts, since 2007. The nature of gold price as a physical-commodity and financial asset, as well as other contributing factors ...
Read More
A large number of investors have been attracted to the Iran Mercantile Exchange as a result of launching Bahar Azadi Coin future contracts, also known as gold coin future contracts, since 2007. The nature of gold price as a physical-commodity and financial asset, as well as other contributing factors to the gold futures market, extremely complicates the analysis of the relationship between the underlying variables.One of the methods to forecast the price volatility is the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. However, the high percentage of errors in such prediction has forced researchers to apply a variety of techniques in the hope of more accurate projections. Similarly, in this study, a hybrid model of the GARCH and Artificial Neural Network model (ANN) was used to predict the volatility of gold coin spot and future prices in the Iran Mercantile Exchange.In this study, variables such as global gold price, spot or future gold coin price (depending on which one is analyzed), US Dollar/IR Rial, world price of OPEC crude oil, and Tehran Stock Exchange Index were considered as factors affecting the price of gold coin. The results of the study indicate that the ANN-GARCH model provides a better prediction model compared to the Autoregressive models. Moreover, the ANN-GARCH model was utilized to compare the predictive power of spot and future gold coin prices, and it revealed that gold coin future price fluctuations predicted spot price of gold coin more accurately.